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INTRODUCTION 
 

Ageing is a physiological condition defined in animals 

by a progressive functional impairment of most organs, 

driven at least in part by the accumulation of senescent 

cells [1]. Senescent cells, which have been shown to 

increase in aged tissues in vivo [2–4], are metabolically 

active but exhibit an irreversible and sustained cell 

cycle arrest [5–7]. Senescence can appear as a result of 

proliferation exhaustion (replicative senescence) or of 

different types of damage (stress-induced premature 

senescence, SIPS). The phenotype was first described 

when human diploid cells were observed to have 

limited proliferation ability in vitro [8], and since  

then it has been shown to be triggered in response to 

many stresses, such as therapy-induced senescence 

(TIS) [9–12], oncogene-induced senescence (OIS)  

[13], mitochondrial dysfunction-associated senescence 

(MiDAS) [14] or oxidative stress-induced senescence 

[15]. All these events cause a permanent cell cycle 
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ABSTRACT 
 

The accumulation of senescent cells has an important role in the phenotypical changes observed in ageing and 
in many age-related pathologies. Thus, the strategies designed to prevent these effects, collectively known as 
senotherapies, have a strong clinical potential. Senolytics are a type of senotherapy aimed at specifically 
eliminating senescent cells from tissues. Several small molecule compounds with senolytic properties have 
already been identified, but their specificity and range of action are variable. Because of this, potential novel 
senolytics are being actively investigated. Given the involvement of HDACs and the PI3K pathway in 
senescence, we hypothesized that the dual inhibitor CUDC-907, a drug already in clinical trials for its 
antineoplastic effects, could have senolytic effects. Here, we show that CUDC-907 was indeed able to 
selectively induce apoptosis in cells driven to senesce by p53 expression, but not when senescence happened in 
the absence of p53. Consistent with this, CUDC-907 showed senolytic properties in different models of stress-
induced senescence. Our results also indicate that the senolytic functions of CUDC-907 depend on the inhibitory 
effects of both HDACs and PI3K, which leads to an increase in p53 and a reduction in BH3 pro-survival proteins. 
Taken together, our results show that CUDC-907 has the potential to be a clinically relevant senolytic in 
pathological conditions in which stress-induced senescence is involved. 
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arrest via signalling pathways such as p16INK4a/RB  

and p53/p21CIP1, which inhibit the check point  

kinases (CDKs) and lead to a hypophosphorylated 

Retinoblastoma protein (RB) [16–18].  

 

Senescent cells exhibit distinctive morphological changes 

and molecular markers, including enlarged flattened 

shape, large nucleoli, expression of CDK inhibitors and 

anti-apoptotic proteins, release of the senescence-

associated secretory phenotype (SASP), increased 

reactive oxygen species (ROS), presence of senescence-

associated β-galactosidase and α-lipofuscin, senescence-

associated heterochromatin foci (SAHF) and epigenetic 

modifications [8, 16, 19–21]. Despite this, they are 

difficult to identify and target in vivo, since no universal 

marker of senescence has yet been found [22]. Different 

strategies have been developed to reduce the negative 

effects of senescent cell accumulation in tissues, 

collectively known as senotherapies: senoblockers to 

prevent the formation of senescent cells [23], senolytics 

to specifically eliminate them [24, 25] and senostatics/ 

senomorphics to modulate the secretion of disruptive 

factors [26, 27]. Due to their huge therapeutic potential, 

great efforts are being made to identify novel 

senotherapies that can be tested in clinical trials [28, 29]. 

 

Since senescent cells are resistant to apoptosis due to the 

activation of Senescent Cell Anti-Apoptotic Pathways 

(SCAPs) [30], the first senolytics were developed to 

remove these pro-survival signals and thus allow 

apoptosis to proceed [31, 32]. SCAPs include signalling 

networks associated with PI3K/AKT and BCL-2/BCL-

xL, among others [30, 32–34]. Many malignancies  

have been shown to have elevated PI3K/AKT activity 

[35–37]. Moreover, the loss of the tumour suppressor 

PTEN, the negative regulator of the PI3K/AKT pathway, 

causes senescence via the mTOR pathway [38], since 

mTOR1 and mTOR2 can inhibit MDM2 and activate 

p53 to promote cell cycle arrest [38]. 

 

Epigenetic alterations play an important role in the 

ageing process and the establishment of the senescent 

phenotype [20, 21, 39]. For instance, global hypo-

methylation of DNA is observed in replicative 

senescence in vitro [40] and in in vivo models [41–43]. 

Additionally, human diploid cells in culture showed an 

age-related decline in the rate of histone acetylation [44], 

and senescence caused by chemotherapy was associated 

with a reduction in histone-3 lysine-56 acetylation 

(H3K56ac) [45]. Hypoacetylation is also observed in 

senescent cells in different organs in humans [46, 47].  

 

Histone acetylation is regulated by histone 
acetyltransferases (HATs) and histone deacetylases 

(HDACs) [15]. HDACs are a group of enzymes that 

deacetylate lysine residues in histone and non-histone 

proteins [48]. There are 18 distinct mammalian 

HDACs identified, which have been divided into four 

classes: Class I (HDAC1, 2, 3 and 8), subclass IIa 

(HDAC4, 5, 7 and 9) and subclass IIb (HDAC6 and 

10), Class III (SIRT1–7), and Class IV (HDAC11) 

[49–51]. HDACs have been shown to play an 

important role in the establishment and maintenance of 

senescence [46, 47, 52–54]. For instance, HDAC4 has 

been involved in the induction of senescence [53] and 

may play a role in hypertension and cardiovascular 

diseases by modulating vascular senescence [52]. 

Additionally, HDAC6 could enhance SIPS in the 

retinal vasculature, which is involved in diabetic 

retinopathy [46]. Moreover, HDAC9 contributes to the 

development of adipose tissue senescence and can thus 

play a role in obesity-related metabolic diseases [47]. 

 

HDAC inhibitors (HDACi) are a series of small 

molecules that target the active site of different HDACs 

and inhibit their activity, which has shown a clinical 

effect on certain malignancies [55]. p53 activity can be 

modulated by acetylation [56, 57], among other post-

translational alterations, and HDACi have been shown 

to facilitate p53 hyperacetylation, enhance p53 stability, 

decrease expression of anti-apoptotic genes and 

upregulate pro-apoptotic genes [58–61]. Interestingly, 

HDACi increase longevity [62–64] and ameliorate age-

related pathologies [65, 66]. For example, exposure to 

the licensed HDAC inhibitor, sodium butyrate, can 

result in hyperacetylation of histone H4 at lysine 16 

residue (H4K16), a reduction in the percentage of 

senescent cells and an extension of lifespan in 

Zmpste24-/-deficient mice, a model of accelerated 

ageing [64]. Moreover, HDAC inhibitor Panobinostat 

has been shown to have a senolytic effect [67]. 

 

In view of these findings, we hypothesized that CUDC-

907, a heterobifunctional molecule that inhibits both 

HDAC (class I and II) and PI3K (class Iα, β, and δ) that 

has been shown to be well tolerated when given orally 

and to have antineoplastic activity [68], could have 

senolytic properties. We tested its effects on different 

cellular models of senescence and our results suggest 

that CUDC-907 could indeed be used as a senotherapy 

due to a selective specificity at very low concentrations 

for killing cells induced to senesce by p53. This could 

have therapeutic potential in diseases in which SIPS has 

a pathogenic role. 

 

RESULTS 
 

Selective sensitivity to CUDC-907 of cells undergoing 

p53-induced senescence 

 

In order to test the potential senolytic effects of CUDC-

907, we took advantage of the genetic models of 
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senescence, EJp53, EJp21 and EJp16, in which the p53 

null bladder cancer cell line, EJ, is induced to senesce 

by a tetracycline(tet)-regulatable expression of p53, p21 

or p16, respectively [69–71]. This system allowed to 

separately interrogate each of the main pathways 

involved in triggering senescence, i.e. p53/p21 and 

p16/Rb. Six days after tet was removed from the culture 

media, the majority of these cells were senescent, as 

confirmed by morphological changes and expression of 

senescence-associated-β galactosidase (Figure 1A), loss 

of proliferative capacity (Figure 1B) and expression of 

the respective markers (Figure 1C). Proliferating and 

senescent cells were treated with increasing 

concentrations of CUDC-907 for 72h. As shown in 

Figure 2A, CUDC-907 selectively decreased the 

viability of senescent EJp53 cells, but not EJp21 or 

EJp16, as measured by the rate of metabolic activity. 

This was highlighted by an IC50 of 3 nM in senescent 

EJp53, compared to 100 nM in proliferating controls 

(Supplementary Table 1). The effect was evident as 

early as 24 or 48 hours after treatment (Supplementary 

Figure 1). Interestingly, this was similar to the response 

observed when the same cells were exposed to BCL-2 

inhibitor ABT-737, a known senolytic: senescent EJp53, 

but not EJp21 or EJp16, were sensitive to the drug 

(Supplementary Figure 2). These results indicate that 

cells in which senescence has been induced byp53 may 

be particularly sensitive to CUDC-907, suggesting for the 

first time a potential senolytic action of this drug similar 

to that of BCL-2 inhibitors, particularly in the context of 

SIPS, which is usually driven by a p53 response to stress. 

 

CUDC-907 induces apoptosis in senescent cells in the 

presence of p53 

 

To further explore the senolytic effects of CUDC-907, 

we investigated how it reduced cell viability in 

senescent cells. As shown in Figure 2B, the Annexin-V 

 

 
 

Figure 1. Induction of senescence in the EJ models. (A) Representative images of the SA-β-Gal staining of EJp53, EJp21 and EJp16 

uninduced (Control, proliferating) or 6 days after tet removal to induce the expression of p53, p21 or p16, respectively (Senescent). Black 
arrows point to examples of senescent cells. The graph on the right is a quantitation of SA-β-Gal positive cells of three independent 
experiments. **, P < 0.01; ***, P < 0.001. (B) Cell counting of the same cell lines over a period of six days since tet removal. Three 
independent experiments were performed in duplicates and the averages and standard deviation (SD) were plotted in the graphs.  
(C) Representative Western blots of lysates of the same cell lines showing expression of the proteins induced by tet removal in each cell line. 
Actin was used as a loading control. 
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staining, specific of cell death, suggested a significant 

increase in apoptosis of senescent EJp53 cells between 

1 and 100 nM (with an IC50 of 10 nM, compared to  

70 nM in proliferating controls). Of note, CUDC-907 

induced death in 90% of senescent cells at 30 nM, while 

only 6% of the control proliferating cells died at this 

concentration, showing that it has an ample therapeutic 

window as a senolytic at low doses. Treatment with a 

 

 
 

Figure 2. CUDC-907 has senolytic effects in different models of cellular senescence. (A) Cell viability of control (proliferating, blue) 

and senescent (6 days after tet removal, red) EJp53, EJp21 and EJp16 cells after treatment with different concentrations of CUDC-907 for 72h, 
as measured by a CTG assay. (B) Induction of apoptosis by different concentrations of CUDC-907 in control or senescent EJp53, as measured 
by Annexin V staining and FACs analysis. The percentages of Annexin V-positive cells are plotted. (C) Cell viability of control and senescent 
EJp53 after CUDC-907 treatment in the presence of DMSO (Control) or 10 μM of QVD-OPH (CI), as measured by a CTG assay. (D) Cell viability 
of control and senescent H522 and HCT116 72h after treatment with CUDC-907, as measured by a CTG assay. H522 were induced to senesce 
by exposure to 8 Gy of ionizing radiation and 6 days incubation. HCT116 were induced to senesce by exposure to 0.2 µM doxorubicin for 3 
days. All values in this figure show mean ±SD of three independent experiments, and P values between each control and senescence pair are 
shown as *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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pan-caspase inhibitor partially reduced the effects of 

CUDC-907 (Figure 2C), confirming that it induces 

death in senescent cells at least in part through the 

activation of the apoptotic cascade. 

 

CUDC-907 is senolytic in the context of stress-induced 

senescence 

 

Our results show a strong senolytic effect of CUDC-907 

in senescent cells that express p53, which suggests a 

possible effect in SIPS, a form of senescence in which 

p53 induction is central [72, 73]. To confirm this 

hypothesis in physiological models of stress-induced 

senescence, we used two cell lines subjected to levels of 

damage that can induce senescence: H522 (lung cancer 

with a mutated p53 [74]) treated with ionizing radiation 

and HCT116 (colon cancer with wt p53 [74]) treated 

with doxorubicin. Consistent with previous reports [24], 

we observed that a low dose of doxorubicin-induced 

senescence in HCT116 (Supplementary Figure 3). 

Similarly, H522 also entered a senescence-like state 

after being exposed to 8 Gy of ionizing radiation 

(Supplementary Figure 4). As shown in Figure 2D and 

Supplementary Table 1, CUDC-907 had a statistically 

significant specific effect in the senescent cells of these 

two models, although the window of action was smaller 

in HCT116. This confirms its role as a senolytic in 

SIPS, although it may not be dependent on the presence 

of functional p53. 

 

The senolytic effect of CUDC-907 depends on the 

inhibition of both HDAC and PI3K 

 

CUDC-907 is a heterobifunctional molecule that 

contains chemical moieties that target both PI3K and 

HDAC [75]. To better understand the mechanisms by 

which it exerts its senolytic effect, we compared the 

response of senescent cells to specific drugs for these 

two pathways, with the goal of identifying which is 

most likely responsible for senolysis in CUDC-907. We 

found that, similar to CUDC-907, dactolisib (a PI3K 

inhibitor that can also inhibit mTOR) and panobinostat 

(a pan-HDAC inhibitor) had senolytic effects on EJp53 

(Figure 3 and Supplementary Table 2) but not on EJp21 

or EJp16 (Supplementary Figure 5). The effect was also 

significant, but at a lower magnitude, with buparlisib (a 

more specific PI3K inhibitor) but absent in CI-994 

(which only inhibits class I HDACs). Dactolisib and 

panobinostat were also senolytic in H522, and had a 

minimal effect in HCT116 (Figure 3). Similar to EJp53, 

both senescent H522 and HCT116 showed a statistically 

significant but reduced sensitivity to buparlisib and no 

differences in CI-994 treatment, although the effect was 

less biologically relevant in HCT116. These data 

 

 
 

Figure 3. Investigation of the pathways involved in the senolytic effects of CUDC-907. Cell viability of control and senescent EJp53, 

H522 and HCT116 treated with different concentrations of dactolisib, panobinostat, buparlisib or CI-994 for 72h, as measured by a CTG assay. 
All values show mean ±SD of three independent experiments, and P values between each control and senescence pair are shown as  
*, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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suggest that the inhibition by CUDC-907 of both PI3K 

and class II HDACs may contribute independently to  

its senolytic effects, although it is likely that other 

functions may also be playing a role and enhancing its 

ability to promote apoptosis in senescent cells. 

 

Potential mechanisms behind the senolytic effects of 

CUDC-907 

 

We next investigated in more detail the pathways 

involved in the senolytic effects of CUDC-907. As 

shown in Figure 4A, the expression of p53 was 

increased in EJp53 in the presence of CUDC-907, 

proportionally to the amount of apoptosis induced, as 

measured by PARP cleavage, which suggests p53 

stabilization could be involved in triggering apoptosis 

by CUDC-907 in senescent cells. Moreover, pro-

survival BH3 proteins BCL-xL and BCL2, which are 

upregulated in senescence [31, 32], were inhibited by 

CUDC-907, which may contribute to its senolytic 

effect. CUDC-907 also increased the acetylation of 

H3K56, as expected from an HDAC inhibitor, but 

selectively reduced the expression of HDAC6 in 

senescent cells (Figure 4B), suggesting that HDAC6 

may have a pro-survival effect in these cells. Indeed,  

the HDAC6-specific inhibitor rocilinostat showed a 

particular toxicity for different types of senescent cells 

(Figure 4C and Supplementary Table 2), although  

not as striking as that of CUDC-907, which confirms 

that HDAC6 inhibition has a senolytic effect, in the 

 

 
 

Figure 4. Mechanisms of cell death induced by CUDC-907 in senescent cells. (A, B) Representative Western blots of lysates of 

control (C) and senescent (S) EJp53 treated with different concentrations of CUDC-907 for 24h. Actin and H3 are used as a loading controls. 
(C) Cell viability of control and senescent EJp53 (top) and H522 (bottom) treated with different concentrations of rocilinostat for 72 hours. 
H522 were induced to senesce by exposure to 8 Gy of ionizing radiation and 6 days incubation. HCT116 were induced to senesce by exposure 
to 0.2 µM doxorubicin for 3 days. Values show mean ±SD of three independent experiments. (D) Representative Western blots of lysates of 
proliferating (C) and senescent (S) EJp53 treated with DMSO (control), 0.03 µM CUDC-907, 0.03 µM CI-994 (CI) or 0.03 µM panobinostat 
(Pano) for 24h. Actin and H3 are used as loading controls. 
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presence or absence of functional p53, and may 

partially explain the mechanisms of action of CUDC-

907. Of note, there were no changes in the expression of 

other class II HDACs, such as 7 and 9 (data not shown). 

We also found that the increase in H3K56ac levels was 

similar after CUDC-907 and panobinostat treatments, 

despite that the levels of apoptosis induced in senescent 

cells were not the same, as measured by PARP cleavage 

(Figure 4D), supporting the hypothesis that the HDAC 

inhibitory effect of CUDC-907 may not be sufficient to 

explain its senolytic activity. In summary, our data 

suggest that CUDC-907 has a strong senolytic effect 

that depends on its inhibition of PI3K and HDACs, 

particularly of HDAC6, and that this may be mediated 

by a concomitant increase in p53 activity, in cells in 

which is still wild type, and/or a reduction in pro-

survival signals in senescent cells. 

 

DISCUSSION 
 

In the past years, mounting evidence has proved that 

senescent cells accumulate in aged organisms and 

during many age-related diseases, including diabetes, 

Alzheimer’s and cancer [2–4]. More importantly, key 

studies have shown that preventing senescent cell 

accumulation minimizes their detrimental effects on 

tissue homeostasis, both in healthy and pathological 

conditions and improves lifespan and healthspan in 

animals [23, 76–78]. So far, senescent cells have been 

targeted in different experimental models using genetic 

methods [79] as well as senoblocker [23], senolytic [24, 

25] and senostatic/senomorphic drugs [26, 27]. Some of 

these compounds are currently undergoing clinical trials 

[80], suggesting that the first application of a senotherapy 

in humans could be expected in the near future [81].  

 

However, the forerunning senotherapies are mostly 

repurposed drugs with senolytic effects that are far from 

specific, and thus have the potential to trigger many off-

target effects. This limits their intended therapeutic uses 

to diseases in which potentially serious side effects 

could be acceptable, like cancer or idiopathic lung 

fibrosis [82]. Because of this, great efforts are being 

invested in discovering novel senotherapies that could 

be more precise and effective than the first generation of 

drugs being tested at the moment [83]. 
 

It has been hypothesized that none of the known 

senolytics has a universal effect; instead, each of them 

is likely to only be effective in a subset of senescent 

cells. The sensitivity to these drugs would then be 

determined by the stimulus that induces senescence, the 

pathways that are preferentially activated, tissue of 

origin, presence of cofactors and modulators and other 

yet unknown factors. Thus, it would be important to 

expand the current catalogue of senolytics in order to 

define a wider library of compounds that could provide 

sufficient options for different key clinical uses. 

 

In this context, we investigated CUDC-907, a 

compound that we suspected might have senolytic 

activity due to its chemical properties. Indeed, we found 

that cells that enter a stress-induced senescence (in 

response to chemicals or in the genetically-driven 

EJp53 model) were more sensitive to CUDC-907 than 

their proliferating counterparts, both when p53 was 

present and when it was mutated. Our results suggest 

that CUDC-907 can turn a p53-induced senescent 

response into apoptosis and may also induce cell death 

by other mechanisms in SIPS when p53 is not active, 

perhaps by removing pro-survival signals such as BCL-

xL or BCL-2. However, when there is no direct stress 

response to prime the cells (i.e. in p21- and p16-induced 

senescence), this effect is lost. Interestingly, this is 

similar to how a well-studied senolytic of the BCL-2 

inhibitor family works, suggesting that certain 

senolytics may have a common pathway of action that 

makes them more effective on particular types of 

senescence. This also provides novel insights on p53-

mediated cell fate decisions [84], and could be 

particularly useful to eliminate cells that underwent 

SIPS, in which p53 is normally a driver [73], but it also 

could be a useful approach in cancer cells with mutated 

p53 induced to senescence after exposure to chemo or 

radiotherapy, which are believed to contribute to tumour 

relapse [11]. When we tested this hypothesis in different 

models of SIPS (two cancer cell lines of different origin 

and p53 status and two different damaging agents), we 

confirmed the senolytic effects of CUDC-907, but the 

results varied in range. This is consistent with the idea 

that senolytics will have increased specificity for certain 

types of senescent cells. It would be interesting to 

perform a wider screen of senescent models to 

determine in which ones CUDC-907 is more effective 

and thus design in vivo experiments that could inform of 

the potential clinical uses of the drug. 

 

The mechanisms of induction of senescent cell death by 

CUDC-907 remain to be fully elucidated. Our data 

suggest that an apoptotic response may be triggered as a 

result of a combination of an increase in p53 activity 

and/or a decrease in pro-survival proteins. This is likely 

to happen in response to the simultaneous inhibition of 

different signalling pathways. Neither the inhibition of 

PI3K nor that of HDACs was sufficient to fully 

recapitulate the senolytic effects of CUDC-907, as 

specific inhibitors showed, suggesting that the 

combination of both had synergistic properties. It is 

possible that other functions of CUDC-907 may also 
contribute to this. Similarly, the mTOR-inhibiting 

activity of Dactolisib may be responsible for a more 

profound effect than Buparlisib, which lacks this effect 
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despite also inhibiting PI3K. Interestingly, inhibition of 

HDAC6 could be important in the senolytic effect of 

CUDC-907, as HDAC6 levels were substantially 

decreased after treatment. Consistent with this, specific 

inhibition of HDAC6 activity had senolytic effects in 

our models, although not as striking as those of CUDC-

907. HDAC6 has been shown to deacetylate p53 and 

inhibit p53-induced apoptosis, in part by preventing its 

acetylation at K120 [85–87], which could explain why 

its inhibition would increase p53 activity and thus push 

a senescent response towards apoptosis. Apart from 

HDAC6, it would be interesting to investigate which 

other HDACs may be protecting senescent cells against 

apoptosis, which could lead to the discovery of new 

senolytics. The fact that CI-994 alone was not effective, 

suggests that HDAC1/2/3 may not be involved. 

 

Importantly, the senolytic effect of CUDC-907 was 

evident at nanomolar concentrations and had an ample 

therapeutic window, which is encouraging in terms of 

translating this discovery into a clinical tool. It should 

be taken into consideration that CUDC-907 is a drug 

that has already undergone clinical trials for other 

purposes and has been shown to be bioavailable and 

safe [68, 88, 89]. Nevertheless, it has off-target effects 

that could complicate its prescription as a senolytic, like 

all other known drugs in its class, as mentioned above. 

The development of second generation (or targeted) 

senolytics should provide a solution to this problem 

[90]. The main idea of this approach would be to couple 

an effective senolytic drug to a delivery system that 

would increase its specificity and thus avoid toxicity to 

non-senescent cells. For instance, we and others have 

shown that nanoparticles can carry a toxic cargo into 

senescent cells with great accuracy [25, 91]. Also, 

conjugating senolytics with galactose reduces their 

systemic toxicity by exploiting the high β-galactosidase 

content of senescent cells [92]. Recently, we have 

shown that antibodies directed against the senescent 

surfaceome [93] can be used as a basis of an antibody-

drug conjugate that can deliver drugs into senescent 

cells [24]. All these strategies could help improve 

current senolytics and achieve their full therapeutic 

potential. 

 

According to our results, CUDC-907 could be an 

interesting drug to be used as a senolytic, alone or as 

part of a targeted approach. For instance, it could be 

used as an adjuvant in oncological treatments to reduce 

the chances of relapse. Its strong effect at low 

concentrations and its wide therapeutic window are 

important assets that similar drugs do not possess, 

which puts CUDC-907 at the top of the list of novel 
senolytics to study. This is particularly relevant in view 

of the clinical tests already performed on this drug. 

However, further experiments would be needed to 

confirm the use of CUDC-907 as a senotherapy and find 

the best potential applications. 

 

MATERIALS AND METHODS 
 

Cell culture and senescence induction 

 

EJ and HCT116 cells were grown in Dulbecco’s 

Modified Eagle’s Medium (DMEM), while H522 cells 

were cultured in Roswell Park Memorial Institute  

1640 Medium (RPMI) (Thermo Fisher). Media were 

supplemented with penicillin-streptomycin (50 units/ml) 

and 10% Foetal Bovine Serum (FBS). EJp53 and  

EJp21 cells were cultured in complete culture media 

supplemented with 750 μg/ml geneticin and 100 μg/ml 

hygromycin, while EJp16 cells were maintained in media 

supplemented with 2 μg/ml puromycin and 100μg/ml 

hygromycin. To maintain EJ cells proliferating, 1 μM 

tetracycline was added to the culture media. To induce 

senescence, cells were trypsinized, washed with 1x 

phosphate buffered saline (PBS), and centrifuged at 244 

g for three minutes. This step was repeated three times. 

Cells were cultured for a further 6 days in the absence of 

tetracycline to ensure the establishment of senescence. 

HCT116 cells were treated with 0.2 μM doxorubicin  

for 3 to 4 days to induce senescence. H522 cells  

were irradiated at 8Gy and cultured for 6 days to  

induce senescence. The drugs used were: CUDC-907 

(APExBIO, #A4097), Dactolisib (Selleckchem, 

#BEZ235), Panobinostat (MedChemExpress, #404950-

80), Buparlisib (APExBIO, #BKM120), CI-994 and 

Rocilinostat (Adooq Bioscience, #ACY-1215).  

 

Senescence-associated β-galactosidase (SA-β- gal) 

staining 

 

Cells were stained according to previously described 

protocols [94]. Shortly, cells were washed in PBS 

before being fixed in 10% neutral buffered formalin  

for 5 minutes at room temperature, followed by  

another wash. After that, the cells were stained using 

staining buffer (1 mg/ml 5-bromo-4-chloro-3-indolyl-β-

d-galactopyranoside (X-gal) in dimethylformamide, 150 

mM Sodium Chloride, 2 mM Magnesium, 40 mM citric 

acid/sodium phosphate, pH 6.0, 5 mM Potassium 

Ferricyanide, 5 mM Potassium Ferrocyanide in distilled 

water). Plates were then incubated at 37° C in a non-

CO2 incubator and photographed after 24 hrs. 

 

Western blotting 

 

For protein extraction, collected cells were incubated  

in 200 μl of radioimmunoprecipitation assay (RIPA)  
lysis buffer (150 mM NaCl, 50 mM Tris HCl pH 8.0,  

1% NP40, 0.1% SDS, 0.5% sodium deoxycholate), 

supplemented with 1 μg/ml phosphatase inhibitor 
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cocktail 2 (Sigma-Aldrich) and protease inhibitor cocktail 

(Sigma-Aldrich), for 25 minutes on ice. They were then 

centrifuged at 14,000 g for 15 minutes at 4° C. A Bradford 

protein assay (Fermentas) was used to determine the 

protein concentrations in the supernatants. After adding 

4X Laemmli buffer in a 1:4 ratio, samples were heated at 

95° C for 7 min. Following that, 50 μg of total protein per 

sample were electrophoretically separated using SDS-

polyacrylamide gels and then transferred to Immobilon-P 

membranes (Millipore). Membranes were then incubated 

with specific antibodies after blocking them in blocking 

buffer (5% BSA in PBS-Tween). Protein bands were 

detected and quantified with an Odyssey system (Li-

COR, Lincoln, NE, USA). For histone extraction, the 

pellets after protein extraction were resuspended in 40% 

sulfuric acid standard solution (Hach) using the same 

volume that was used for protein extraction (200 μl) and 

incubated overnight at 4° C, followed by centrifuging and 

adding 4X Laemmli buffer. The antibodies used were: β-

actin (Abcam, #ab8227), p53 (Santa Cruz Biotechnology, 

#sc-126), BCL2 (Dako, #M0887), Bcl-xS/L (Santa Cruz 

Biotechnology, #sc-271121), PARP (Cell Signaling 

Technology, #9542), H3K56Ac (Active Motif, #39281), 

H3 (Merck Millipore, #05-499), HDAC6 (Santa Cruz 

Biotechnology, #sc-28386). 

 

Cell viability and cell death analyses 

 

6 x 104 cells/ml were seeded into 96-well plates for 24 

hours. The CellTiter-Glow (CTG, Promega) reagent was 

then applied to each well to evaluate the metabolic 

activity of the cells after adding the appropriate 

treatment for 72 hours, and luminescence was quantified 

using a Hidex Sense multimode microplate reader. 

Graphs were prepared using GraphPad Prism 9.0 

software. Annexin V (Sigma-Aldrich) was used to 

calculate the percentage of apoptotic cells. Flow 

cytometry was used to determine the presence of 

apoptotic cells using a FACS Canto II cytometer (Becton 

Dickinson Biosciences) according to the manufacturer’s 

guidelines. The results were analysed using FACS Diva 

6.1.3 software (BD Bioscience) and GraphPad Prism 

9.0. For caspase inhibition, 6 x 104 cells/ml were seeded 

into 96-well plates with QVD-OPH (Quinoline-Val-Asp-

Difluorophenoxymethylketone, MedChemExpress), a 

pan-caspase inhibitor, at a final concentration of 10 μM. 

Cells were then treated with different concentrations of 

the appropriate drug for 72 hours, and the metabolic 

activity of the cells was measured as described above. 

 

Statistical analysis 

 

GraphPad Prism 9.0 was used to perform two-tailed 

unpaired t-tests. Data from at least three independent 

experiments are represented in the figures as means  

and standard deviations. The statistical threshold for 

significance was selected at a P-value of 0.05: *, P < 0.05; 

**, P < 0.01; ***, P < 0.001; ****, P < 0.0001. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. CUDC-907 selectively reduces viability of senescent EJp53 at different time points. Cell viability of 

control (proliferating, blue) and senescent (6 days after tetracycline removal, red) EJp53 after treatment with different concentrations of 
CUDC-907 for 24h (top) or 48h (bottom). All values show mean ± SD of three independent experiments.  
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Supplementary Figure 2. Senolytic effects of ABT-737 on EJ cells. Cell viability of control (proliferating, blue) and senescent (6 days 

after tetracycline removal, red) EJp53, EJp21 and EJp16 after treatment with different concentrations of ABT-737 for 48h. All values show 
mean ± SD of three independent experiments. ***, P < 0.001.  
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Supplementary Figure 3. Induction of senescence in HCT116. Top: Representative images of the SA-β-Gal staining of control (treated 
with DMSO for 3 days) or senescent (treated with 0.2 µM doxorubicin for 3 days). Bottom: quantitation of three independent experiments.  
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Supplementary Figure 4. Induction of senescence in H522. (A) Representative images of the SA-β-Gal staining of H522 cells treated 

(+IR) or not (Control) with 8Gy ionizing radiation for 6 days. (B) Cell counting of the same cell lines over a period of six days since treatment, 
showing the growth arrest of the irradiated cells. Three independent experiments were performed in duplicates and the averages and 
standard deviation (SD) were plotted in the graphs. (C) Representative Western blot showing induction of senescent marker p53 in lysates of 
the same cells. Actin is used as a loading control.   
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Supplementary Figure 5. Cell viability in EJp21 and EJp16. Cell viability of control and senescent EJp21 and EJp16 treated with 

different concentrations of dactolisib, panobinostat, buparlisib or CI-994 for 72h, as measured by a CTG assay. All values show mean ± SD of 
three independent experiments.  
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Supplementary Tables 
 

Supplementary Table 1. IC50 values (drug 
concentration in which the metabolic activity 
was reduced 50%, in μM) of EJp53, EJp16, EJp21, 
H522 and HCT116 treated with CUDC-907, taken 
from the results shown in Figures 2A, 2C. 

Cell line 
CUDC-907 IC50 (µM) 

Control Senescent 

EJp53 0.09984 0.003880 

EJp21 1.161 1.218 

EJp16 0.2781 0.3555 

H522 0.1320 0.02417 

HCT116 0.008709 0.005477 
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Supplementary Table 2. IC50 values (in 
μM) of EJp53, H522 and HCT116 treated 
with CUDC, dactolisib, panobinostat, 
buparlisib, CI-994 or roctilinostat,  
taken from the results shown in Figures 
3A, 4C. 

Cell line 
Dactolisib IC50 (µM)  

Control  Senescent  

EJp53  18.10  0.9500  

H522  21.18  1.320  

HCT116  11.15  5.686  

 

Cell line 
Panobinostat IC50 (µM)  

Control  Senescent  

EJp53  0.1176  0.02236  

H522  3.359  0.05717  

HCT116  0.02726  ~ 0.02741  

 

Cell line 
Buparlisib IC50 (µM)  

Control  Senescent  

EJp53  14.26  4.556  

H522  7.014  1.938  

HCT116  ~2.878  3.083  

 

Cell line 
CI-994 IC50 (µM)  

Control  Senescent  

EJp53  14.72  14.43  

H522  10.86  11.05  

HCT116  5.881  4.648  

 

Cell line 
Roctilinostat IC50 (µM)  

Control  Senescent  

EJp53  22.25  14.24  

H522  15.16  4.892  

 


