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INTRODUCTION 
 

Colorectal cancer (CRC) is the third most common 

malignant tumor, and among cancers it has the second 

highest mortality worldwide [1]. Considerable progress 

has been made in comprehensive therapy over the past 

few decades, and effective treatments mainly include 

radical surgical resection, chemotherapy, radiotherapy, 

molecular targeting treatment and immune checkpoint 

inhibitor treatment. However, because of its late 

diagnosis and high recurrence rate, the prognosis of 

CRC is still poor, and the mortality rate remains high 

[2]. At present, cancer biology is shifting from a 
“cancer-cell-centric” concept to a more comprehensive 

view, placing tumor cells in a network of stromal 

components comprising inflammatory cells, immune 

cells, fibroblasts and vascular cells, which interact with 

each other and collectively form the tumor 

microenvironment (TME) [3]. 

 

Inflammation is a critical component of tumor 

progression, and it alters the TME by various 

mechanisms, such as the production of cytokines and 

proinflammatory mediators, angiogenesis, and tissue 

remodeling. CRC has long been considered one of the 

best examples of tumors closely related to chronic 

inflammation, which can occur in the earliest stages of 

tumorigenesis [4]. Numerous bacterial strains in the 

intestinal tract coexist harmoniously with their hosts; 

however, any substantial change in the bacterial 

population will lead to a considerable impact on the 

inflammatory response and promote the development of 
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ABSTRACT 
 

Inflammation is a critical component of tumor progression, and it modifies the tumor microenvironment by 
various mechanisms. Here, we explore the effect of the inflammatory response on the tumor 
microenvironment in colorectal cancer (CRC). A prognostic signature consisting of inflammation-related genes 
(IRGs) was constructed and verified based on the inflammatory response by bioinformatics analysis. IRG risk 
model was identified as an independent prognostic factor in CRC, and was related to biological processes of 
extracellular matrix, cell adhesion and angiogenesis. The IRG risk score predicted the clinical benefit of 
ipilimumab. Weighted correlation network analysis identified TIMP1 as the hub gene of the inflammatory 
response in the IRG risk model. Coculture experiments with macrophages and CRC cells revealed that TIMP1 
promoted macrophage migration, inhibited the expression of M1 markers (CD11C and CD80), and promoted 
the expression of M2 markers (ARG1 and CD163). TIMP1 promoted the expression of ICAM1 and CCL2 by 
activating the ERK1/2 signaling pathway to promote macrophage migration and M2-like polarization. These 
IRGs in the risk model regulated stromal and immune components in the tumor microenvironment and could 
serve as potential therapeutic targets in CRC. TIMP1 promoted macrophage migration and meditated 
macrophage M2 polarization by activating ERK1/2/CLAM1 and CCL2. 
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tumors [4]. In addition, cancer cells, along with their 

surrounding inflammatory cells and stromal cells, 

participate in harmonious interactions to form an 

inflammatory TME [5]. Inflammation has a significant 

influence on the constitution of the TME, especially the 

plasticity of both stromal and tumor cells [3]. In the 

process of tumor growth, inflammatory cells and their 

mediators can block potential antitumor immunity and 

facilitate tumor-supporting functions, such as 

stimulating angiogenesis and recruiting fibroblasts and 

other stromal cells [6]. As such, inflammation is now 

regarded as one of the core hallmarks of cancer [7]. 

 

Inflammasomes are macromolecular complexes that 

trigger central and rapid inflammatory responses to 

cytoplasmic damage [8]. Inflammasomes play 

contrasting roles in the intricate interaction between 

malignant tumor cells and their microenvironment [4]. 

They may play a role at the cell-autonomous level, 

eliminating precursors of malignancy through pro-

grammed cell death, or in turn, they may stimulate the 

production of trophic factors for cancer cells and the 

surrounding stroma [9]. In addition, NLRC4 participates 

in M2 polarization and IL-1β and VEGF production in 

tumor-associated macrophages (TAMs), which promote 

the growth of liver metastasis of CRC via 

inflammasomes [10]. The inhibition of inflammasomes 

or the neutralization of their products, mainly IL-1b and 

IL-18, has a significant influence on the occurrence and 

development of tumors [9]. 

 

This study constructed a robust inflammation-related 

gene (IRG) signature for CRC based on bioinformatics 

analysis. We explored the prognostic value of the IRG 

risk score and its relationship with clinicopathological 

factors and molecular features. In addition, we 

identified the biological processes and signaling 

pathways in which the IRGs were involved. Moreover, 

we investigated the associations of different cell 

populations with the IRG risk score in the TME. 

Finally, tissue inhibitor of matrix metalloproteinase-1 

(TIMP1) was confirmed to perform a key function in 

the inflammatory response of CRC and could promote 

macrophage migration. Taken together, the findings of 

this research will help to understand the mechanisms of 

the inflammatory response in CRC and guide more 

precise prognosis prediction and personalized therapy. 

 

RESULTS 
 

Construction of the IRG risk score in CRC 

 

To explore the clinical role of inflammatory status in 

CRC, an IRG set containing 931 genes, including 

inflammatory response genes (gene set M5932, M10617 

and M15261 extracted from the Molecular Signatures 

Database (MSigDB)) and inflammasome-related genes, 

were summarized in Supplementary Table 1 [8]. After 

performing univariate Cox regression analysis, 76 genes 

were correlated with the survival of CRC (p < 0.05). 

Furthermore, differentially expressed genes (DEGs) 

between nontumor and tumor tissues were identified by 

the R package “limma” (adjusted p < 0.05 and |logFC| 

> 1.0). We identified 136 DEGs, including 52 

upregulated genes and 84 downregulated genes, among 

the IRGs (Supplementary Figure 1A), and found 21 

differentially expressed IRGs with univariate Cox p 

values < 0.05 (Supplementary Table 2 and 

Supplementary Figure 1B). According to the above 

results, least absolute shrinkage and selection operator 

(LASSO) regression analysis was applied at 1000 maxit 

in The Cancer Genome Atlas (TCGA) dataset 

(Figure 1A), and we identified eleven IRGs as potential 

risk-related genes in the prognostic signature. Among 

these eleven genes, C2CD4A, C2CD4B, CCL11, 

CCL24, EREG, F2RL1, MMP3 and SLC4A4 were 

defined as protective genes with hazard ratios (HRs) 

< 1, whereas CD36, SCG2 and TIMP1 were defined as 

risk-conferring genes with HRs > 1 (Figure 1B). Next, 

the expression of these eleven genes was used to predict 

the risk level of the inflammatory response in CRC. The 

formula was as follows: IRG risk score = (−0.1029 × 

C2CD4A expression) + (−0.0514 × C2CD4B 

expression) + (−0.0986 × CCL11 expression) + 

(−0.0845 × CCL24 expression) + (0.0976 × CD36 

expression) + (−0.0694 × EREG expression) + (−0.0636 

× F2RL1 expression) + (−0.0708 × MMP3 expression) 

+ (0.1073 × SCG2 expression) + (−0.1303 × SLC4A4 

expression) + (0.2884 × TIMP1 expression). The 

patients were classified into low-risk and high-risk 

groups based on the median IRG risk score. 

 

The IRG risk score was a robust prognostic indicator 

 

To assess the prognostic value of the IRG risk score, we 

applied the risk formula in the TCGA dataset (discovery 

cohort) and GSE39582 dataset (validation cohort) and 

stratified patients according to the median IRG risk 

score. The Kaplan-Meier survival analyses in the TCGA 

and GSE39582 datasets showed that overall survival 

(OS) and progression-free survival (PFS) in the high-risk 

group were both significantly shorter than those in the 

low-risk group (Figure 1C, 1D and Supplementary 

Figure 1C, 1D). To investigate whether the IRG risk 

score was an independent prognostic factor for CRC, we 

performed univariate and multivariate Cox regression 

analyses in the TCGA dataset and GSE39582 dataset. 

The univariate analysis showed that five risk factors, 

including IRG risk score, pathologic stage, pathologic T 
stage, pathologic N stage, and pathologic M stage, were 

correlated with unfavorable survival in the two cohorts 

(Supplementary Table 3). KRAS and BRAF mutation 



www.aging-us.com 2556 AGING 

status were not correlated with OS in the univariate Cox 

regression analysis. TP53 mutation status was 

significantly relevant to survival in the TCGA dataset (p 

< 0.05), while the correlation was not significant in the 

GSE39582 dataset. The multivariate Cox regression 

analysis of the above five risk factors suggested that the 

IRG risk score was an independent prognostic factor in 

CRC (Table 1 and Supplementary Table 4). Overall, the 

IRG risk score was an independent predictive factor in 

CRC, which highlighted its potential as a prognostic 

marker for malignant progression in CRC. 

 

The IRG risk score predicted survival time 

 

To assess the prognostic validity of the IRG risk score 

in CRC, time-dependent receiver operating charac-

teristic (ROC) analysis was performed based on 1-, 3- 

and 5-year survival, and the respective area under the 

curve (AUC) values were 68.3%, 70.2% and 71.3% in 

the TCGA dataset (Figure 1E), which indicated its 

accuracy in predicting survival at these intervals. The 

ROC analysis in the GSE39582 dataset reached the 

same results (Supplementary Figure 1E). The heatmap 

revealed the mRNA expression patterns of these eleven 

IRGs in the high- and low-risk groups (Figure 1F and 

Supplementary Figure 1F). The risk curve and scatter 

plot demonstrated that patients in the high-risk group 

showed poorer prognoses, whereas patients in the low- 

risk group had more favorable prognoses (Figure 1G 

and Supplementary Figure 1G). Chemotherapy was the 

main treatment strategy for CRC patients. We 

conducted survival analyses to examine whether the

 

 
 

Figure 1. Construction and validation of the IRG risk score in CRC. (A) LASSO regression was performed, and the minimum criteria 

and coefficients were calculated. (B) Univariate Cox regression analysis of 11 candidate prognosis-related IRGs. (C, D) Kaplan-Meier analysis 
of overall survival (C) and progression-free survival (D) based on the IRG risk score of CRC patients in the TCGA dataset (log-rank p < 
0.0001). (E) ROC curve of the IRG risk score for 1-, 3- and 5-year overall survival in the TCGA dataset. (F, G) The distribution of risk scores, 
survival status and candidate gene expression data of CRC patients based on the IRG risk score in the TCGA dataset. 
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Table 1. Univariate and multivariate Cox regression analyses in the TCGA dataset. 

Variable 
Univariate regression Multivariate regression 

HR 95% CI p Value HR 95% CI p Value 

Risk score 3.8334 2.3288–6.3101 <0.0001 3.1620 1.8287–5.4670 <0.0001 

Pathologic_stage 2.0305 1.5438–2.6708 <0.0001 1.4240 0.6594–3.0760 0.3680 

Pathologic_T 2.5614 1.5665–4.1880 0.0002 1.5450 0.8559–2.7900 0.1490 

Pathologic_N 1.9038 1.4319–2.5313 <0.0001 1.0040 0.6064–1.6610 0.9890 

Pathologic_M 3.2602 1.9388–5.4824 <0.0001 1.6760 0.5772–4.8670 0.3420 

 

IRG risk score could serve as a marker for predicting 

the response to chemotherapy. CRC patients receiving 

chemotherapy in the low-risk group had longer OS than 

those in the high-risk group. Simultaneously, no 

difference in OS was found between the 

nonchemotherapy group and chemotherapy group with 

a high IRG risk score, which showed that the IRG risk 

score may participate in mediating chemotherapy 

resistance in CRC (Supplementary Figure 1H). In 

addition, the low IRG risk score group had longer PFS 

than the high-risk group in patients receiving 

chemotherapy (Supplementary Figure 1I). Moreover, 

we established nomograms in the TCGA and 

GSE39582 datasets to achieve better predictive 

accuracy and translational potential (Figure 2A and 

Supplementary Figure 2A). The C-index of the 

nomogram was 0.7678, which was significantly higher 

than that of its constituent factors (IRG risk score: 

0.6941, pathologic stage: 0.6757, pathologic T stage: 

0.6284, pathologic N stage: 0.6430, and pathologic M 

stage: 0.6092) in the TCGA dataset (Figure 2B). The 

calibration plot showed a high degree of consistency 

between the predicted probability and actual 1-, 3- and 

5-year survival rates (Figure 2C and Supplementary 

Figure 2B). The above results suggested that the IRG 

risk score could predict survival time for CRC patients. 

To estimate the validity of the nomogram for predicting 

survival, ROC curves were generated based on the 1-, 

3- and 5-year survival rates, and the respective AUC 

values were 77.7%, 76.1% and 75.6% in the TCGA 

dataset (Figure 2D). In the validation dataset 

(GSE39582 dataset), we validated these results (1-year 

AUC: 74.2%, 3-year AUC: 73.3%, 5-year AUC: 68.5%) 

(Supplementary Figure 2C). 

 

The IRG risk score demonstrated a subtype 

expression preference and was validated as an 

independent prognostic factor in CRC 

 

To explore the association between clinical parameters 

and the IRG risk score, patients were stratified into 
different subgroups. The expression analysis showed 

that the IRG risk score was higher in the stage III-IV 

subgroup, T3-4 subgroup, N1-2 subgroup, M1 

subgroup, mutant-type BRAF subgroup and venous 

invasion subgroup than in each corresponding subgroup 

(Supplementary Figure 3A–3F). Patients with mutant-

type KRAS in stage IV or with wild-type TP53 in 

stage I had significantly higher IRG risk scores than 

their corresponding subgroups (Supplementary Figure 

3G, 3H). Furthermore, a stratified analysis was 

performed on the basis of the above clinical features to 

better assess the prognostic ability of the IRG risk score. 

The stratified analysis showed that the IRG risk score 

could be well applied to subgroups stratified by TNM 

stage (I-II, Supplementary Figure 4A; III-IV, 

Supplementary Figure 4B), N stage (N0, Supplementary 

Figure 4C; N+, Supplementary Figure 4D), and venous 

invasion (yes, Supplementary Figure 4E; no, 

Supplementary Figure 4F). When the prognostic risk 

was assessed on the basis of the IRG risk score, high-

risk patients in each of these subgroups had worse 

survival than low-risk patients, which indicated that the 

IRG risk score could be a potential predictor of the 

malignant phenotype in CRC. In wild-type BRAF 

patients, high-risk group had worse survival than low-

risk group (Supplementary Figure 4G), while there was 

no difference in survival between high- and low-risk 

groups in mutant-type BRAF patients (Supplementary 

Figure 4H). To further investigate the correlation 

between the IRG risk score and BRAF status in CRC, 

we compared wild-type BRAF patients with high scores 

and mutant-type BRAF patients in the TCGA dataset. 

The results showed no significant difference in OS, 

which indicated that the IRG risk score may have a risk 

level similar to that of BRAF mutation (Supplementary 

Figure 4I). Taken together, the IRG risk score 

demonstrated a subtype expression preference and was 

validated as an independent prognostic factor in CRC. 

 

The IRG risk score was associated with 

distinguishing genomic and transcriptomic spectra 

in CRC 

 

To explore the molecular characteristics associated with 
the IRG risk score, we analyzed available mutation and 

copy number variation (CNV) information 

(Supplementary Figure 5A). The deletion events on 
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chromosome 2p12 (LRRTM4), 11q22.3 (ACAT1 and 

CRYAB) and 12q13.1 (EMP1) were more common in 

the low-risk group. In addition, focal amplifications on 

chromosome 1q31.3 (LAMC1 and LAMC2), 9q34.3 

(C8G and FCN1), 10q22.2 (ADK), 6q12 (PTP4A1 and 

PHF3), and 13q33.3 (COL4A1 and COLA4A2) were 

more common in the high-risk group (Supplementary 

Figure 5B). Then, we analyzed the distribution 

differences of somatic mutations between the low- and 

high-risk groups in the TCGA dataset using the 

“maftools” package. The low-risk group showed less 

tumor mutation burden (TMB) than the high-risk group, 

while some of the top ten most significantly mutated 

genes, such as APC, TP53 and FAT4, showed higher 

TMB in the low-risk group (Supplementary Figure 5C). 

The IRG risk score was associated with regulation of 

the extracellular matrix, cell adhesion, and 

angiogenesis in CRC 

 

To elucidate the related signaling pathways and functions 

of the inflammatory response, we used correlated genes 

with the IRG risk score for functional enrichment 

analysis in the TCGA (|r|>0.4 and p < 0.05) and 

GSE39582 (|r|>0.5 and p < 0.05) databases, respectively 

(Supplementary Table 5). Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway analysis of these genes by DAVID 6.8 showed 

that the IRG risk score was related to cell adhesion, 

extracellular matrix organization, positive regulation of 

angiogenesis and PI3K-AKT signaling pathway

 

 

 
 

Figure 2. Development and validation of the IRG risk score nomogram. (A) Development of the IRG risk score nomogram. (B) The 

C-index value of the IRG nomogram was significantly higher than the C-index of other constitutive factors. (C) The calibration plot exhibited 
wonderful agreement between prediction and observation in the probabilities of 1-, 3- and 5-year overall survival. (D) Receiver operating 
characteristic (ROC) curve of the IRG nomogram for 1-, 3- and 5-year overall survival in the TCGA dataset. 
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(Figure 3A, 3B). Consistent with the above results, 

gene set enrichment analysis (GSEA) showed that the 

enriched pathways related to the IRG risk score were 

extracellular matrix, cell adhesion, angiogenesis and 

lymphangiogenesis (Figure 3C). According to gene 

set variation analysis (GSVA), the IRG risk score 

was correlated with the following functional terms: 

extracellular matrix, focal adhesion, cell adhesion 

and angiogenesis (Figure 3D). In general, these 

results proved that the inflammatory process in the 

occurrence and development of CRC was mainly 

relevant to the biological processes of extracellular 

matrix, cell adhesion and angiogenesis, all of which 

are considered to be associated with the prognosis of 

CRC. 

The IRG risk score was associated with the stromal 

score, tumor purity, and microenvironment cell 

populations 

 

The above functional enrichment analysis demonstrated 

that the inflammatory response of CRC was associated 

with many biological processes of the stroma. However, 

the relationship between the inflammatory response and 

stroma in CRC has rarely been studied. Hence, we 

analyzed the relevance between the IRG risk score and 

stromal score, immune score, or tumor purity in CRC 

with the ESTIMATE package [11]. Pearson’s 

correlation analysis was applied to investigate the 

relevance between the TME indexes and the IRG risk 

score. The results showed that the IRG risk score was 

 

 

 
 

Figure 3. Functional exploration of the IRG risk score in CRC. (A, B) Gene Ontology (GO) and KEGG pathway analysis with IRG risk 
score-correlated genes in the TCGA (A) and GSE39582 (B) datasets. (C, D) Relative biological functions of these genes in the TCGA and 
GSE39582 datasets were verified by GSEA (C) and GSVA (D) analyses. 
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weakly positively correlated with stromal score but 

negatively correlated with tumor purity, while there was 

no stable correlation between the IRG risk score and 

immune score (Figure 4A). Among these factors, a 

closer relationship was found between the IRG risk 

score and stromal score, indicating that the 

 

 
 

Figure 4. Relationship between the IRG risk score and the CRC microenvironment. (A) The IRG risk score was positively 

correlated with stromal score but negatively correlated with tumor purity in the TCGA and GSE 39582 datasets. (B, C) xCell analysis showed 
extreme enrichment of stromal and immune cells with high IRG risk scores. (D, E) IRG risk scores were positively correlated with fibroblasts, 
pericytes, M2 macrophages, and MSCs in the TCGA (D) and GSE39582 (E) datasets. 
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inflammatory response mainly regulated the function of 

the extracellular matrix in CRC, which was consistent 

with the conclusion of the functional enrichment 

analysis. Further cell population enrichment analysis by 

xCell [12] revealed that the infiltration of dendritic 

cells, CD8+ T cells, adipocytes, lymphatic endothelial 

cells, M1 macrophages, M2 macrophages, 

mesenchymal stem cells (MSCs), and pericytes had a 

positive relevance to the IRG risk score, while the 

infiltration of megakaryocyte-erythroid progenitors 

(MEPs), CD4+ memory T cells, plasma cells, Th2 cells 

and natural killer (NK) T cells had a negative 

correlation with the IRG risk score (Figure 4B, 4C). 

Fibroblast, pericyte, M2 macrophage, and MSC 

enrichment were positively associated with the IRG risk 

score (Figure 4D, 4E). Collectively, these data showed 

that the IRG risk score was associated with the 

regulation of the local immune response and 

extracellular matrix in CRC. 

 

CRC cell-intrinsic TIMP1 regulated the migration 

capabilities of macrophages and induced their 

phenotypic transition to M2 macrophages in vitro 

 

To identify the hub genes associated with the 

inflammatory response in CRC, we constructed a gene 

coexpression network using the weighted correlation 

network analysis (WGCNA) package. In this study, 3 

was selected as the soft threshold power to exhibit the 

scale independence and degree of mean connectivity of 

the scale-free topology module (Supplementary Figure 

6A). The heatmap plotted the topological overlap matrix 

(TOM) among 4575 genes in the analysis and indicated 

that each module was an independent validation, and a 

total of 14 modules were identified from the 

coexpression network (Supplementary Figure 6B). 

Module-trait relationships revealed that the turquoise 

module was identified as the key module for the highest 

correlation with the IRG risk score (r = 0.36, p = 3e-19), 

indicating that the genes involved in the turquoise 

module were most likely related to the inflammatory 

response in CRC (Supplementary Figure 6C). The 

turquoise module contained 907 genes. Scatterplots of 

gene significance (GS) and module membership (MM) 

were plotted in the turquoise module, and TIMP1 was 

identified as the inflammatory response-related hub 

gene that had the highest GS (Figure 5A). 

 

TIMP1 modulates the pericellular proteolysis of a vast 

range of matrix and cell surface proteins, and affects 

tumor architecture and cell signaling [13]. The IRG risk 

score was found to be correlated with macrophages in a 

previous study (Figure 4B–4E). Therefore, we further 
explored the regulatory effect of TIMP1 on macrophages 

in CRC. The knockdown and overexpression of TIMP1 

in HCT116 and SW480 cells were confirmed with 

Western blotting and qPCR (Figure 5B–5D). Then, we 

cocultured CRC cells, including HCT116 and SW480 

cells, with peripheral blood mononuclear cells-derived 

macrophages (PBMC-MØs) (Figure 5E). The data 

revealed that TIMP1 knockdown CRC cells significantly 

decreased macrophage migration compared with the 

control group (Figure 5F), while TIMP1-overexpressing 

CRC cells promoted macrophage migration (Figure 5G). 

PCR assays in PBMC-derived macrophages cocultured 

with TIMP1 knockdown HCT116 or SW480 cells also 

confirmed increased M1 marker expression (CD11C and 

CD80; Figure 5H, 5I) and decreased M2 marker 

expression (ARG1 and CD163; Figure 5H, 5I), and 

corresponding results were obtained in PBMC-derived 

macrophages cocultured with TIMP1-overexpressing 

HCT116 or SW480 cells (Figure 5J, 5K). 

 

TIMP1 promoted the expression of ICAM1 and 

CCL2 by activating the ERK1/2 signaling pathway 

 

We further explored the related mechanism by which 

TIMP1 regulates macrophages in CRC cells. The 

functional enrichment analysis found that TIMP1 

participated in regulating the ERK1/2 signaling 

pathway (Figure 6A). Cytokines play important roles 

in the inflammatory response and intercellular 

communication. We detected the expression of 

cytokines in TIMP1-overexpressing SW480 cells by 

qPCR and found that CCL2, CSF3, CXCL10, 

CXCL11, ICAM1, IFNG, IL10, IL13 and other 

cytokines increased significantly, while CSF2, 

CXCL1, CXCL8 and other cytokines decreased 

significantly (Figure 6B). Activation of the ERK1/2 

signaling pathway can promote the expression of 

ICAM1 and CCL2. We further found that when 

TIMP1 was knocked down in HCT116 and SW480 

cells, p-ERK1/2, ICAM1 and CCL2 were significantly 

downregulated, and the total ERK1/2 did not change 

significantly (Figure 6C). TIMP1 overexpression 

increased the expression of p-ERK1/2, ICAM1 and 

CCL2, while total ERK1/2 showed no significant 

change. Adding ERK1/2 inhibitor 1, an ERK1/2 

pathway inhibitor, significantly inhibited the ERK1/2 

pathway phosphorylation induced by TIMP1 

overexpression in HCT116 and SW480 cells (Figure 

6D). In addition, the ERK1/2 inhibitor reduced the 

expression of ICAM1 and CCL2 caused by TIMP1 

overexpression in HCT116 and SW480 cells (Figure 

6D). Coculture of HCT116 or SW480 cells over-

expressing TIMP1 with macrophages induced by 

PBMCs significantly promoted the migration of 

macrophages (Figure 6E), inhibited the expression of 

M1 markers (CD11C and CD80), and promoted the 
expression of M2 markers (ARG1 and CD163) (Figure 

6F, 6G). The ERK1/2 inhibitor significantly inhibited 

macrophage migration induced by TIMP1 (Figure 6E) 
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Figure 5. TIMP1 was the hub gene of the inflammatory response and promoted macrophage infiltration and M2-like 
polarization in CRC. (A) Scatterplot of gene significance for the IRG risk score and module membership in the turquoise module. (B–D) The 

knockdown and overexpression of TIMP1 were confirmed with Western blotting (B) and qPCR (C and D). (E) Diagram of colorectal cancer cells 
cocultured with macrophages. (F, G) The migration ability of macrophages was confirmed with Transwell assays in the TIMP1 knockdown 
group (F) and TIMP1 overexpression group (G). (H–K) PCR results of detecting the polarization of macrophages under different cocultures 
with CRC cells (Student’s t test or one-way ANOVA, n = 3). (Data are presented as the means ± standard deviations; *indicates P < 0.05, 
**indicates P < 0.01, ***indicates P < 0.001, and ****indicates P < 0.0001). 
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Figure 6. TIMP1 promoted macrophage migration and M2-like polarization by activating the ERK1/2 pathway in CRC. (A) GO 
analysis and KEGG pathway analysis of overlapping TIMP1-correlated genes in the TCGA and GSE39582 datasets. (B) The PCR results of 
common cytokines were confirmed in SW480 cells with control and TIMP1 overexpression. (C) Western blot analyses of the indicated 
proteins in HCT116 and SW480 cells transfected with TIMP1 small interfering or control vector. (D) Western blot analyses of the indicated 
proteins in HCT116 and SW480 cells transfected with TIMP1 overexpression or control vector and treated with ERK1/2 inhibitor 1 (10 nM). 
(E) The migration ability of macrophages was confirmed with Transwell assays in the TIMP1 overexpression group treated with ERK1/2 
inhibitor 1 (10 nM). (F, G) PCR results of detecting the polarization of macrophages under different cocultures with CRC cells treated with 
ERK1/2 inhibitor 1 (10 nM). (Data are presented as the means ± standard deviations; *indicates P < 0.05, **indicates P < 0.01, ***indicates P < 
0.001, and ****indicates P < 0.0001). 
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and inhibited the downregulation of M1 markers and 

the upregulation of M2 markers caused by TIMP1 

overexpression in HCT116 and SW480 cells 

(Figure 6F, 6G). 

 

The IRG risk score predicted the clinical benefit of 

immunotherapy 
 

To explore whether the IRG risk score could predict the 

response to immunotherapy, we applied the IRG risk score 

in the Van_allen dataset, the sequencing data from 

metastatic melanoma treatment with cytotoxic T 

lymphocyte-associated antigen-4 (CTLA-4) blockade [14]. 

We observed that patients in the low-risk group exhibited a 

significant clinical benefit in PFS (p = 0.023, 

Supplementary Figure 7B) and a survival benefit trend in 

OS (p = 0.084, Supplementary Figure 7A). The expression 

analysis revealed that the no clinical benefit group had a 

higher IRG risk score than the clinical benefit group, but 

the difference was not significant (Supplementary Figure 

7C); meanwhile, the long-term survival group had a higher 

IRG than the no clinical benefit group. We further 

discussed the differences in clinical response between the 

high- and low-risk groups based on the IRG risk score, and 

the patients in the high-risk group had a lower clinical 

benefit rate than those in the low-risk group (22.7% vs. 

45%, Supplementary Figure 7D). To further explore the 

relationship between inflammatory response and tumor 

immunology, a stepwise analysis was performed to reflect 

the status of anticancer immunity [15]. CRC patients with 

high TIMP1 expression showed increased activity in all 7 

steps of the seven-step Cancer-Immunity Cycle, while 

TIMP1 expression was mostly correlative with release of 

cancer cell antigens (Step 1; Pearson, r > 0.4 both in 

TCGA and GSE39582), trafficking of immune cells to 

tumors (Step 4; Pearson, r > 0.4 both in TCGA and 

GSE39582), and infiltration of immune cells into tumors 

(Step 5; Pearson, r > 0.4 both in TCGA and GSE39582) 

(Supplementary Figure 8A, 8B). This result indicated that 

although TIMP1 was helpful for initiation and processing 

phases of immune response, effective antitumor immunity 

was still suppressed. Moreover, we discovered that CRC 

patients with high TIMP1 expression expressed more 

immune checkpoint molecules than those with low TIMP1 

expression (Supplementary Figure 8C, 8D), which was 

consistent with the “immunity tidal model theory” that 

high expression of both costimulatory and coinhibitory 

immune checkpoints caused an immunosuppressive 

phenotype in tumors [16]. Collectively, the IRG risk score 

showed predictive power in terms of the clinical benefit of 

immune checkpoint inhibitors. 

 

DISCUSSION 
 

Cancer cells live in a network of stromal components 

comprising fibroblasts, vascular cells, inflammatory 

cells, and immune cells that interact with each other and 

together form the TME [3]. These cells in the TME are 

highly plastic, constantly altering their phenotype and 

function. Inflammation plays an important role in the 

composition of the TME, especially in the plasticity of 

tumor and stromal cells [3]. Hence, we aimed to 

construct an inflammation-related prognostic model 

based on the tumor microenvironment to better 

understand tumor progression and prognosis in CRC. 

 

We constructed a robust inflammation-related 

prognostic signature comprising eleven IRGs in this 

study. Some of these eleven IRGs have been reported to 

be associated with CRC. CCL11 and CCL24 are 

expressed at lower levels in glandular cells than in 

stromal cells in CRC tissues, which promotes tumor 

development. The low expression of CCL11 and 

CCL24 contributes to immune evasion in CRC because 

the infiltration of eosinophils is decreased under these 

conditions [17]. The overexpression of CD36 promotes 

the progression of solid malignancies such as breast 

cancer, gastric cancer, glioblastoma and colorectal 

cancer [18]. SLC4A4 expression in CRC was lower 

than that in control tissues, and low expression of 

SLC4A4 was significantly associated with worse 

survival in CRC [19]. Conversely, TIMP1 is over-

expressed in colon cancer and leads to tumor 

proliferation, metastasis and apoptosis inhibition via the 

FAK-PI3K/AKT and MAPK pathways [20]. Because a 

single gene may be unreliable for predicting survival, 

we constructed an IRG signature in CRC for the first 

time. The IRG risk score was reliable in stratifying 

patients with different prognoses in the TCGA and 

GSE39582 datasets. Survival analyses indicated that the 

IRG risk score was an independent prognostic index, 

both as a categorical variable and a continuous variable. 

 

The IRG risk score demonstrated a subtype expression 

preference that was associated with clinicopathological 

factors and molecular features in CRC. The relationship 

between IRGs and clinically meaningful molecular 

biomarkers, such as BRAF, KRAS and TP53, is 

notable. The BRAF mutation represents poor prognosis 

and exhibits resistance to anti-EGFR therapy [21]. 

Furthermore, the BRAF mutation is associated with the 

production of CXCL8, a proinflammatory chemokine 

that can promote tumor proliferation, angiogenesis, and 

metastasis [22]. In this study, patients with mutant 

BRAF had relatively higher risk scores than those with 

wild-type BRAF, suggesting a link between the 

inflammatory response and BRAF mutation. Moreover, 

no survival difference was found between wild-type 

BRAF patients with high IRG risk scores and mutant-
type BRAF patients, indicating that the risk associated 

with IRG may be similar to the risk conferred by the 

BRAF mutation. Although the mechanism is unclear, 
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genetic or epigenetic alterations in tumors, such as 

BRAF, KRAS, and TP53 alterations, might influence 

the inflammatory response status by regulating the 

expression of these eleven IRGs. 

 

Tumor behavior is not entirely determined by tumor 

cells alone but rather is also influenced by various 

nontumor stromal components in the tumor micro-

environment, including the extracellular matrix, 

inflammatory cells, immune cells, mesenchymal cells, 

fibroblasts, pericytes, and endothelial cells of blood and 

lymphatic vessels [23]. Functional enrichment analyses 

demonstrated that the IRGs may modulate the 

biological processes of the extracellular matrix, cell 

adhesion, and angiogenesis. The extracellular matrix 

regulates tissue development and homeostasis, and it 

influences virtually all behavioral aspects of tumor cells 

and tumor-associated stromal cells. The extracellular 

matrix can promote cell proliferation, escape growth 

inhibition, resist cell death, induce angiogenesis, 

activate invasion and metastasis, avoid immune 

destruction and promote chronic inflammation [24, 25]. 

Integrin mediates interactions with the extracellular 

matrix and plays roles in matrix synthesis, matrix 

remodeling, matrix degradation, tumor cell 

proliferation, tumor stiffness regulation, TGF-β 

activation, tumor invasion and metastasis [26]. The 

dysregulation of focal adhesion is a vital determinant of 

cell migration. Therefore, focal adhesion plays an 

essential role in promoting the invasion and metastasis 

of tumor cells [27]. In general, inflammatory response 

processes accelerate tumor progression and metastasis 

by disrupting stroma-related biological processes in 

CRC. 

 

The IRG risk score was positively correlated with the 

stromal score, suggesting that the inflammatory 

response participates in regulating stromal components. 

With the increasing degree of the inflammatory 

response, fibroblasts, pericytes, M2 macrophages, and 

MSCs were increasingly enriched in the TME. 

Abundant studies have proposed the roles of these 

stromal cells and immune cells in tumor progression 

and metastasis. Cancer-associated fibroblasts (CAFs) 

promote the growth, metastasis and diffusion of tumor 

cells in a variety of ways and hinder the antitumor 

immune response in the TME [28]. The accumulation of 

CAFs in the TME is usually related to the poor 

prognosis of many tumors [28]. Pericytes participate in 

the formation and maturation of blood vessels and can 

regulate the degree of immune responses in cancer [29]. 

MSCs, a type of multipotent stromal cell, can be 

continuously recruited to tumors and become integral 
components of the TME, and they are the source of 

fibroblasts and pericytes [30]. MSCs are also 

immunoregulatory cells that contribute to effectively 

suppressing antitumor immunity [31]. Within the tumor, 

M2 macrophages are a major stromal component that 

can be recruited into tumor tissues, altering the TME to 

facilitate tumor progression [32]. This study indicated 

that the inflammatory response affected stromal 

components and immune components in the TME, 

thereby promoting tumor invasion and metastasis. In 

many cases, more attention has been given to the direct 

attack on tumor cells, while few studies have been 

conducted on the microenvironment on which tumor 

cells rely for survival. Therefore, targeting inflam-

matory response mediators, such as the IRGs in this 

signature, is also necessary for effective antitumor 

therapy. 

 

As the hub gene associated with the inflammatory 

response in CRC, TIMP1 induces macrophage 

migration. TIMP-1 is a multifunctional protein that can 

promote proliferation, growth, and survival, regulate 

differentiation, and inhibit apoptosis in several tumor 

types [33]. TIMP1 influences key aspects of the TME, 

such as by activating cancer-associated fibroblasts, 

leading to extracellular matrix remodeling, regulating 

inflammation, stimulating epithelial–mesenchymal 

transition and influencing angiogenesis, thereby 

promoting tumor aggressiveness [13, 33]. This study 

confirmed that TIMP1 is a regulator of intercellular 

interactions among tumor cells, immune cells, and 

stromal cells and alters the TME to facilitate tumor 

development. TIMP1 promotes the expression of 

ICAM1 and CCL2 by activating the ERK1/2 pathway. 

ICAM1 and CCL2 can promote macrophage 

recruitment and phenotypic transformation [34, 35]. Our 

study confirmed that TIMP1 promotes macrophage 

migration and mediates macrophage M2 polarization in 

CRC, and the related mechanism may be that TIMP1 

promotes the expression of CLAM1 and CCL2 by 

activating the ERK1/2 signaling pathway. In the future, 

identification and obstruction of the tumor-promoting 

function of TIMP1 may be another method of antitumor 

treatment. 

 

TMB has gained more and more attention in 

immunotherapy, which plays an important role in TME 

and serves as a biomarker for immunotherapy in many 

types of tumors [36]. Tumors with high TMB are 

considered to have an increasing burden of new 

antigens, which makes them immunogenic and sensitive 

to immunotherapy [37]. In this study, CRC patients with 

higher IRG risk scores had higher CNV and TMB, 

which may indirectly predict the efficacy of 

immunotherapy and guide immunotherapy. Immune 

checkpoint inhibitors, such as ipilimumab or nivolumab, 
can induce durable clinical benefits in metastatic 

colorectal cancer [38, 39]. This study also found that the 

IRG risk score we constructed could be stratified 
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according to the sensitivity of CTLA-4 inhibitors in 

metastatic melanoma. Because of no relevant data, the 

IRG risk scores have not been analyzed for the effect 

evaluation of immunotherapy for CRC patients, which 

needs to be validated in CRC in the future. Furthermore, 

it is still urgent to further investigate the molecular 

mechanisms of these IRGs involved in the 

inflammatory response and their prognostic value to 

support their clinical application. 
 

In conclusion, we constructed and validated a novel 

IRG risk score as a promising biomarker for CRC 

individual prognostic assessment and risk stratification. 

These IRGs participated in extracellular matrix-related 

pathways and regulated stromal and immune 

components in the TME; this finding helped to elucidate 

the underlying mechanism of the inflammatory response 

in promoting tumors. In the future, targeting these 

eleven IRGs, especially TIMP1, in combination with 

anti-stromal therapy or immunotherapy could become a 

potential therapeutic strategy. 

 

MATERIALS AND METHODS 
 

Data acquisition and IRG selection 
 

The RNA sequence and clinical data of 590 CRC 

samples and 48 colorectal nontumor samples were 

obtained from the TCGA dataset (https://portal.gdc. 

cancer.gov/). The gene expression and clinical data in 

the GSE39582 dataset were obtained from the Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih. 

gov/gds/). The GSE39582 dataset included 581 samples 

(19 nontumor samples and 562 CRC samples). The 

Van_allen dataset sequencing from melanoma tumor 

biopsies pretreated with monoclonal antibodies directed 

against CTLA-4 was downloaded from the dataset of 

Genotypes and Phenotypes (dbGaP) (https://www.ncbi. 

nlm.nih.gov/gap/) [14]. The total inflammation-related 

genes (IRGs, Supplementary Table 1) included 

inflammatory response genes (M5932, M10617  

and M15261), which are contained in the GSEA  

dataset (https://www.gsea-msigdb.org/gsea/index.jsp), 

and inflammasome-related genes [8]. 

 

Cell culture and treatments 
 

The human CRC cell lines HCT116 and SW480 were 

obtained from ATCC. They were cultured in RPMI-

1640 medium containing 10% FBS (Gibco) and 1% 

penicillin/streptomycin (Gibco) at 37°C with 5% CO2. 

Peripheral blood mononuclear cells (PBMCs) were 

isolated by centrifugation of human blood with Ficoll-

Paque PLUS as previously described [40]. Monocytes 

were collected by attachment to plastic after 4 h of 

culture in RPMI-1640 medium containing 10% FBS. 

ERK1/2 inhibitor (10 nM ERK1/2 inhibitor 1, 

MedChemExpress, HY-112287, Monmouth Junction, 

NJ, USA) was used to inhibit the ERK1/2 pathway in 

HCT116 and SW480 cells. 

 

Biological phenotypic analysis of macrophages 

 

Cell migration assays were performed to evaluate the 

motility of macrophages in vitro. RT-qPCR was 

performed to evaluate the polarization of macrophages 

with CD11C and CD80 for the M1 marker and ARG1 

and CD163 for the M2 marker [41]. 

 

Cell transfection 

 

Specific siRNA targeting TIMP1 and a negative control 

were synthesized by Sangon Biotech (Shanghai, China), 

and the TIMP1 overexpression plasmid and control vector 

were purchased from GeneChem Biotech (Shanghai, 

China). siRNAs and plasmids were transfected with 

Lipofectamine 3000 reagent (Life Technologies) 

according to the manufacturer’s instructions. The siRNA 

sequences of TIMP1 were as follows: 

 

siTIMP1-1 sense (5′–3′): GCACAGUGUUUCCCU 

GUUUAUTT, antisense (5′–3′): AUAAACAGGG 

AAACACUGUGCTT. 

 

siTIMP1-2 sense (5′–3′): GAAGUCAACCAGACCA 

CCUUATT, antisense (5′–3′): UAAGGUGGUCU 

GGUUGACUUCTT. 

 

Western blotting 

 

CRC cells transfected with knockdown and 

overexpression of TIMP1 or the corresponding vector 

were lysed in RIPA buffer, and proteins were collected 

and denatured. The proteins were subjected to Western 

blotting analyses as previously described [42]. The 

proteins were incubated with anti-TIMP1 (PTG, 16644-

1-AP), anti-p Erk1/2 (Cell Signaling Technology, 

4370), anti-Erk1/2 (Cell Signaling Technology, 4695), 

anti-CCL2 (Abcam, ab214819), anti-ICAM1 (Abcam, 

ab282575), or anti-GAPDH (Abcam, ab8245) primary 

antibodies overnight at 4°C. 

 

RNA isolation and reverse‐transcription qPCR 

(RT‐qPCR) 

 

Total RNA was isolated using TRIzol reagent 

(Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s instructions. Total RNA was reverse 

transcribed into cDNA, and qPCR was performed as 

previously described [42]. The primer sequences are 

shown in Supplementary Table 6. The mRNA 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.gsea-msigdb.org/gsea/index.jsp
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expression of target genes was calculated by the 2−ΔΔCt 

method and normalized to 18S mRNA expression. 

 

Macrophage migration assay 

 

For migration assays, PBMC-MØs were digested and 

resuspended as single cells in serum-free medium. 

Then, they were seeded into Transwell inserts (Corning, 

3422) at a density of 5 × 104 per 200 μL [40]. CRC cells 

transfected with knockdown and overexpression of 

TIMP1 or the corresponding vector were seeded in the 

lower chamber in a 24-well plate with 700 μL medium. 

After 24 h of incubation, the upper chambers were 

established as described previously [40]. 

 

Construction of the prognostic model 

 

DEGs among IRGs were analyzed with the “limma” 

package between tumor samples and normal tissue 

samples in the TCGA dataset. Adjusted p < 0.05 and |log 

fold change (FC)| > 1.0 were used as cutoff values to 

select the DEGs. Univariate Cox regression analysis was 

performed to assess the association between IRG 

expression and disease outcome in the TCGA dataset. The 

TCGA dataset contained 21 differentially expressed IRGs 

with univariate Cox p values < 0.05 (Supplementary 

Table 2). LASSO Cox penalized regression model was 

performed using the R package “glmnet” to further 

construct the most significant prognostic model based on 

the selected IRGs [43]. The coefficients and gene 

expression values of IRGs were obtained from the 

LASSO model, and the IRG risk score of each patient was 

calculated. The formula was as follows: 

 

IRG risk score = ΣIRGs gene expression × coefficient. 

 

Kaplan-Meier survival analysis and ROC curve 

analysis 

 

Patients were classified into high-risk and low-risk 

groups according to the median IRG risk score. The 

Kaplan-Meier survival curve of each group was plotted 

using the “survival” R package. Comparing the overall 

survival, differences with p < 0.05 were considered to 

be significantly different. To verify the accuracy and 

validity of the IRG risk score, the “pROC” R package 

was used to calculate the AUC values for 1-, 3- and 5-

year OS via ROC analysis [44, 45]. 

 

Construction and verification of the predictive 

nomogram 

 

A nomogram was constructed with the “rms” R 

package in the TCGA and GSE39582 datasets [46]. To 

construct the nomogram, univariate Cox regression 

analysis of clinical data and the IRG risk score was 

performed. Pathological stage, pathological T stage, 

pathological N stage, pathological M stage and IRG 

risk score had p < 0.05 in the univariate analysis, and 

they were integrated into the predictive nomogram. 

Then, a calibration curve was generated, and the C-

index was calculated to test the prediction accuracy of 

the nomogram. A calibration curve was used to 

evaluate whether the predicted value of the model was 

consistent with the occurrence probability of the 

outcome [47]. The C-index evaluated the probability 

that the predicted results were consistent with the 

actual observed results. The pathological stage, 

pathological T stage, pathological N stage, 

pathological M stage, IRG risk score and nomogram 

score were compared through C-index analysis. 

 

Somatic mutation and somatic CNV data analysis 

 

CNV profile and somatic mutation data were collected 

from the TCGA dataset (https://portal.gdc.cancer.gov/). 

GISTIC2.0 was used to calculate CNV associated with 

the IRG risk score. A GISTIC value less than -1 or more 

than 1 was defined as gene deletion or gene 

amplification, respectively. The “maftools” R package 

was used to visually analyze the somatic mutation data 

based on VarScan software. 

 

GO analysis and KEGG pathway analysis 

 

IRG risk score related genes were used to perform the 

GO and KEGG analysis through the website Database 

for Annotation, Visualization and Integrated Discovery 

(DAVID) 6.8 (https://david.ncifcrf.gov/tools.jsp) in the 

TCGA or GSE39582, respectively [48]. 

 

GSEA and GSVA 

 

GSEA (https://www.gsea-msigdb.org/gsea/index.jsp) 

was performed to explore significantly different 

biological processes between the high-risk and low-risk 

groups. The false discovery rate (FDR) and normalized 

enrichment score (NES) were used to determine  

the statistical significance [49]. GSVA 

(http://www.bioconductor.org) was used to further 

verify the correlation between the IRG risk score and 

GSVA value on the basis of the gene sets of defined 

signaling pathways [50]. 

 

Tumor purity, stromal score, immune score, and cell 

population enrichment analysis 

 

Tumor purity, stromal score and immune score were 

calculated with the ESTIMATE method as previously 
described [44]. For the cell population enrichment 

analysis, 64 immune and stromal cell types were 

evaluated by xCell [12]. 

https://portal.gdc.cancer.gov/
https://david.ncifcrf.gov/tools.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
http://www.bioconductor.org/
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WGCNA construction and hub gene identification 

 

The “WGCNA” package in R software was utilized to 

construct the gene coexpression network to identify the 

inflammatory response-related hub genes in CRC. First, 

an appropriate soft threshold power was selected to 

construct a scale-free topology module. Next, the network 

interconnectivity was built by TOM, and gene modules 

were identified based on the hierarchical clustering 

method. Then, module-trait correlations were tested by 

Pearson’s correlation analysis between each module 

eigengene (ME) and each clinical characteristic (IRG risk 

score, pathological stage, pathological T stage, 

pathological N stage, and pathological M stage) to 

identify module members. The module with the highest 

correlation coefficient was identified as the key module. 

GS represents the relationship between genes and traits, 

and MM represents the relationship between MEs and 

gene expression profiles. Finally, we selected the gene 

with the highest GS to be the hub gene in the key module. 

 

Statistical analysis 

 

Statistical analysis was mostly based on GraphPad 

Prism 7 software. P value < 0.05 was defined as 

statistically significant. Significant quantitative 

differences between and among groups were calculated 

by one-way ANOVA and two-tailed t test, respectively. 

Kaplan-Meier survival analysis was performed with R 

(version 3.6.2). The log-rank test was used to evaluate 

the differences between stratified groups. Univariate 

and multivariate Cox regression analyses were used to 

estimate the prognostic value of the IRG risk score. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Construction and validation of the IRG risk score in CRC. (A) Differential expression of IRGs in CRC tissue 

samples in the TCGA dataset. (B) The overlapping IRG genes of DEGs and prognostic genes based on univariate Cox regression analysis. (C) 
Kaplan-Meier analysis of overall survival (OS) based on the IRG signature of CRC patients in the GSE39582 database (log-rank P value = 
0.00064). (D) Kaplan-Meier analysis of disease-free survival (DFS) based on the IRG signature of CRC patients in the GSE39582 database 
(log-rank P value = 0.00073). (E) Receiver operating characteristic (ROC) curve of the IRG signature for 1-, 3- and 5-year overall survival in 
the GSE39582 database. (F, G) The distribution of risk scores, survival status and gene expression data of CRC patients based on the IRG 
signature in the GSE39582 database. (H, I) Kaplan-Meier analysis of overall survival and disease-free survival (DFS) in subgroups stratified by 
both IRG signature and receipt of adjuvant chemotherapy. 
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Supplementary Figure 2. Development and validation of the IRG risk score nomogram in GSE39582. (A) Development of the 

IRG signature nomogram in GSE39582. (B) The calibration plot exhibited wonderful agreement between prediction and observation in the 
probabilities of 1-, 3- and 5-year overall survival. (C) Receiver operating characteristic (ROC) curve of the IRG nomogram for 1-, 3- and 5-
year overall survival in the GSE39582 database. 
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Supplementary Figure 3. The IRG risk score showed different expression values in different cohorts. (A–H) Distribution of risk 

scores of the IRG signature according to tumor TNM stage, pT stage, pN stage, pM stage, venous invasion, and molecular type in the TCGA 
dataset. 
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Supplementary Figure 4. The IRG risk score showed different prognostic values in different cohorts. (A–H) The IRG signature 
showed significant prognostic value in different cohorts stratified by tumor TNM stage, pN stage, venous invasion, and BRAF type in the 
TCGA dataset through the log-rank test for trend. (I) Survival comparison between wild-type BRAF patients with high scores and mutant-
type BRAF patients in the TCGA dataset. 
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Supplementary Figure 5. Specific somatic mutation and somatic copy number alteration in different IRG risk scores. (A) CNV 
spectrum with ascending order of the IRG risk score. (B) A distinguishing CNV spectrum was observed between the low- and high-risk score 
groups. The incidence of chromosome deletion (blue) and chromosome amplification (red) are presented on the horizontal axis. (C) The 
waterfall plot of tumor somatic mutations established by the low- and high-risk score groups. Each column represents each patient. The 
upper bar plot shows TMB. The number on the right represents the mutation frequency of each gene. The right bar plot shows the 
proportion of each variant type. 
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Supplementary Figure 6. TIMP1 was the hub gene of the inflammatory response in CRC. (A) Soft threshold analysis. Each power 

corresponded to scale independence and mean connectivity. A soft threshold of 3 (red horizontal line) was chosen for the construction of 
the scale-free topology module. (B) Heatmap described the TOM among 4575 selected genes in WGCNA. A lighter color represents higher 
overlap, and a darker color corresponds to lower overlap. (C) Module-trait relationships between module eigengenes and clinical traits (IRG 
risk score, pathological stage, pathological T stage, pathological N stage, and pathological M stage). The correlation coefficient, p value and 
correlation coefficient were shown in each block. 

 

 
 

Supplementary Figure 7. The IRG risk score predicted the therapeutic response to immunotherapy. (A, B) Kaplan-Meier 

analysis of overall survival (A) and progression-free survival (B) based on the IRG risk score of metastatic melanoma patients treated with 
ipilimumab in the Van_allen dataset. (C) Distribution of the IRG risk score according to different groups in the Van Allen datasets. (D) The 
proportion of different patient responses in the low- or high-risk groups in the Van_allen dataset. 
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Supplementary Figure 8. TIMP1 was associated with the immunosuppressive microenvironment in the TCGA and GSE39582 
datasets. (A, B) Correlation between TIMP1 and various steps of the cancer immunity cycle in the TCGA (A) and GSE39582 (B) datasets. 

(C, D) The differential expression of immune checkpoint molecules with increased TIMP1 expression in the TCGA (C) and GSE39582 (D) 
datasets. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1, 2 and 5. 

 

Supplementary Table 1. List of IRGs. 

 

Supplementary Table 2. Univariate Cox regression analyses and differentially expressed genes among IRGs in the 
TCGA dataset. 

 

Supplementary Table 3. Univariate Cox regression analyses of clinical information with the overall survival of CRC 
patients. 

TCGA dataset 

Variable 
Univariate regression 

HR 95% CI p Value 

Risk score 3.8334  2.3288–6.3101 0.0000  

Pathologic_stage 2.0305  1.5438–2.6708 0.0000  

Pathologic_T 2.5614  1.5665–4.1880 0.0002  

Pathologic_N 1.9038  1.4319–2.5313 0.0000  

Pathologic_M 3.2602  1.9388–5.4824 0.0000  

TP53_mutation 1.8464  1.0562–3.2278 0.0314  

KRAS_mutation 0.8982  0.5611–1.4381 0.6549  

BRAF_mutation 1.2109  0.6353–2.3080 0.5608  

GSE39582 dataset 

Variable 
Univariate regression 

HR 95% CI p Value 

Risk score 1.5919  1.1676–2.1702 0.0033  

Pathologic_stage 1.9919  1.5290–2.5949 0.0000  

Pathologic_T 1.7872  1.2300–2.5968  0.0023  

Pathologic_N 1.5973  1.2601–2.0248 0.0001  

Pathologic_M 4.6461  2.9194–7.3941 0.0000  

TP53_mutation 1.2812  0.8645–1.8987 0.2171  

KRAS_mutation 1.2408  0.8407–1.8315 0.2773  

BRAF_mutation 1.5943  0.8515–2.9852 0.1449  

 

 

Supplementary Table 4. Univariate and multivariate Cox regression analyses of the IRG risk score in GSE39582 
datasets with the overall survival of CRC patients. 

GSE39582 dataset 

Variable 
Univariate regression Multivariate regression 

HR 95% CI p Value HR 95% CI p Value 

Risk score 1.5919 1.1676–2.1702 0.0033 1.3746 1.0119–1.8670  0.0418 

Pathologic_stage 1.9919 1.5290–2.5949 0 0.9004 0.4943–1.6400 0.7319 

Pathologic_T 1.7872 1.2300–2.5968  0.0023 1.2692 0.8539–1.8860 0.2384 

Pathologic_N 1.5973 1.2601–2.0248 0.0001 1.3186 0.8702–0.8702 0.1922 

Pathologic_M 4.6461 2.9194–7.3941 0 3.8438 1.6796–8.7970 0.0014 
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Supplementary Table 5. IRG risk score related genes in the TCGA and GSE39582 datasets. 

 

Supplementary Table 6. The RT-qPCR primer sequences and antibodies were used in this article. 

The RT-qPCR primer sequences 

Gene Forward primer Reverse primer 

ITGAX (CD11c) AGAGCTGTGATAAGCCAGTTCC AATTCCTCGAAAGTGAAGTGTGT 

CD80 GGCCCGAGTACAAGAACCG TCGTATGTGCCCTCGTCAGAT 

ARG1 GTGGAAACTTGCATGGACAAC AATCCTGGCACATCGGGAATC 

CD163 TTTGTCAACTTGAGTCCCTTCAC TCCCGCTACACTTGTTTTCAC 

TIMP1 ACCACCTTATACCAGCGTTATGA GGTGTAGACGAACCGGATGTC 

18S GCAGAATCCACGCCAGTACAAGAT TCTTCTTCAGTCGCTCCAGGTCTT 

ARPC1B CAAGGACCGCACCCAGATT TGCCGCAGGTCACAATACG 

C5 ACAGTCATAGAGTCTACAGGTGG CCAACTGGTCAAGCGAATCTT 

CCL1 CTCATTTGCGGAGCAAGAGAT GCCTCTGAACCCATCCAACTG 

CCL2 AGAATCACCAGCAGCAAGTGTCC TCCTGAACCCACTTCTGCTTGG 

CCL3 AGTTCTCTGCATCACTTGCTG CGGCTTCGCTTGGTTAGGAA 

CCL4 CTGTGCTGATCCCAGTGAATC TCAGTTCAGTTCCAGGTCATACA 

CCL5 CCTGCTGCTTTGCCTACATTGC ACACACTTGGCGGTTCTTTCGG 

CD40LG ACATACAACCAAACTTCTCCCCG GCAAAAAGTGCTGACCCAATCA 

CXCL1 AGCTTGCCTCAATCCTGCATCC TCCTTCAGGAACAGCCACCAGT 

CXCL10 GGTGAGAAGAGATGTCTGAATCC GTCCATCCTTGGAAGCACTGCA 

CXCL11 GACGCTGTCTTTGCATAGGC GGATTTAGGCATCGTTGTCCTTT 

CXCL12 ATTCTCAACACTCCAAACTGTGC ACTTTAGCTTCGGGTCAATGC 

G-CSF GCTGCTTGAGCCAACTCCATA GAACGCGGTACGACACCTC 

GM-CSF TCCTGAACCTGAGTAGAGACAC TGCTGCTTGTAGTGGCTGG 

ICAM1 ATGCCCAGACATCTGTGTCC GGGGTCTCTATGCCCAACAA 

IFNG GAGTGTGGAGACCATCAAGGAAG TGCTTTGCGTTGGACATTCAAGTC 

IL10 TCTCCGAGATGCCTTCAGCAGA TCAGACAAGGCTTGGCAACCCA 

IL12 CCTTGCACTTCTGAAGAGATTGA ACAGGGCCATCATAAAAGAGGT 

IL13 CCTCATGGCGCTTTTGTTGAC TCTGGTTCTGGGTGATGTTGA 

IL16 GCCGAAGACCCTTGGGTTAG GCTGGCATTGGGCTGTAGA 

IL17a TCCCACGAAATCCAGGATGC GGATGTTCAGGTTGACCATCAC 

IL18 TCTTCATTGACCAAGGAAATCGG TCCGGGGTGCATTATCTCTAC 

IL1a TGGTAGTAGCAACCAACGGGA ACTTTGATTGAGGGCGTCATTC 

IL1b CCACAGACCTTCCAGGAGAATG GTGCAGTTCAGTGATCGTACAGG 

IL1ra CATTGAGCCTCATGCTCTGTT CGCTGTCTGAGCGGATGAA 

IL2 AACTCCTGTCTTGCATTGCAC GCTCCAGTTGTAGCTGTGTTT 

IL21 TAGAGACAAACTGTGAGTGGTCA GGGCATGTTAGTCTGTGTTTCTG 

IL25 CAGGTGGTTGCATTCTTGGC GAGCCGGTTCAAGTCTCTGT 

IL27/ ACCGCTTTGCGGAATCTCA AGGTCAGGGAAACATCAGGGA 

IL32a TGGCGGCTTATTATGAGGAGC CTCGGCACCGTAATCCATCTC 

IL4 CCAACTGCTTCCCCCTCTG TCTGTTACGGTCAACTCGGTG 

IL5 TGGAGCTGCCTACGTGTATG TTCGATGAGTAGAAAGCAGTGC 

IL6 AGACAGCCACTCACCTCTTCAG TTCTGCCAGTGCCTCTTTGCTG 

IL8 ACTGAGAGTGATTGAGAGTGGAC AACCCTCTGCACCCAGTTTTC 

SerpineE1 ACCGCAACGTGGTTTTCTCA TTGAATCCCATAGCTGCTTGAAT 

TNFa CCTCTCTCTAATCAGCCCTCTG GAGGACCTGGGAGTAGATGAG 

TREM1 GAACTCCGAGCTGCAACTAAA TCTAGCGTGTAGTCACATTTCAC 
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ATF3 CGCTGGAATCAGTCACTGTCAG CTTGTTTCGGCACTTTGCAGCTG 

IRF2 CATGCGGCTAGACATGGGTG GCTTTCCTGTATGGATTGCCC 

CEBPA AGGAGGATGAAGCCAAGCAGCT AGTGCGCGATCTGGAACTGCAG 

CEBPB CTTCAGCCCGTACCTGGAG GGAGAGGAAGTCGTGGTGC 

The antibodies 

Antibody Identifier 

Anti-p Erk1/2 4370 

Anti-Erk1/2 4695 

Anti-CCL2 ab214819 

Anti-ICAM1 ab282575 

Anti-TIMP1 16644-1-AP 

Anti-GAPDH ab8245 

ERK1/2 inhibitor 1 HY-112287 

 

 


