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INTRODUCTION 
 

Ovarian cancer (OC) is one of the most malignant tumors 

of the female reproductive system [1]. Ovarian cancer 

was characterized by a high mortality rate because most 

patients are diagnosed with the advanced-stage cancer 

[2]. OC is often diagnosed with invasion of peripheral 

organs and distant metastasis. The standard treatment for 

this cancer is tumor cytopenia combined with platinum-

based chemotherapy [3], which has improved the 

prognosis a lot. However, chemotherapy resistance and 

high recurrence rate still exist due to its complex 
pathogenesis [4]. Therefore, reliable prognostic 

biomarkers for OC are urgently needed for aiding clinical 

decision-making and improving prognosis [5]. Further 

studies are necessary to identify such biomarkers. 
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ABSTRACT 
 

Anoikis plays a critical role in variable cancer types. However, studies that focus on the prognostic values of 
anoikis-related genes (ANRGs) in OV are scarce. Cohorts with transcriptome data and corresponding 
clinicopathologic data of OV patients were collected and consolidated from public databases. Multiple 
bioinformatics approaches were used to screen key genes from 446 anoikis-related genes, including Cox 
regression analysis, random survival forest analysis, and Kaplan-Meier analysis of best combinations. A five-
gene signature was constructed in the discovery cohort (TCGA) and validated in four validation cohorts (GEO). 
Risk score of the signature stratified patients into high-risk (HRisk) and low-risk (LRisk) subgroups. Patients in 
the HRisk group were associated with worse OS than those in the LRisk group in both the TCGA cohort 
(p<0.0001, HR=2.718, 95%CI:1.872-3.947) and the four GEO cohorts (p<0.05). Multivariate Cox regression 
analyses confirmed that the risk score served as an independent prognostic factor in both cohorts. The 
signature's predictive capacity was further demonstrated by the nomogram analysis. Pathway enrichment 
analysis revealed that immunosuppressive and malignant progression-related pathways were enriched in the 
HRisk group, including TGF-β, WNT and ECM pathways. The LRisk group was characterized by immune-active 
signaling pathways (interferon-gamma, T cell activation, etc.) and higher proportions of anti-tumor immune 
cells (NK, M1, etc.) while HRisk patients were associated with higher stromal scores and less TCR richness. 
In conclusion, the signature reveals a close relationship between the anoikis and prognosis and may provide a 
potential therapeutic target for OV patients. 
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Anoikis is a novel form of programmed cell death, 

which is important for the survival of tumor cells 

without extracellular matrix (ECM) [6, 7]. It can 

regulate the dynamic balance of the microenvironment 

by eliminating dislocated cells upon cell detachment 

from the extracellular matrix (ECM) [8]. Anoikis plays 

an essential role in tumor invasion and metastasis [9, 

10]. The initiation of anoxia apoptosis resistance can 

help isolated cells escape the death signal pathway, 

allowing cells to survive under adverse conditions  

[11, 12].  
 

Recent studies have shown that apoptosis plays an 

important role in the malignant progression of tumors, 

including breast cancer [13], lung cancer [14], 

pancreatic cancer [10], gastric carcinoma [15], 

endometrial cancer [16] and ovarian cancer [17]. OC 

cells were mainly exposed to TGF- β1 to stimulate 

SOX2 and inhibit anoikis. Transforming growth factor-β 

(TGF-β) can also regulate epithelial to stromal 

transition (EMT) through SMAD3, which is related to 

anoikis resistance [17]. Platelets promote cancer cell 

proliferation and EMT, inhibit anoikis, enhance cancer 

cell extravasation, and promote immune escape of 

tumor cells in circulation [18]. Hypoxia in the tumor 

environment may drive the activation of the p38-Hur-

SOD2 axis, resulting in a decrease in the sensitivity of 

the tumor to anoikis [19]. The above studies have 

shown that apoptosis was associated with tumorigenesis 

and metastasis of OC. In spite of this, few reports have 

focus on the prognostic value of the ANRGs for OC 

patients from the perspective of bioinformatics. 
 

In recent years, ANRGs have been shown to have 

promising potential as a prognostic biomarker for 

various forms of cancer, including glioblastoma [20], 

endometrial carcinoma [21], head and neck squamous 

cell carcinoma [22]. In this study, a multigene signature 

of ANRGs has been developed using a comprehensive 

collection of public data to predict the prognosis of 

ovarian cancer (OC) patients and to elucidate the 

potential mechanisms involved. 

 

MATERIALS AND METHODS 
 

OC datasets 
 

All transcriptome and clinicopathologic data of OC 

patients were derived from TCGA and GEO databases, 

comprising the discovery cohort (TCGA-OV, n = 375) 

and four validation cohorts (GSE32062, n = 260; 

GSE19829, n = 28; GSE30161, n = 58; GSE71729, n = 

125; GSE57495, n = 63). The RNA-seq data of TCGA 

dataset were downloaded using the new version of the R 

package “TCGAbiolink”. The gene expression profiles 

were quantified as Trans Per Million (TPM) 

transformed values. Corresponding clinical data 

including follow-up information were downloaded from 

the UCSC Xena data portal (https://xenabrowser.net/). 

Similarly, all transcriptome and clinicopathologic  

data from GEO cohorts were downloaded from  

GEO database (https://www.ncbi.nlm.nih.gov/geo/). 

Expression levels were normalized using the “limma” R 

package while the “Idmap2” R package was utilized to 

map probes to gene symbols with multiple probes 

mapped to a single gene by selecting the largest median 

value. Furthermore, the gene expression data of all 

patients were z-score transformed. Supplementary Table 

1 provides a detailed overview of the collected 

information. 

 

Collection of the anoikis-related genes (ANRGs) 

 

ANRGs were collected from the GeneCard database 

(https://www.genecards.org/). To ensure the 

consistency of the analysis, a total of 446 genes were 

obtained, which exist in each cohort (Supplementary 

Table 2). 

 

Development and validation of a robust anoikis-

related prognostic signature 

 

ANRGs associated with survival were identified using 

univariate Cox regression analysis of overall survival 

(OS) in the TCGA cohort and adjusted p-value < 0.05 

was necessary. To further screen key genes necessary 

for prognostic signature development, the “random-

ForestSRC” R package was utilised to perform random 

survival forest analysis with 2000 repetitions. Each gene 

with prognostic significance was sorted by an important 

factor and 10 genes with the relative largest coefficient 

were selected to align and perform 1023 signature 

combinations. Through multivariate Cox regression 

models operation for each combination, a risk score for 

each combination was calculated based on the 

expression of each signature gene and its corresponding 

regression coefficient. All cases were then divided into 

high-risk (HRisk) and low-risk (LRisk) subgroups 

according to the median value of the risk score in each 

combination. Kaplan Meier (KM) analysis was 

executed for each condition and the best signature was 

selected based on the smallest p-value [23, 24]. Finally, 

a prognostic anoikis-related signature was generated in 

TCGA cohort. It was validated in four GEO cohort. The 

difference is that the best cut off values of Kaplan–

Meier curve were used in GEO cohorts, which were 

calculated by “survminer” R package. To ensure 

sufficient power, each group's patient number 

constituted more than 30% of the total cohort. The risk 

scores of individual patients were assessed in relation to 

their clinicopathological information (Table 1). 

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
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Table 1. The relationship between risk score and clinicopathologic 
information in TCGA cohort. 

 HRisk LRisk p.overall 

 N=187 N=188  

Age 61.0 [53.0;71.0] 57.0 [50.0;65.0] 0.002 

Stage:   0.667 

I/II 10 (5.38%) 13 (6.99%)  

III/IV 176 (94.6%) 173 (93.0%)  

Grade:   0.187 

G1/G2 26 (14.3%) 17 (9.29%)  

G3/G4 156 (85.7%) 166 (90.7%)  

 

Assessment of the prognostic signature 

 

The prognostic value of the signature was evaluated by 

performing KM analysis, Cox regression analysis and 

nomogram construction. The “Survival” R package was 

employed for KM analysis to all cohorts, while the “stats” 

R package was used for principal component analysis 

(PCA) between HRisk and LRisk groups in the TCGA 

cohort. Furthermore, multivariate Cox regression was 

carried out to test its independently predictive power in all 

cohorts. Finally, a predictive nomogram was constructed 

by incorporating the independent predictive factors 

identified in the TCGA cohort. Its predictive capacity was 

then investigated by decision curve analysis (DCA) and 

corresponding calibration analysis. 

 

Functional enrichment analysis in TCGA cohort 

 

Using the “limma” package for R, we performed 

differential expression analysis between HRisk and 

LRisk subgroups. Genes with absolute log2 fold-change 

> 0.5 and false discovery rate (FDR) < 0.05 were 

identified as differentially expressed genes (DEGs). 

Subsequently, DEGs were annotated by enrichment 

analysis of Gene Ontology biological process (GO-BP) 

using R package “clusterProfiler” [25]. FDR < 0.05 was 

established as statistically significant. With the same R 

package, Gene Set Enrichment Analysis (GSEA) 

analysis of Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways was performed, wherein FDR < 0.25 

was determined to be statistically significant. To assign 

activity estimates of 50 HALLMARK pathways to each 

tumor sample, the “GSVA” R package [26] was used to 

quantify scores, followed by differential analysis 

through the “limma” R package. 

 

Relationship between risk score and tumor immune 

microenvironment (TIME) 

 

In this study, we selected cellular estimates [27], 22 

immune cells of Cibersort [28] and TCR richness [29] 

as TIME-relevant molecular signatures. “IOBR” R 

package [30] was utilized to quantify the scores of all 

TIME-relevant molecular signatures.  

 

Single-cell RNA sequencing (scRNA-seq) data 

 

GEO database [31] was accessed to acquire scRNA-seq 

profiles (GSE154600) and clinical information [31]. 

Seurat R package (version 4) [32] was applied to 

conduct the scRNA-seq analysis. Standard of the quality 

control was set to “nFeature_RNA >200”, 

“nCount_RNA<20000” and “percent.mt < 10”. And 

then 43,057 cells were generated for downstream 

analysis. “NormalizeData” function was applied to 

normalized data and “FindVariableFeatures” function 

was used to identify 2000 highly variable genes 

(HVGs). After scaling the data, PCA was carried out to 

reduce dimension based on the HVGs. According to the 

performance of ElbowPlot, the top 10 PCs were 

selected for clustering analyses. Subsequently, 

FindClusters function (resolution = 0.5) was applied to 

further split the cells into 26 clusters, with cell type 

determined by CellMarker database [33] and “SingleR” 

R package [34]. The landscape of the cell types was 

visualized through TSNE plots.  

 

Statistical analysis 
 

All the statistical analyses were performed on R v. 

4.1.2. The Wilcoxon test was utilized to compare two 

groups while the Chi-square tests were employed to 

examine the associations of categorical variables. The 

associations of risk score with OS were examined by 

Kaplan–Meier method and Cox proportional hazard 

analyses. And the log-rank test was employed. All 

statistical p-values were two-sided.  

 

RESULTS 
 

The cohort design and analysis ideas for the entire study 

were shown in Figure 1. A total of 375 OC patients 
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from the TCGA and 531 OC patients from the GEO 

were included in this study. 

 

Construction of an anoikis-related prognostic 

signature with good performance in the discovery 

cohort 

 

According to univariate Cox regression analysis, a total 

of 31 genes associated with anoikis had a prognostic 

effect on OS in TCGA cohort (Figure 2A, 2B). To reduce 

the number of signature genes and optimize the 

prognostic model, a randomized survival forest analysis 

was employed to assign an importance rank to each 

prognostic ANRGs (Supplementary Table 3). Based on 

this analysis, the top 10 genes in terms of importance 

were selected for KM analysis of combinations (210 -1 = 

1,023, Figure 2C). Boxplots of p-values were generated 

under each condition, indicating that a signature of 5 

genes (RB1, STAT1, SNAI1, SFRP1, and AKT2) had the 

smallest p-value (Figure 2D and Supplementary Table 4). 

Notably, except the STAT1, the other four genes were 

identified as risk factors for survival prognosis. 

Consequently, the anoikis-related prognostic signature 

was constructed by the modulating expression levels of 

the five genes following the formula: risk score = 

(0.049*expression of SFRP1) + (-0.275*expression  

of STAT1) + (0.145*expression of SNAI1) + 

(0.189*expression of RB1) + (0.130*expression of 

AKT2). KM analysis of the TCGA cohort demonstrated 

that patients in the LRisk group had significantly better 

OS compared to those in the HRisk group (log-rank test 

p<0.0001, Figure 3A). Furthermore, PCA indicated that 

patients in different subgroups were divided into 

different direction (Figure 3B). Higher number of 

survivors were observed in the LRisk subgroup (Figure 

3D). With the exception of STAT1, higher levels of 

RB1, SNAI1, SFRP1, AKT2 mRNA expression were 

found in the HRisk subgroup (Figure 4C).  

 

The relationship between the prognostic model and 

clinical information in TCGA cohort 

 

As shown in Table 1, compared with HRisk patients, 

the low-risk subgroup was meaningfully associated with 

 

 
 

Figure 1. Flow chart of data collection and analysis. 
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younger age. However, no differences were detected in 

terms of stage and grade.  

 

Performance of the prognostic signature in the 

validation cohort 

 

Using the same formula and best cut-off value, the 

predictive capacity of the prognostic model was verified 

in four GEO cohorts. Statistically significant worse 

prognosis was detected among high-risk patients 

compared to low-risk patients in the GSE26712 (Figure 

4A, p<0.001), GSE32062 (Figure 4B, p=0.005), 

GSE30161 (Figure 4C, p=0.044), GSE19829 (D, 

p=001) cohort (Log-rank test). 

 

Predictive efficiency of the prognostic signature 

 

To examine the independence of the signature, 

univariate and multivariate Cox analyses were 

implemented in both cohorts. In the discovery cohort, 

 

 
 

Figure 2. Identification of the candidate anoikis-related genes in the TCGA cohort. (A) Venn diagram to identify anoikis-related 

genes that were related to OS. (B) Forest plots showing the results of the univariate Cox regression analysis between gene expression and OS. 
(C) Random survival forest analysis screened 10 genes sorted by importance. (D) After KM analysis of 2^10 ‒1 = 1,023 combinations, the KM 
p value of all possible signatures were displayed by boxplots. And the signature included five genes that were screened out, for it had a 
biggest −log10 p value. 
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age and risk score were verified to be independent 

prognostic indicators (Figure 3C). The same result was 

found in the validation cohorts except GSE30161, where 

multivariate Cox analysis revealed that risk score was also 

an independent factor (Figure 4E). Furthermore, surgery 

status was also determined to be an independent risk 

factor in the GSE26712 and GSE32062 cohorts. 

Furthermore, a predictive nomogram based on age and 

risk score was established using TCGA data (Figure 5A). 

The accuracy of this model was judged by the calibration 

curves between predicted and observed 1-year, 3-year, 

and 5-year outcomes (Figure 5B). DCA analysis also 

further highlighted its superior predictive performance 

(Figure 5C–5E).  

 

Functional enrichment analysis of the ANRGs-

related signature in TCGA cohort 

 

After differential expression analysis, 322 DEGs were 

up-regulated in the HRisk subgroup and 101 DEGs up- 

 

 
 

Figure 3. Survival analysis and prognostic values of the 5-gene signature model in the TCGA discovery cohort. (A) Kaplan-Meier 

curves for the OS of patients between the HRisk and LRisk group (Log-rank test, p<0.001). (B) PCA plot of patients in different groups.  
(C) Results of the univariate and multivariate Cox regression analyses regarding OS in the TCGA cohort. (D) The distribution of the risk scores. 
The distributions of OS status, OS and risk score in the TCGA cohort. Heatmap plot for mRNA expression of 5 genes between the HRisk and 
LRisk group. Expression values were z-score transformed. 
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regulated in the LRisk subgroup were generated (Figure 

6A). GO-BP enrichment analysis of the DEGs, KEGG 

analysis of all genes and HALLMARK pathways 

differential analysis indicated that HRisk patients were 

associated with extracellular matrix (ECM), angio-

genesis, transforming growth factor-β (TGF-β) and 

Wnt/β-catenin pathways (Figure 6B, 6D, 6F), while 

LRisk patients showed associations with immune-active 

signaling pathways, including interferon-gamma, T cell 

activation and immune response (Figure 6C, 6E, 6F).  

 

Analysis of TIME relevant molecular signatures in 

TCGA cohort 

 

Compared with LRisk patients, HRisk patients got a 

significantly higher stromal score (Figure 7A). Although 

the p-value was not meaningful, LRisk patients got a 

higher immune score. Moreover, the TCR richness was 

found to be significantly higher in the LRisk subgroup 

(Figure 7B), accompanied by higher abundances of B 

cells memory, plasma cells, T cells CD4 memory 

activated, T cells follicular helper, NK cells activated and 

Macrophages M1 in this group as compared to the HRisk 

patients (Figure 7C). On the contrary, HRisk patients 

exhibited a higher abundance of B cells naïve and T cells 

CD4 memory resting (Figure 7C). 

 

ANRGs expression in OC TME-associated cells 

 

The scRNA-seq dataset (GES154600) was used to 

investigate the specific expression of five signature 

genes in variable TME-associated cells. In the 

downstream analysis, 7 cell types were annotated in OC 

TME (Figure 8A). Notably, STAT1 was expressed at 

high levels in variable cell types, with fibroblasts and 

myeloid cells exhibiting particularly elevated 

expression. AKT2 was mainly expressed in malignant 

epithelial cells and fibroblasts. Expression of SNAI1 

and RB1 was generally low with the exception of  

their transcription in myeloid cells. Lastly, SFRP1  

was almost exclusively expressed in fibroblasts  

(Figure 8B, 8C). 

 

 
 

Figure 4. Survival analysis and prognostic values of the 5-gene signature model in the GEO validation cohorts. (A–D) Kaplan-
Meier curves for the OS of patients between the HRisk and LRisk group in the GSE26712(A, p<0.001), GSE32062(B, p=0.005), GSE30161(C, 
p=0.044), GSE19829(D, p=001)(Log-rank test). (E) Results of the univariate and multivariate Cox regression analyses regarding OS in the GEO 
cohort. 
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DISCUSSION 
 

Due to delayed diagnosis and treatment, OC patients 

were at high risk of a poor prognosis inevitably 

although more advanced treatment were developed in 

recent years. Therefore, effective prognostic biomarkers 

are still urgent requirement for OC patients. The rapid 

spread of malignancies resulted in aggressive 

progression of ovarian cancers [35]. Aggressive 

progression of OCs is often associated with metastasis 

to the intraperitoneal cavity and peritoneum [36]. 

Therefore, construction of predictive signature based on 

genes associated with metastasis may provide a novel 

and effective strategy for disease management.  

 

A key step in metastasis is the ability of tumor cells to 

survive under non-adhesion conditions and to escape 

anchoring-dependent cell death, called anoikis. This 

process is related to the increased ability of tumor cells 

to scavenge the increased reactive oxygen species 

caused by detachment [19]. The intrinsic pathways 

(DNA damage and endoplasmic reticulum stress) and 

the extrinsic pathways (mitochondria) were both 

associated with anoikis [37].  

Essentially, anoikis is one of the important steps to 

prevent transferring tumor cells. Inhibition of anoikis in 

TME may contributed to tumor migration and 

metastasis [38, 39]. Anoikis resistance was found to be 

caused by multiple complex pathways [9, 40–42]. 

Targeting the ANRGs may provide a novel approach to 

overcome metastasis of OC. Hence, further 

investigations into the potential correlation between 

ANRGs and prognosis in OC patients are warranted. 

 

This study was the first attempt at establishing a 

prognostic model based on comprehensive ANRGs in 

OC. We created the signature with stringent criteria and 

credible algorithm. The prognostic signature established 

in the discovery cohort included 5 ANRGs (RB1, STAT1, 

SNAI1, SFRP1, and AKT2), all of which have been 

reported to be associated with anoikis. The prerequisite 

for the mutation of Rb1 family to cause tumor in nude 

mice is to maintain the contact between cells and cells so 

as to prevent cells from anoikis [43]. Inactivation of the 

RB1 pathway resulted in the activation of mTOR 

pathway and resistance to anoikis [44]. Interferon-γ 

activated the STAT1 pathway, leading to a decrease in 

the psoriatic proteins induced by anoikis [45]. SNAI1 

 

 
 

Figure 5. Nomograms for predicting the probability of patient mortality based on risk score and clinical variables in TCGA 
cohort. (A) Nomograms plots of TCGA cohort. (B) Plots depict calibration of nomograms based on riskscore in terms of agreement between 

predicted and observed 1-year, 3-year, and 5-year outcomes in TCGA cohorts. Nomogram performance is shown by the plot, relative to the 
45-degree line, which represents the ideal prediction. (C–E) Decision curve analyses of the nomograms based on OS in TCGA cohort for 1-
year, 3-year, and 5-year risk. 
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exerts its essential role in colorectal tumor progression 

and metastasis by regulating EMT pathway [46]. By 

mediating the activation of Wnt pathway, the down-

regulation of SFRP1 promoted breast epithelial cell 

proliferation and resistance to anoikis [47]. 

Furthermore, the absence of mtDNA promotes migra-

tion to basement membrane proteins by activating AKT2 

and downstream products of prostate epithelial cells to 

promote resistance to anoikis [48]. It has also been 

reported that AKT2 ablation stimulated PC-3 cell 

migration in terms of prostate cancer [49]. These five 

key genes have been identified to be closely related to 

anoikis; however, there are relatively few studies on 

ovarian cancer. Future exploration of the underlying 

mechanisms of ovarian cancer is thus critical. 

 

To explore the potential mechanism of the signature, 

functional enrichment analysis was applied. The results 

indicated that HRisk patients were associated with 

pathways known to promote tumor progression, such as 

extracellular matrix (ECM), angiogenesis, TGF-β and 

WNT signaling pathways. All these signaling have been 

reported to promote the development of OC. For 

example, down-regulation of PAX8 gene expression has 

 

 
 

Figure 6. Representative results of pathway analysis. (A) Volcano plot displayed DEGs between the HRrisk and LRisk subgroups 
(FDR<0.05, |log2 fold-change|>0.5). (B, C) Gene Ontology (GO) enrichment analysis of 322 genes up-regulated in the HRisk group (B) and 101 
genes up-regulated in the LRisk group (C). (D, E) GSEA analysis of KEGG gene sets in the HRisk (D) and LRisk (E) subgroups (FDR<0.25). (F) 
GSVA analysis of hallmark pathways in the TCGA cohort was performed. Differential analysis of GSVA score between HRisk and LRisk group 
were displayed and FDR<0.01 were controlled. 
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been reported to reduce the ability of tumor cells to 

migrate and adhere to the ECM, thereby reducing 

anoikis resistance [50]. Molecular characterisation of 

angiogenesis-related genes was associated with OC 

heterogeneity and offers new therapeutic approaches 

[51]. OC cells were mainly exposed to TGF- β1 to 

stimulate SOX2 and inhibit anoikis [17]. Furthermore, 

down-regulation of β-Catenin has been shown to 

inhibited tumor growth and peritoneal metastasis in OC 

tumor model by stopping the formation of OC 

spheroids, which protected tumor cells from anoikis 

[52]. In contrast, LRisk subgroup was associated with 

antitumor-related pathways, primarily those related to 

immune activation, such as interferon-gamma, T cell 

 

 
 

Figure 7. The correlation between the signature and TIME in TCGA cohort. (A) Comparison of StromalScore, ImmuneScore, 

ESTIMATEScore and TumorPurity between the HRisk and LRrisk patients. (B) Comparison of TCR richness between the HRisk and LRrisk 
patients. (C) Boxplots depicting the CIBERSORT scores of 22 immune cells of the HRisk patients compared to LRrisk patients. (Wilcoxon test, 
Adjusted P values were showed as: ns, not significant; *, p< 0.05; **, p < 0.01; ***, p < 0.001). 
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activation and immune response. Immunosuppression is 

known to promote tumor progression, and the activation 

of anti-tumor immunity may explain the better 

prognosis of LRisk patients.  

 

In recent years, TME have been identified as a new 

hotpot of research for OC. Different immune cells play 

different roles in the development of ovarian cancer. 

Cox proportional hazards model shows that highly 

infiltrated CD8+ TILs are associated with shorter 

disease-specific survival and overall survival [53].  

 

It has been shown that M1 macrophage exhibits anti-

tumor effects, whereas M2 pro-tumor effects [54]. This 

unique property of NK cells and their ability to enhance 

T cell responses and antibodies supports NK cells as a 

therapeutic hope in the fight against cancer, as they 

have the potential to kill tumor cells in a variety of ways 

without prior sensitisation [55]. The above mentioned 

tumor-killing immune cells are highly infiltrated in the 

low-risk group. OC patients with shorter survival had a 

higher infiltration of B cells naïve and T cells CD4 

memory resting [56], which existed in the HRisk group. 

This pointed out patients with high-risk score were 

considered to be comprise immune escape factors and 

tumor-promoting factors. 

 

Despite the promising results from the bioinformatics 

analysis in OC, this study still has certain limitations. 

Firstly, the unavailability of some clinical information 

hindered us from fully exploring the relationship 

between the model and clinical features and developing 

a better nomogram, such as the details of treatment, 

pathological details of the tumor. Secondly, although 

we used multiple cohorts in this study to validate the 

reliability of the model, an external cohort was 

 

 
 

Figure 8. Expression of 5 signature genes in OV TME-associated cells. (A) TSNE visualization of 43,057 single cells, color-coded by cell 

type. (B) Feature plots depicting the expressions of 5 signature genes (RB1, SNAI1, STAT1, SFRP1, AKT2) in all cell types. (C) Dotplot showing 
the percentages and expressions of 5 signature genes (RB1, SNAI1, STAT1, SFRP1, AKT2) among all cell types. 
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necessary for verifying. Moreover, experimental 

analyses of in vitro and in vivo in real-world is the most 

effective way to explore the mechanism of signature 

genes. 

 

CONCLUSIONS 
 

In conclusion, a novel and robust prognostic signature 

of ANRGs in OC was constructed. This model was 

demonstrated to be independently predictive factor for 

survival in both the discovery (TCGA) and validation 

(GEO) cohorts, providing appropriate patient 

stratification and treatment guidance for future trials. 

The potential mechanism of the ANRGs-related 

signature was explored in terms of pathway and TIME 

analysis. However, it is not enough, and we need further 

exploration. 
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SUPPLEMENTARY MATERIALS 

 

 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 4. 

 

Supplementary Table 1. Collecting datasets of ovarian cancer with survival data. 

Datasets Platform Number of samples Information Ref(PMID) 

TCGA-OV HGU133A 375 OS 21720365 

GSE32062 GPL6480 260 OS 22241791 

GSE19829 HGU133 Plus 2.0|GPL570 28 OS 20547991 

GSE30161 HGU133 Plus 2.0|GPL570 58 OS 22348014 

GSE26712 HGU133A|GPL96 185 OS 18593951 

 

Supplementary Table 2.  ANRGs were collected from the GeneCard database. 
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Supplementary Table 3. Importance 
of each ANRGs with prognostic value. 

Surv.rf.importance Symbol 

0.000249198422485996 EPHA2 

0.00130624196315903 IFI6 

0.00155186347980523 CXCR4 

0.00179512513650021 ETV7 

0.00221351532216709 IL2 

0.00253653812525469 EDNRB 

0.00273673948984161 GLUD1 

0.00293103931042791 MGAT5 

0.00317421179400052 PXN 

0.00317906854041056 GLO1 

0.00396332522758073 GZMB 

0.00418758898717 RAP1A 

0.00448999451495502 SYDE1 

0.00467633071727487 LRP1 

0.00476357098300726 NGFR 

0.0051250211506144 MNX1 

0.0051452601040497 CCR7 

0.0053291884206191 ARHGEF7 

0.00575030911675733 ERBB2 

0.00629400305287395 RANBP9 

0.0072773616628405 SKP2 

0.0074811901848788 AKT2 

0.00749574568838223 PIN1 

0.00759282638541233 RB1 

0.00944359874109739 SFRP1 

0.00949671396884303 SNAI1 

0.00976025270965955 STAT1 

0.0129669044286207 CASP2 

0.0129751446640335 WWP1 

0.0142266388169153 HGF 

0.01431475729316 STRN4 

 

Supplementary Table 4. KM analysis of 2^10 ‒1 = 1,023 combinations. 


