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INTRODUCTION 
 

The function of N-methyl-D-aspartate receptors 

(NMDARs) has a profound influence on synaptic 

plasticity, cognition, psychiatric diseases, and 

connectivity of neural networks [1, 2]. Hippocampal 

and prefrontal cortex-dependent synaptic plasticity and 

cognitive capacities decline with advancing age [3–12]. 

More specifically, age-related changes in NMDARs, 

including subunit expression, corresponding neuro-

transmission, and oxidation-reduction status, are 
associated with age-related cognitive deficits. Age-

related declines in NMDAR subunit expression, such as 

prefrontal GluN1 mRNA [13] and GluN2B protein in 

the frontal and hippocampal regions [14], impact 

pharmacokinetics of glutamatergic transmission  

[15–17]. Reductions in NMDAR-mediated transmission 

significantly contribute to these age-related synaptic and 

cognitive impairments [18–26]. Using GluN2B 

knockout mice, loss of GluN2B in cortical and CA1 

pyramidal neurons impaired NMDAR-mediated neuro-

transmission, decreased spine density in the CA1 of the 

hippocampus, and resulted in cognitive deficits 

dependent upon hippocampal and prefrontal function 

[27]. These neural and cognitive impairments align with 

those observed in aging. Conversely, upregulation of 

the GluN2B subunit recovers synaptic plasticity and 

spatial memory in aged animals [28, 29]. In addition to 
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ABSTRACT 
 

An age-associated decrease in N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic function contributes 
to impaired synaptic plasticity and is associated with cognitive impairments. Levels of serine racemase (SR), an 
enzyme that synthesizes D-serine, an NMDAR co-agonist, decline with age. Thus, enhancing NMDAR function 
via increased SR expression in middle age, when subtle declines in cognition emerge, was predicted to enhance 
performance on a prefrontal cortex-mediated task sensitive to aging. Middle-aged (~12 mo) male Fischer-344 
rats were injected bilaterally in the medial prefrontal cortex (mPFC) with viral vector (LV), SR (LV-SR) or control 
(LV-GFP). Rats were trained on the operant attentional set-shift task (AST) to examine cognitive flexibility and 
attentional function. LV-SR rats exhibited a faster rate of learning compared to controls during visual 
discrimination of the AST. Extradimensional set shifting and reversal were not impacted. Immunohistochemical 
analyses demonstrated that LV-SR significantly increased SR expression in the mPFC. Electrophysiological 
characterization of synaptic transmission in the mPFC slices obtained from LV-GFP and LV-SR animals indicated 
a significant increase in isolated NMDAR-mediated synaptic responses in LV-SR slices. Thus, results of the 
current study demonstrated that prefrontal SR upregulation in middle age rats can improve learning of task 
contingencies for visual discrimination and increase glutamatergic synaptic transmission, including NMDAR 
activity. 
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subunit expression changes with aging, NMDAR 

function is modulated by oxidation-reduction status, and 

a higher level of oxidative stress is associated with 

advancing age, as well as cognitive impairment  

[21, 30–32]. 

 

D-serine, which is the primary co-agonist required for 

full activation of synaptic NMDARs, also decreases with 

aging [33–39]. D-serine is critical to synaptic plasticity 

and cognitive capacities [33, 36, 40–42]. D-serine levels 

are dependent upon serine racemase (SR), which is the 

enzyme that converts L-serine to D-serine [43–45]; 

correspondingly, levels of SR decline during aging [36, 

37]. Deletion of SR affects hippocampal networks by 

altering the excitatory/inhibitory balance [46]. When age-

related reductions in D-serine are supplemented with 

exogenous D-serine, synaptic transmission recovers in 

aged rodents in a dose-dependent manner, normalizing to 

young levels [12, 34, 36, 42]. 

 

Thus, upregulation of SR expression, which increases 

D-serine levels, may have therapeutic potential by 

upregulating NMDAR function. The beneficial effects 

of elevating D-serine in aging have been examined in 

relation to synaptic and cognitive capacities in the 

hippocampus. However, the prefrontal cortex (PFC), 

which is a brain region sensitive to disruptions in aging, 

has not been extensively evaluated. The PFC is 

involved in complex behaviors including executive 

function, which encompasses cognitive flexibility, 

inhibition, attention, and working memory [47, 48]. 

Executive dysfunction for working memory and 

cognitive flexibility also arises in middle age [49–51] 

and subtle attentional deficits associated with NMDAR 

impairments have been noted in middle age [52]. 

However, it is unknown if these deficits are related to 

NMDAR function, or more specifically D-serine 

availability. 

 

We hypothesized that augmenting SR expression within 

mPFC glutamatergic neurons would improve attention 

and cognitive flexibility in middle-aged rats and 

facilitate synaptic responses in the mPFC. Thus, for this 

study, SR expression was upregulated in pyramidal 

neurons of the mPFC through lenti-viral technology to 

enhance NMDAR function and evaluate its impact on 

cognitive flexibility and NMDAR-mediated synaptic 

transmission in middle-age rats. The results demonstrate 

that viral vector-mediated upregulation of SR in the 

mPFC of middle-aged rats resulted in efficient 

contingency acquisition during visual discrimination, 

potentially through enhanced attentional function. 

Further, electrophysiological recordings demonstrated 
that up-regulation of SR expression significantly 

augmented NMDAR-mediated synaptic responses 

recorded from the mPFC. 

RESULTS 
 

LV-SR infusion increased prefrontal SR expression 

 

To verify accurate expression of the SR viral vector, co-

localization of GFP-positive cells and CaMKII-positive 

cells was evaluated within the mPFC (Figure 1B, 1C). 

Colocalization of GFP+/CaMKII+ cells was 52.48% in 

LV-SR-injected rats (N = 7). There was limited 

colocalization of GFP+/CaMKII+ cells in the control 

LV-GFP-injected rats (5.85%; N = 9). Injection of LV-

SR increased the total area of fluorescence, indicative of 

SR levels, in the mPFC compared to LV-GFP-injected 

rats (F(1,14) = 12.59, p < 0.01; Figure 1D, 1E). 

 

Up-regulation of SR expression accelerated visual 

discrimination learning 

 

Rats treated with LV-SR (N = 7) required fewer trials to 

attain criterion during the visual discrimination task 

(F(1,14) = 8.23, p = 0.01; Figure 2A), suggesting that 

increased expression of SR accelerated learning of the 

task contingencies. LV-SR rats did not significantly 

differ from LV-GFP-treated rats (N = 9) for trials to 

criterion (TTC) when making an extradimensional shift 

during the set-shifting phase (F(1,14) = 2.49, p = 0.14; 

Figure 2B), or a reversal (F(1,14) = 0.25, p = 0.63; Figure 

2C). Increasing SR levels also did not affect the number 

or the type of errors (i.e., perseverative, regressive, and 

never reinforced) made during set shift or reversal (p > 

0.05). In addition, omissions did not vary by injection 

type (p > 0.05). 

 

SR upregulation augments basal synaptic 

transmission 

 

The effect of upregulation of SR expression on 

glutamatergic excitatory synaptic transmission was 

evaluated by recording and analyzing total fEPSPs 

from the mPFC slices in a subset of animals injected 

with LV-SR or LV-GFP vector. An input-output curve 

was generated by plotting the slope of the total 

synaptic response from LV-SR (n = 8/4 slices/animals) 

and LV-GFP (n = 8/4 slices/animals) rats as a function 

of increasing stimulation intensity (Figure 3). A 

repeated-measures ANOVA indicated main effects of 

increasing stimulation intensity (F(9,126) = 23.43, p < 

0.0001). A significant treatment by stimulation 

intensity interaction was observed (F(9,126) = 3.04, p < 

0.003) in absence of any main effect of treatment 

(Figure 3). However, repeated measures on higher 

stimulation intensities (20–40 volts) indicated that the 

total synaptic responses were higher in slices obtained 

from LV-SR-injected animals compared with LV-

GFP, and there was a tendency for treatment effect 

(F(1,14) = 3.28, p < 0.09). 
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Figure 1. Experimental timeline and confirmation of lentiviral transfection and upregulation of SR expression in mPFC. (A) 

Experimental timeline illustrating details of experiments. Rats underwent surgery for lentiviral delivery into the mPFC and waited five 
weeks, to permit sufficient viral infection, before engaging in behavioral training on the attentional set shift task (AST) or 
electrophysiological recordings. Following AST, all rats were euthanized, had their tissue collected, and processed for 
immunohistochemistry (IHC). (B) Viral infection, represented as GFP+ expression, targeted the mPFC, which includes the cingulate (Cg), 
prelimbic (PLC), and infralimbic (ILC) cortices. (C) For rats injected with LV-SR (N = 7), viral infection (green, GFP) significantly overlapped 
with CaMKII+ cells (red; 52%). In contrast, rats injected with LV-GFP (N = 9), displayed limited overlap of GFP- (green) and CaMKII-positive 
cells (red). (D) Additional slices were evaluated for SR expression (red), and (E) based on further quantification (average of 4–7 slices/rat; 
individual rat’s average represented as single data point) showed that LV-SR significantly increased SR levels in the mPFC where the virus 
(GFP represented in green) was expressed. Data represented as mean ± SEM. **p < 0.01. 

 

 
 

Figure 2. Upregulation of SR expression in mPFC accelerated learning an initial rule.  (A) Middle-aged rats with LV-SR (N = 7) 

required fewer trials to reach criterion on visual discrimination than LV-GFP rats (N = 9). In contrast, LV-SR and LV-GFP rats did not 
significantly differ from one another regarding trials to criterion (TTC) for the extradimensional set shift (B) or reversal (C). Filled circles in 
(A–C) representing individual data points. Data represented as mean ± SEM, with individual rat’s performance displayed as single data 
point. **p < 0.01. 
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The NMDAR-mediated synaptic component was 

pharmacologically isolated following the assessment of the 

total synaptic response. Input-output curves were 

constructed, and the synaptic response at each intensity 

was averaged across slices from the same animal (LV-SR: 

n = 8/4 slices/animals; LV-GFP: n = 8/4 slices/animals). 

An increase in the NMDAR-mediated synaptic response 

was observed for input-output curves plotting the 

NMDAR-fEPSPs slope as a factor of increasing 

stimulation intensity (Figure 4). A repeated-measures 

ANOVA indicated a significant main effect of stimulus 

intensity (F(9,126) = 34.59, p < 0.0001) and treatment  

(F(1,14) = 9.41, p < 0.0001) and an interaction of stimulation 

intensity and treatment (F(9,126) = 10.32, p < 0.0001) on the 

slope of the recorded NMDAR-mediated synaptic 

responses. Post hoc analyses indicated that the NMDAR 

synaptic responses were significantly (p < 0.008) 

augmented in slices from LV- SR-injected animals when 

compared with LV-GFP (Figure 4). 

 

Redox regulation of NMDAR function 

 

Based on previous findings using middle-aged rats, 

redox state was identified as a potential modulator of 

NMDAR synaptic responses [21]. To determine 

whether the increased expression of SR interacted with 

redox state to alter the NMDAR synaptic response, 

NMDAR responses in the mPFC were isolated and the 

reducing agent DTT (0.5 mM) was applied to slices 

obtained from LV-SR and LV-GFP rats (Figure 5A).

 

 
 

Figure 3. Upregulation of SR increased total synaptic strength. (A) Schematic of PFC slice adapted from Paxinos [108] illustrating 
location of recording and position of stimulating and recording electrodes. The rectangular dash lined box indicates the area used for 
recording total and NMDAR-mediated synaptic responses. (B) Input-output curve of total-fEPSP in slices obtained from LV-SR (n = 8/4 
slices/animals) and LV-GFP (n = 8/4 slices/animals) animals, plotting the mean SEM slope across animals relative to increasing stimulation 
intensities. p < 0.09 represents a tendency for treatment effect at higher stimulation intensities (20–40V). 
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Figure 4. Upregulation of SR increased NMDAR-mediated synaptic response. Input-output curve of NMDAR-fEPSP in slices 

obtained from LV-SR (n = 8/4 slices/animals) and LV-GFP (n = 8/4 slices/animals) rats, plotting the mean SEM slope across animals relative 
to increasing stimulation intensities. *indicates a significant treatment difference at higher stimulation intensities (16–40V). 
 

 
 

Figure 5. Redox regulation does not contribute to increased NMDAR synaptic function induced by upregulation of SR 
expression. (A) Time course of changes in the slope of the NMDAR-fEPSP obtained from mPFC slices 10 min before and up to 60 min after 

bath application of the reducing agent, DTT (0.5 mM; solid line) for slices obtained from LV-SR (filled circle, n = 8/4 slices/animals) and LV-
GFP (control, open circle, n = 8/4 slices/animals) animals. (B) Scatter gram illustrating individual DTT-induced potentiation along with mean 
percentage increase (black solid line) in the slope of NMDAR-fEPSP in slices obtained from LV-SR (filled circle) and LV-GFP (open circle) 
animals. (C) Input-output curve of NMDAR-fEPSP slope in slices obtained from LV-GFP (open circle) and LV-SR (filled circle) rats 60 min 
following bath application of DTT (0.5 mm, solid line), across increasing stimulation intensities. *indicates a significant treatment difference 
at higher stimulation intensities (16–40V). 
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For LV-SR (n = 8/4 slices/animals) and LV-GFP (n = 

8/4 slices/animals) animals, the NMDAR-fEPSP 

amplitude was maintained at ∼50% of maximum, and a 

stable baseline was recorded for at least 10 min. 

Subsequent application of DTT resulted in a significant 

increase in the synaptic response from the baseline for 

both LV-SR (p < 0.0007) and LV-GFP (p < 0.007) 

animals (Figure 5B). However, the bath application of 

DTT did not increase the NMDAR-fEPSP differentially 

from LV-SR rats (122.52 ± 3.89%) compared with LV-

GFP animals (121.29 ± 5.76%), indicating involvement 

of non-redox regulation to account for the enhanced 

NMDAR synaptic function in the mPFC observed 

following upregulation of SR (Figure 5C). 

 

DISCUSSION 
 

The results for the current study demonstrate that viral 

vector-mediated upregulation of SR, and putatively 

elevated D-serine levels in the mPFC, increased basal 

synaptic transmission in the PFC and improved 

acquisition of task contingencies for the visual 

discrimination condition. The lentiviral vector for SR, 

which was encoded with a CaMKII promoter, 

effectively infected glutamatergic pyramidal neurons in 

the PFC and increased SR expression at this site. Rats 

injected with LV-SR vector exhibited enhanced basal 

NMDAR-mediated synaptic transmission. These data 

suggest that the posited increase in D-serine from the 

elevated SR expression boosted NMDAR function in 

the mPFC of middle-aged rats. 

 

In corroboration with these findings, D-serine has been 

identified as a critical co-agonist of NMDARs and is 

dependent on expression of SR, which converts L-serine 

to D-serine [43–45]. In the current study LV-SR, which 

colocalized with CaMKII-positive cells in the PFC, 

significantly increased SR expression and putatively 

increased D-serine levels. Surprisingly, LV-GFP did not 

exhibit strong colocalization with CaMKII-positive 

cells, despite also containing a CaMKII promoter, 

suggesting that the promoter was not selective in this 

specific viral vector, and is one weakness of this 

experiment. Both SR expression in neurons and L-

serine shuttling in astrocytes are found to influence D-

serine levels and alter CA1 synaptic neurotransmission 

[53]. D-serine may also be acting as an autocrine-

signaling molecule, due to SR localization to 

postsynaptic regions of the neuron, including hippo-

campal pyramidal neurons and striatal GABAergic 

interneurons [54–57]. Moreover, despite the intention to 

target pyramidal neurons in the mPFC using the 

CaMKII promoter [58–60], this marker’s expression has 

recently been observed in parvalbumin or somatostatin 

interneurons from the superficial motor cortex of mice 

[61]. Thus, other neuronal types may have been 

transfected by LV-GFP or LV-SR and influenced SR 

expression. Thus, other neuronal types may have been 

transfected by LV-GFP or LV-SR and influenced SR 

expression. Notably, the LV-SR group exhibited 

significantly higher SR expression than the LV-GFP 

group, demonstrating that the LV-SR vector was 

efficacious. 

 

In agreement with the hippocampal literature 

demonstrating the enhancing effects of D-serine on 

NMDAR-related function, the LV-SR group displayed 

increased basal NMDAR-mediated transmission in the 

mPFC. Previous studies have shown that application of 

D-serine enhanced evoked NMDAR-mediated currents 

in both hippocampal CA1 pyramidal neurons and 

interneurons, though to differing degrees potentially due 

to NMDAR subunit composition [62]. Endogenous 

sources of astrocytic D-serine also significantly 

contributed to NMDAR activity and long-term 

potentiation (LTP) [63]. Conversely, in SR knockout 

mice Ploux and colleagues (2020), amongst others [46, 

64, 65], observed a weakening of NMDAR responses 

and LTP. Interestingly, this NMDAR hypofunction was 

observed in SR knockouts despite a natural 

compensatory mechanism of increased hippocampal 

expression of glycine, which also binds at the  

co-agonist site on the NMDAR. 

 

Impaired NMDAR- and non-NMDAR-mediated 

glutamatergic transmission in the hippocampus during 

normal aging is strongly related to cognitive 

dysfunction, such as executive function and memory 

[66–68]. Engagement of the D-serine pathway has 

shown significant benefits in hippocampal-dependent 

NMDAR-mediated transmission and cognitive function 

in preclinical models of aging. In the aging brain,  

D-serine levels and NMDAR-mediated synaptic 

transmission are reduced [33–39], whereas supplemen-

tation with exogenous D-serine in aged rats [34] or mice 

with low D-serine release due to astrocytic mutations 

[69] normalize hypofunctional NMDAR responses. 

Moreover, the beneficial effects of sAPPα, a secreted 

form of amyloid precursor protein generated by the non-

amyloidogenic pathway, on NMDAR-mediated 

transmission in hippocampal slices of aged mice are 

partially mediated by the D-serine pathway, as 

evidenced by an attenuation of these enhancing effects 

in SR knockout mice [70]. These beneficial effects of 

D-serine have translated to amelioration of cognitive 

function in elderly as well. Healthy older adults 

receiving D-serine supplementation exhibited improved 

spatial memory, learning, and problem solving, with 

greater effects observed for those with higher plasma  
D-serine levels [71]. Thus, D-serine bolsters glutamatergic 

transmission and cognitive function and could 

potentially attenuate age-related cognitive decline [72]. 
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Initial cognitive impairments arising in aging include 

those dependent upon executive function, such as 

attention. To evaluate if increased expression of SR 

could improve one such cognitive capacity (i.e., 

cognitive flexibility) in middle-aged rats, we measured 

visual discrimination, attentional set shifting, and 

reversal learning. Set shifting is primarily dependent 

upon the mPFC [73, 74] while reversal learning relies 

upon the orbitofrontal cortex (OFC) [75–77]. In 

addition, dynamic interactions between the OFC and 

hippocampus for reversal learning have been noted, 

with local field potentials of the OFC and hippocampus 

exhibiting coherence in theta rhythm in a performance-

dependent manner [78, 79] and contralateral lesions of 

the OFC and ventral hippocampus in mice subtly, 

though significantly, impairing spatial reversal learning 

[78]. Systemic D-serine treatment has shown beneficial 

effects on spatial reversal learning [69, 80–83]. 

However, for this study, upregulation of SR in the 

mPFC did not affect reversal. Given that the lentiviral 

injection targeted the mPFC rather than the OFC, the 

lack of effects on reversal learning observed in this 

study aligns with the literature regarding the critical role 

of the OFC and hippocampus, rather than the mPFC, to 

this cognitive capacity. 

 

By targeting the mPFC with LV-SR, enhancement in 

set-shifting performance would have been expected. 

However, no effects of manipulation were noted on this 

measure. Few studies have evaluated the impact of D-

serine in set-shifting, but there is evidence of 

glutamatergic signaling impacting set-shifting and 

reversal learning performance. In adult rodents, 

disruption of medial prefrontal NMDAR or AMPA 

receptor function impaired set-shift performance, 

increasing perseverative errors, but had no effect on 

reversal learning [84–86]. More selective 

manipulations, targeting GluN2A and GluN2B 

specifically, have demonstrated their important role in 

extradimensional set-shifting and spatial reversal 

learning [80, 87–89]. In terms of aging, age-related 

reductions in GluN1 expression in the mPFC were 

correlated with impaired set-shifting performance in 

aged rats, while expression of AMPA receptor subunits 

that were found to be decreased with aging (GluR1, 

GluR2) did not relate to set-shifting performance [90]. 

Therefore, enhanced NMDAR-mediated function via 

purported increases in D-serine would be expected to 

improve set-shifting. Despite increased NMDAR-

mediated transmission in the mPFC in this study, 

corresponding changes in set-shifting did not emerge. 

This may be due to lower levels of D-serine attained in 

this study (through the elevation of SR expression) than 

was observed or used in other studies. The exact levels 

of D-serine in the mPFC were not measured and is a 

limitation of this study. 

LV-SR infusion in the mPFC accelerated learning in the 

visual discrimination condition, as noted by the reduced 

trials to criterion. In agreement with these findings, 

NMDAR hypofunction impairs visual discrimination, as 

observed with NMDAR antagonists [91–93], deletion of 

the GluN1 subunit on dopaminergic neurons [94], and 

GluN2A knockouts [95, 96]. This is the first study to 

demonstrate that enhanced basal NMDAR synaptic 

function, via viral vector-mediated upregulation of SR 

expression in mPFC of middle-aged rats, was associated 

with improved visual discrimination learning. The 

results from this study support the beneficial effects of 

the D-serine pathway involvement in NMDAR-

mediated transmission and cognitive function, 

expanding the literature to emphasize its role in not only 

the hippocampus but also the PFC. Thus, targeting this 

pathway could pose a potential route in reversing age-

related cognitive decline and should be considered for 

future research. 

 

MATERIALS AND METHODS 
 

Subjects 

 

Middle-age male Fischer-344 rats (~12-month) were 

obtained from the National Institute on Aging 

(Bethesda, MD, USA) and housed at the University of 

Florida in a temperature- and humidity-controlled 

vivarium on a 12:12 light/dark cycle (lights on: 7am). 

Rats remained pair-housed with full access to food and 

water and habituated to the facilities for a week prior to 

handling. Once acclimated and handled, rats underwent 

surgery for injection of either green fluorescent protein 

(GFP) or SR lentiviral vector with a Ca2+/calmodulin-

dependent protein kinase II (CaMKII) promoter into the 

mPFC. After recovering for five weeks, rats were food 

restricted to 85% of their original weight, trained and 

tested on the attentional set-shift task (AST), following 

which they were perfused and brains were collected and 

examined for verification of viral expression. All 

procedures involving animals were approved by the 

Institutional Animal Care and Use Committee at the 

University of Florida and were in agreement with 

guidelines recognized by the U.S. Public Health Service 

Policy on Humane Care and Use of Laboratory 

Animals. A schematic of experiment timeline is 

provided in Figure 1A. 

 

Lentiviral vector and mPFC injections 

 

Lentiviral particles encoding SR (LV-SR) and green 

fluorescent protein (LV-GFP) were obtained from 

BioSource SAS-Genetic Engineering Technologies 

(GEG Tech, Paris, France). SR and GFP cDNAs were 

cloned into vectors containing a neuron specific 

promoter, CaMKII. Plasmids were packaged into 
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vesicular stomatitis virus (VSV) glycoprotein envelope 

before stereotaxic injections into the mPFC of male 

middle-aged rats. Rats were anesthetized with 

isoflurane in the induction chamber, and stereotaxic 

techniques (KOPE Stereotaxic Alignment System) were 

employed for virus injection. Lentiviral vector encoding 

SR (LV-SR, ∼1.0 × 109 transducing units/mL) or GFP 

(LV-GFP) was bilaterally injected into the mPFC 

(anterior/posterior +3.0 mm and medial/lateral ± 0.5 to 

0.8 mm of bregma, dorsal/ventral 2.2 to 2.6 mm) using 

a glass pipette. Vector was injected bilaterally into 

mPFC and each injection consisted of ~2 μl of SR or 

GFP vector. One cohort of rats was utilized for the 

behavior and immunohistochemical analyses, while a 

separate cohort of rats was used for the electro-

physiology. 

 

Attentional set shift task 

 

Apparatus 

The attentional set-shift task (AST) was conducted in rat 

operant boxes (Coulbourn Instruments, Whitehall, PA, 

USA), containing a food magazine port between two 

levers, which were located below two lights on the front 

panel. A house light was positioned on the rear wall. 

Operant boxes were individually stored within a sound-

attenuating chamber with a fan for aeration and noise 

dampening. The input and output from each box were 

transmitted to Graphic State 4 software (Coulbourn 

Instruments) on an Optiplex 9020 computer. 

 

Behavioral paradigm 

Once rats fully recovered from surgery (~five weeks), 

they were food restricted to 85% of their starting body 

weight. Rats were exposed to the food reward pellets in 

their home cage during this period to reduce neophobia. 

The task was modified from Floresco et al., 2008  

[74, 97, 98]. For two days, rats were habituated to the 

operant chamber for 15 min, with the back house light 

on and 10 food pellets in the magazine. Rats were 

trained to lever press, whereby they had 30 min to hit 

the extended levers on an FR-1 schedule for a food 

pellet reward. Once they pressed each lever 50 times, 

rats transitioned to sessions in which the levers were 

extended for 10 s for each trial. If no response was 

made, a “time out” period of 10 s occurred where the 

house light extinguished, and an omission was recorded. 

During the lever presentation, one of the two front panel 

lights was pseudo-randomly illuminated to expose the 

rats to this stimulus. Rats needed 90% performance 

before being evaluated for a side bias. During the side 

bias assessment, rats performed seven trials and had to 

alternate between each lever. Whichever lever they 
displayed a persistent preference for was not selected as 

their “Set shift” lever (see below). Rats progressed to a 

visual discrimination (VD) paradigm, in which the 

location of the light cue predicted the rewarded lever 

(the lever below the light). For criterion of VD and later 

stages (the extra-dimensional shift and reversal), rats 

needed to correctly perform 8 consecutive trials and 

greater than 30 trials total to progress to the next stage. 

Each session consisted of 120 trials maximum, and rats 

continued with the same phase until they reached 

criterion. The time out period remained at 10s and the 

inter-trial interval was 9–12s. After VD, rats made an 

extradimensional shift (set-shift) from the light cue as 

the predictor to an egocentric response, whereby the 

location of the lever itself (right or left of the rat) 

predicted the reward. Once rats attained criterion on the 

set-shift paradigm, the rewarding response was reversed 

(i.e., a reversal) to the opposite lever location. 

 

Behavioral analysis 

The number of trials to criterion served as a measure of 

the rats’ capacity to learn a new strategy, as well as 

make an extra-dimensional set shift and reversal. Total 

omissions, calculated as (trials omitted/total trials) × 

100, were also measured. Performance errors were 

recorded and, during the set-shift paradigm, were 

characterized as perseverative, regressive, or never 

reinforced. Perseverative errors were defined as 

incorrect lever selection (i.e., below a light cue and thus 

perseverating to the VD strategy) when more than 70% 

of these errors were made. When fewer than 70% of 

these errors were made, the incorrect selections were 

defined as regressive errors, indicative of a gradual shift 

to the new response strategy. During VD and reversal 

stages, only total errors were calculated. 

 

Immunohistochemistry 

 

Tissue collection 

Rats were anesthetized with isoflurane and underwent 

transcardial perfusion with 200 mL of ice cold 1X 

phosphate buffered saline (PBS) and 4% 

paraformaldehyde (PFA). Brains were extracted, placed 

in 4% PFA for overnight incubation at 4°C, and 

transferred to 30% sucrose. After sinking in the 

solution, brains were embedded in OCT and maintained 

at –80°C until slicing. Brains were sliced on a cryostat 

(Microm, Waltham, MA, USA), as 40 μm-thick coronal 

sections, and the prefrontal cortical region was collected 

and maintained in cryoprotectant solution (30% 

ethylene glycol, 15% glucose, 0.04% sodium azide in 

0.05M PBS). 

 

Immunofluorescent procedure 

Six sections of the PFC (A/P range: +4 to +2) were 

processed for co-localization of CaMKII, which was the 
promoter of both lentiviruses, and GFP, which served as 

an indicator of the viral vector infusion site for LV-GFP 

and LV-SR groups. As previously conducted [99] 



www.aging-us.com 2441 AGING 

coronal sections were rinsed thrice for 5 min in 1X tris-

buffered saline (TBS), incubated in antigen retrieval 

solution (Vector, Burlingame, CA, USA) for 10 min at 

95°C, rinsed again, and blocked in 10% donkey serum 

for 1 hr. Sections were then incubated at 4°C for 48 hrs 

for mouse anti-CaMKII (1:1000, Invitrogen, Carlsbad, 

CA, USA) and 24 hrs for rabbit anti-GFP (1:500; 

Invitrogen) in 1% donkey serum. Slices were then 

rinsed in TBS and 1% Triton X100 and incubated in 1% 

donkey serum with AlexaFluor-488 donkey anti-mouse 

(1:500; Invitrogen) and donkey anti-rabbit-594 (1:500; 

Jackson, Westgrove, PA, USA). Slices were rinsed 3 × 

5 min in TBS, mounted onto slides and cover slipped 

with DAPI (Vector). 

 

An additional set of prefrontal slices underwent free-

floating immunohistochemistry for SR expression, to 

confirm the efficacy of the LV-SR in increasing SR 

levels in the PFC. Slices were rinsed thrice for 5 min in 

1X PBS, heated at 95°C for 10 min in antigen retrieval 

solution (Vector), rinsed, and blocked for 2 hrs in 10% 

donkey serum and 0.3% Triton in 1X PBS. Sections 

were incubated overnight at 4°C in 1% bovine serum 

albumin (BSA) in PBS with mouse anti-serine racemase 

(1:100, Santa Cruz, Dallas, TX, USA). Free-floating 

sections were rinsed thrice and incubated for 2 hrs in 

secondary antibody (donkey anti-mouse-488; 1:500; 

Invitrogen) in 1% BSA. Sections were rinsed, mounted 

onto slides and cover slipped with mounting media 

containing DAPI (Vector). 

 

Image analysis 

Slices fluorescently tagged for co-localization of 

GFP/CaMKII were imaged at 200× magnification, while 

SR-tagged slices were imaged at 400×, on a Leica 

DM2500 microscope (Wetzlar, Germany), equipped with 

a Retiga 4000R camera (QImaging, Surrey, BC, Canada) 

and QCapture Pro7 software (QImaging). Images were 

then enhanced for improved visualization using Adobe 

Photoshop (San Jose, CA, USA) prior to co-localization 

analysis, which was calculated as [(CaMKII+ and 

GFP+)/all GFP+] × 100. Approximately 100 GFP-positive 

cells at the infusion site were included for each animal. To 

evaluate SR expression, images were converted from 

pixels to micrometer (56pixels/μm) and enhanced to 

reduce background noise, and the total area with positive 

fluorescent tagging in the mPFC was calculated using NIH 

ImageJ. Tissue from LV-GFP (N = 9) and LV-SR (N = 7) 

were then analyzed for statistical differences in SR 

expression. 

 

Electrophysiology 

 
mPFC slice preparation 

The protocol for preparation of mPFC slices for 

electrophysiological studies were modified from 

standardized lab protocols [20–23, 30, 99–105]. 

Animals were deeply anesthetized using isoflurane and 

decapitated with a guillotine (MyNeurolab, St Louis, 

MO, USA). The brain was rapidly removed and 

transferred into a beaker containing ice-cold artificial 

cerebrospinal fluid (aCSF). The PFC was blocked and 

coronal slices (~400 μm) were cut using a tissue 

chopper (Mickle Laboratory Engineering Co, Surrey, 

UK). The freshly cut slices were incubated in a holding 

chamber (at room temperature) with aCSF containing 

(in mM): 124 NaCl, 2 KCl, 1.25 KH2PO4, 2 MgSO4,  

2 CaCl2, 26 NaHCO3, and 10 D-glucose. Slices were 

transferred to a standard interface recording chamber 

(Warner Instrument, Hamden, CT, USA) at least thirty 

minutes before recording. The chamber was 

continuously perfused with oxygenated aCSF (95%-O2 

and 5%-CO2) at the rate of 2 mL/min and the 

temperature was maintained at approximately 37°C 

using the TC-324B temperature controller (Warner 

Instrument, Hamden, CT, USA). The pH of the aCSF 

was maintained at 7.4. 

 

Extracellular field potential recordings 

Extracellular field excitatory postsynaptic potentials 

(fEPSPs) were recorded using a glass micropipette 

electrode filled with aCSF. The glass micropipettes 

were pulled from thin-walled borosilicate capillary glass 

using a Flaming Brown horizontal micropipette puller 

(Sutter Instruments, San Rafael, CA, USA), and the 

electrode resistances ranged from 4–6 MΩ. The 

recording pipette was localized to layer 2/3 of the 

mPFC (Figure 4). A concentric bipolar stimulating 

electrode (FHC, Bowdoinham, ME, USA) was localized 

to layer 4/5. Diphasic stimulus pulses (100 μsec, SD9 

Stimulator, Grass Instrument Co., West Warwick, RI, 

USA) were delivered to layer 4/5 of the mPFC (0.033 

Hz) to evoke fEPSPs. The signals were sampled at a 

frequency of 20-kHz, amplified and filtered between  

1 Hz and 1 kHz using Axoclamp-2A (Molecular Devices, 

Sunnyvale, CA, USA) and a differential AC amplifier 

(A-M Systems, Sequim, WA, USA). Field potential 

data were stored on a computer hard drive (Dell Inc., 

TX, USA) for off-line analysis. A separate output from 

the differential AC amplifier was fed into an 

oscilloscope (Tektronix 2214, Tektronix Inc., 

Beaverton, OR, USA) for real time visualization of the 

signals. In order to measure the amplitude of the fEPSP, 

two cursors were placed to encompass the entire 

waveform. A Sciworks computer algorithm (Datawave 

Technologies, Berthoud, CO, USA) was used to 

compute the maximum amplitude (mV) of the fEPSP at 

the peak of the waveform, as well as the slope of the 

descending response. In order to measure the slope of 
the fEPSP, two cursors were placed around the initial 

descending phase of the waveform and the maximum 

slope (mV/ms) of the fEPSP was determined by a 
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computer algorithm that found the maximum change 

across all sets of 20 consecutively recorded points 

between the two cursors. Input-output curves for the 

slope of the total fEPSP were constructed for increasing 

stimulation intensities. 

 

Isolation of NMDAR-mediated synaptic response 

Following collection of the total synaptic response, the 

NMDAR-mediated field excitatory postsynaptic 

potentials (NMDAR-fEPSPs) were isolated and 

recorded as described previously [20, 30, 99, 100, 104, 

105]. In order to obtain the NMDAR-fEPSP, mPFC 

slices were incubated in aCSF containing a low 

concentration of extracellular Mg2+ (0.5 mM), 6,7-

dinitroquinoxaline-2,3-dione (DNQX, 30 μM), and 

picrotoxin (10 μM). Input-output curves for the 

NMDAR-fEPSPs were constructed for increasing 

stimulation intensities. In some cases, pharmacological 

isolation of the NMDAR-fEPSPs was confirmed by the 

application of the NMDAR antagonist AP-5 (100 μM). 

 

Our previous results demonstrate that redox state 

modulates NMDAR-mediated synaptic function in 

mPFC [20], so we investigated whether the increased 

expression of SR interacted with redox state to alter the 

NMDAR synaptic response. To examine the effects of 

the reducing agent, dithiothreitol (DTT), the baseline 

response was set at ~50% of the maximum, and 

responses were collected for at least 10 min before and 

60–70 min after drug application. The DTT dose  

(0.5 mM) was selected due to previous studies that 

showed that this dose was within a range that can 

increase NMDAR responses in aged animals and in 

young animals under oxidizing conditions, yet is below 

a dose that impairs enzyme activity [21, 30, 106, 107]. 

 

Statistical analysis 

 

Examining the impact of LV-SR infusion into the 

mPFC, a one-way analysis of variance (ANOVA) was 

applied to the immunohistochemical and behavioral 

data, with infusion type as the between-subjects factor. 

Under conditions where homoscedasticity or normality 

were violated, the Brown-Forsythe or Mann-Whitney  

U statistic was applied, respectively. For electro-

physiological recordings, repeated-measures ANOVAs, 

with stimulation as the repeated measure, were 

conducted. Significant differences were localized using 

Fischer’s PLSD post hoc comparisons (p < 0.05), and 

data were interpreted as significant if p ≤ 0.05. 
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