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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is lethal cancer, with 

approximately 1 million people diagnosed in 2020 [1, 2]. 

Chronic alcohol consumption, diabetes or obesity, 

metabolic syndromes, and infection by the hepatitis B 

virus are vital factors responsible for HCC progression, 

which promotes cirrhosis, ultimately HCC [3, 4]. Patients 

with early-stage HCC are frequently asymptomatic, 
significantly delaying diagnosis and contributing to 

neoplastic. Effective treatment options are extremely 

limited in the advanced stages of definitively diagnosed 

www.aging-us.com AGING 2023, Vol. 15, No. 8 

Research Paper 

Cellular senescence-related gene signature as a valuable predictor 
of prognosis in hepatocellular carcinoma 
 

Shuqiao Zhang1, Yilu Zheng2, Xinyu Li3, Shijun Zhang4, Hao Hu1,&, Weihong Kuang5 
 
1First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, 
Guangzhou, Guangdong, China 
2Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong,  
China 
3Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, 
Guangzhou, Guangdong, China 
4Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 
Guangdong, China 
5Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, The First 
Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, 
Guangdong, China 
 
Correspondence to: Hao Hu, Weihong Kuang; email: Huhao_hbtcm@163.com, Kuangwh@gdmu.edu.cn 
Keywords: hepatocellular carcinoma, cellular senescence, prognosis, immune, machine learning 
Received: February 6, 2023 Accepted: March 28, 2023  Published: April 13, 2023 
 
Copyright: © 2023 Zhang et al. This is an open access article distributed under the terms of the Creative Commons 
Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited. 
 

ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) is a lethal tumor. Its prognosis prediction remains a challenge. 
Meanwhile, cellular senescence, one of the hallmarks of cancer, and its related prognostic genes signature can 
provide critical information for clinical decision-making. 
Method: Using bulk RNA sequencing and microarray data of HCC samples, we established a senescence score 
model via multi-machine learning algorithms to predict the prognosis of HCC. Single-cell and pseudo-time 
trajectory analyses were used to explore the hub genes of the senescence score model in HCC sample 
differentiation. 
Result: A machine learning model based on cellular senescence gene expression profiles was identified in 
predicting HCC prognosis. The feasibility and accuracy of the senescence score model were confirmed in 
external validation and comparison with other models. Moreover, we analyzed the immune response, immune 
checkpoints, and sensitivity to immunotherapy drugs of HCC patients in different prognostic risk groups. 
Pseudo-time analyses identified four hub genes in HCC progression, including CDCA8, CENPA, SPC25, and TTK, 
and indicated related cellular senescence. 
Conclusions: This study identified a prognostic model of HCC by cellular senescence-related gene expression 
and insight into novel potential targeted therapies. 
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HCC [5]. In addition, a significant number of 

experiments revealed that the dysregulated telomere 

maintenance, chromatin modification, cell cycle system, 

and oxidative stress in HCC cells, as well as extensive 

mutation or abnormal gene expression, reduce the 

effectiveness of targeted medications [6, 7]. Although 

more and more gene signatures are being investigated to 

guide therapy, the prognosis prediction of HCC patients 

is less satisfactory. Therefore, innovative biomarkers are 

urgently needed to guide clinical decision-making to 

discern people with a high risk of HCC. 

 

Over the past decade, research elucidated that cellular 

senescence, a fundamental hallmark of cancer, is closely 

linked to typical carcinogenesis, tumor development, and 

cancer cell invasiveness of HCC [8–10]. Cellular 

senescence is a way to the irreversible cessation of cell 

proliferation [11]. Multiple therapeutic therapies cause 

senescence in cancer cells by inducing genotoxic stress, 

hyperactivation of mitogenic signaling, or oxidative 

stress, resulting in a stable cell cycle halt [12]. Therefore, 

therapy-induced senescence is an initial antitumor 

strategy to halt proliferation and prevent additional 

genomic instability. 

 

Despite substantial research, the role of cellular 

senescence in HCC remains unclear. A systematic 

evaluation of the prognostic signature of cellular 

senescence in HCC patients could advance our 

understanding of the mechanisms underlying HCC and 

provide novel approaches for accurate diagnosis and 

treatments. Gene signatures derived from machine 

learning can help assess cancer prognosis and steer 

immunotherapy [13]. This study comprehensively 

analyzed the prognostic-related gene expression data 

and corresponding HCC clinical information. 

Ultimately, we determined a cellular senescence score 

genes model that could serve as a prognostic predictor 

for patients with HCC. 

 

MATERIALS AND METHODS 
 

Data collection 

 

From the TCGA database (https://portal.gdc.cancer.gov/ 

repository), we retrieved the RNA sequencing data of 

377 patients, and 365 patients were chosen for 

subsequent analysis after 12 patients with missing  

data on survival status or gene expression data  

were excluded. Additionally, 231 patients’ RNA-seq 

data with prognostic data were extracted from the 

HCCDB (http://lifeome.net/database/hccdb) database. 

TCGA-LIHC (Liver hepatocellular carcinoma) and 

HCCDB18 (Liver hepatocellular carcinoma-Japan) 

patients’ clinical data are displayed in Supplementary 

Table 1. Two bulk transcript datasets (GSE121248, 

GSE45267) were collected from https://www.ncbi. 

nlm.nih.gov/geo/), which included tumor and normal 

human liver tissues (Supplementary Tables 2, 3). 

Genotype-Tissue Expression (GTEx) databases 

(https://gtexportal.org/home/) were queried for gene 

expression information on 110 normal liver samples 

(Supplementary Table 4). The same sequencing 

platform treated the gene expression data in GTEx 

databases as the TCGA database to minimize potential 

batch effects. Based on this, we merged gene expression 

data from TCGA-LIHC and GTEx using the “combat” 

function of the “sva” package in R software. The 

combat function in the “sva” is a classical Bayes-based 

analysis that applies known batch information to  

batch-correct a normalized high-throughput data matrix 

from TCGA-LIHC and GTEx and then outputs a  

batch-corrected merged data matrix. 1582 genes 

involved in cellular senescence were collected from  

the Molecular Signatures database (http://www.gsea-

msigdb.org/) and cell senescence database 

(https://genomics.senescence.info/cells/) (Supplementary 

Table 5). Expression data in all datasets were normalized 

by log2 (FPKM+1). 

 

Variance analysis 

 

The cellular senescence-related gene in normal and  

HCC samples from TCGA-LIHC and GTEx datasets  

was assessed using the Wilcoxon test. The gene was 

considered significant if the false discovery rate was  

< 0.05 and |logFC| > 1.00. Meanwhile, two datasets 

performed weight gene co-expression network analysis 

(WGCNA) on the gene. In parallel, WGCNA was 

performed on the genes in the merged dataset. The soft-

power parameters ranging from 1 to 20 were evaluated 

based on the scale-free topology criterion. Optimal values 

were selected to convert the correlation matrix into an 

adjacency matrix and then into a topological overlap 

matrix. The minimum module size was set to 50 using 

the average-linkage hierarchical clustering approach to 

cluster genes based on the topological overlap matrix 

(TOM). Following this, related modules were merged. A 

Pearson correlation test determined the association 

between integrated modules with tumor and non-tumor 

specimen types. Finally, the genes that resulted from the 

intersection of the Wilcoxon test and the WGCNA 

analysis were considered cellular senescence-related 

genes (DEGs) for further research. 

 

Gene ontology and KEGG analysis 

 

In order to shed further light on the biological processes 

(BP), cellular components (CC), molecular functions 
(MF), and pathways involved with DEGs in HCC. The 

R “clusterProfiler” tool analyzed cellular senescence-

related DEGs in HCC using Gene Ontology (GO)  
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and the Kyoto Encyclopedia of Genes and Genomes 

(KEGG). 

 

Gene signature construction using multiple machine 

learning algorithms 

 

First, univariate and multivariate cox regression 

analysis identified cellular senescence-related DEGs 

with prognosis value. Only those DEGs with P < 0.05 

were used for subsequent constructs. SVM-RFE uses 

the “e1071” and “msvmRFE” SVM modeling 

packages to find the optimal gene by eliminating 

feature vectors [14]. In the meantime, we used the 

Random Forest (RF) algorithm [15] to select genes 

with significant clinical survival variables. Then the 

core genes in the intersection of RF and SVM-REF 

results were penalized using LASSO Cox regression to 

identify the cellular senescence-related genes signature 

for a more refined model and calculate the coefficient 

of each gene in the signature. Finally, cellular 

senescence associated genes signature was developed 

and defined as a senescence score model the formula 

of the senescence score model: senescence score
19 ( : coefficients, : gene expression level)=  i i ix y X Y . 

The median senescence score stratifies HCC  

patients into low-risk and high-risk subgroups with 

different prognostic situations. The cBioPortal’s 

(https://www.cbioportal.org) standard processing 

pipeline assessed the mutation profiles of predicted 

genes derived from the preceding steps. Cellular 

senescence-related genes signature was also 

analyzed by MCODE [16] and Metascape 

(https://metascape.org) [17]. 

 

Immune status analysis 

 

To analyze significant biological pathways of different 

subgroups, GSEA [18] was utilized. Immune scores and 

immune cell infiltration levels of HCC patients in different 

subgroups were assessed using single-sample gene set 

enrichment analysis (ssGSEA) [7, 19]. The algorithms 

for evaluating the association of the two risk groups with 

cellular immune responses involved CIBERSORT [20], 

CIBERSORT−ABS [21], QUANTISEQ [22], 

MCPCOUNTER [23], XCELL [24], EPIC [25], and 

TIMER [26]. The immune functions in subgroups were 

further compared. In addition, we predicted drug 

sensitivity in tumor samples by cell line expression 

profiling. The “oncoPredict” R tool predicted the 

patients’ half-maximal inhibitory concentration (IC50) of 

drugs using ridge regression and 10-fold cross-validation. 

 

Single-cell trajectory analysis 

 

The hub genes of the predictive model were evaluated 

in HCC samples using single-cell trajectory analysis. 

Raw single-cell transcriptome profiling data for ten 

HCC patients from two relevant sites, primary tumor 

(HCC01T, HCC02T, HCC03T, HCC04T, HCC05T, 

HCC06T, HCC07T, HCC08T, HCC09T, and HCC10T) 

and non-tumor liver (HCC03N, HCC04N, HCC05N, 

HCC06N, HCC07N, HCC08N, HCC09N, and 

HCC10N), was achieved from GEO (GSE149614) 

dataset. We used “Seurat” and “Monocle” packages in 

R to process the data. Gene number, relative hemo-

globin, and mitochondrial and ribosomal abundance 

(Supplementary Figure 1A, 1B), indicating that the 

cellular readouts were comparable between samples 

and no transcriptional batch effects were observed. 

Cells with <2500 or > 20000 detected genes containing 

mitochondrial genome > 4% were excluded. Next, 

single-cell data were normalized, and variable genes 

were hunted by the “SCTransform” method. The 

“SCTransform” method models single-cell unique 

molecular identifiers expression data using regularized 

negative binomial regression to remove variation  

due to sequencing depth. After, 20 most powerful 

principal components were found by PCA analysis 

(Supplementary Figure 2). Further dimension reduction 

of those principal components was proceeded by  

the UMAP method to visualize cell distribution. Cell 

types of principal components were annotated by 

“CellMarker” (http://xteam.xbio.top/CellMarker/) and 

“PanglaoDB” (https://panglaodb.se/) databases. Then 

cells in HCC specimens were split into the different 

state by Pseudo-time analysis using the monocle 

algorithm [27]. 

 
Statistical analysis 

 

The analyses were all employed by R 4.0.5 software. 

Kaplan Meier (KM) analysis were conducted by 

“ggsurvplot” package. The time-dependent receiver 

operator characteristic curves (ROC) and decision 

curves analysis (DCA) were generated using “timeRoc” 

and “ggDCA” packages [28]. The Benjamin Hochberg 

approach was used to minimize the false-positive rate of 

differential gene expression. Analyses used two-tailed 

p-values <0.05. 

 
Availability of data and materials 

 

The data and materials supporting this study’s findings 

are available from the corresponding author upon 

reasonable request. 

 

RESULTS 
 

Acquisition of DEGs 

 

The “sva” tool in R removed the sample batch effect 

(371 tumors and 160 normal tissues) from the  

https://www.cbioportal.org/
https://metascape.org/
http://xteam.xbio.top/CellMarker/
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TCGA-LIHC and GTEx datasets. After expression 

normalization, PCA showed no batch effect (Figure 1A, 

1B). In the merged dataset, 309 up-regulated and 31 

down-regulated cellular senescence-related genes were 

found (Figure 1C and Supplementary Table 6). 

WGCNA reveals gene expression patterns and major 

gene modules from numerous samples to investigate the 

essential module correlated to the liver’s pathological 

state. The combined dataset was filtered and utilized for 

sample hierarchical clustering using the average linkage 

approach to evaluate outlier samples (Figure 2A). 

According to the WGCNA approach, an ideal value for 

the merged dataset’s soft power was found to be β= 8 

(Figure 2B). 10 modules were recognized in the 

combined dataset. After, calculations were made to 

determine the relationships between the module and the 

pathological state. The Pearson correlation heatmap 

suggested that the turquoise and brown modules 

significantly correlated with liver pathology and were 

selected for future study (Figure 2C). Scatter plots 

showed gene significance with module membership 

(Figure 2D). In Figure 3A, 117 genes from differential 

analysis and WGCNA overlapped. Those overlapped 

genes were considered cellular senescence-related 

DEGs. Moreover, the biological process of cellular 

senescence-related DEGs mainly includes nuclear 

division, organelle fission, and chromosome 

segregation. Meanwhile, the molecular functions were 

chromosomal region, spindle, and condensed 

chromosome. Cellular components mainly comprised 

microtubule binding, tubulin binding, and protein kinase 

regulator activity (Figure 3B). Cell cycle, oocyte 

meiosis, cellular senescence, and the p53 signaling 

pathway were considerably enriched, according to an 

assessment performed by KEGG pathways (Figure 3C). 

Construction of machine learning based prognostic 

model 

 

First, 26 DEGs related to cellular senescence  

were identified as associated with HCC patient 

prognosis by univariate and multivariate Cox analyses 

(Supplementary Table 7). According to above steps, RF 

with SVM was used to screen 26 candidate genes from 

differentially expressed genes related to cellular 

senescence (Figure 4A, 4B). After intersecting the 

marker genes generated from the RF and SVM models, 

21 marker genes were found worthy of further 

investigation (Figure 4C). Next, we penalized 21 marker 

genes by LASSO cox regression (Figure 4D). As a 

result, 19 genes, including CDCA5, CENPF, CENPW, 

CDCA8, SPC25, CDKN3, CENPA, BUB1, DLGAP5, 

IGSF3, HMMR, TOP2A, RAD54L, TTK, GINS1, 

PTTG1, ETV4, GINS2, and PKMYT1 were found to be 

independent prognostic biomarkers in HCC 

(Supplementary Table 8 and Supplementary Figure 3). 

The nineteen genes expression profile generated the 

senescence score = (-0.24208*CDCA5 exp) + (-

0.32203*CENPF exp) + (-0.15081*CENPW exp) + 

(0.66330*CDCA8 exp) + (0.35072*SPC25 exp) + (-

0.46527*CDKN3 exp) + (0.64921*CENPA exp) + (-

0.07426*BUB1 exp) + (0.37272*DLGAP5 exp) + 

(0.16174*IGSF3 exp) + (0.63189*HMMR exp) + (-

0.61190*TOP2A exp) + (-0.33728*RAD54L exp) + 

(0.37964*TTK exp) + (0.45727*GINS1 exp) + 

(0.06315*PTTG1 exp) + (0.20073*ETV4 exp) + (-

0.16337*GINS2 exp) + (-0.48263*PKMYT1 exp).  

The genetic alterations that occurred most frequently  

in nineteen genes were amplification and deep  

deletion (Figure 5A). Chromosome mapping of the 

consensus genes revealed genome-wide distribution, 

 

 
 

Figure 1. Expression of the cellular senescence-related genes. (A) PCA analysis of gene expression profiles from TCGA-LIHC and 

GTEx datasets before batch effect removal. (B) After batch effect removal, PCA analysis of gene expression derived from two different 
datasets. (C) The volcano plots of the combined dataset’s cellular senescence-related genes. 
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with chromosomes 1, 2, 5, 6, 14, 16, and 17 containing 

the most significant number of dysregulated cellular 

senescence-related genes in HCC. In contrast, no X and 

Y chromosome gene was affected (Figure 5B). These 19 

genes were further subjected to a Metascape and 

MCODE analysis to determine biological significance in 

the pathogenesis of HCC. According to Metascape 

analysis, those genes were predominantly involved in the 

cell cycle, chromosome segregation, nuclear division, 

and other critical pathways, most of which were  

related to DNA metabolism (Figure 5C). The MCODE 

analysis determined that CENPA, SPC25, CDCA8, and 

TTK were hub genes among nineteen cellular 

senescence genes (Figure 5D). Moreover, we tested the 

diagnostic efficacy of those biomarkers in GSE121248 

and GSE45267 datasets. The results revealed that  

they exhibit considerable expression discrepancies 

(Supplementary Figure 4). Two biomarkers showed 

promising diagnostic values in training set: CENPW 

(AUC = 0.971), TOP2A (AUC = 0.958) (Supplementary 

Figure 5A). Validation in the external set (GSE121248 

and GSE45267) also confirmed these findings. The 

diagnostic accuracy for detection of HCC in GSE45267 

dataset: CENPW (AUC = 0.980), TOP2A (AUC = 

0.982) (Supplementary Figure 5B). The validation 

datasets GSE121248 also corroborated the following 

findings: CENPW (AUC = 0.942), TOP2A (AUC = 

0.947) (Supplementary Figure 5C). 

 

 
 

Figure 2. WGCNA analysis to uncover the key pathogenic module. (A) Sample clustering tree with pathological state. (B) The 
determination of the power of the soft threshold for the combined dataset. (C) A heatmap depicting the relationship between module 
eigengenes and liver pathology. (D) Scatter plots illustrate the genes’ significance versus membership in brown and turquoise modules. 
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Evaluating the predictive capacity for cellular 

senescence-related gene prognostic signature 

 

The results of the KM analysis showed that patients with 

a high risk had worse clinical outcomes than those with 

low risk (Figure 6A, 6B). At the same time, in the 

TCGA-LIHC cohort, the area under the receiver 

operating characteristic curve (AUC) for the prognostic 

prediction power of the senescence score model were 

0.815 (1 year), 0.762 (3 years), and 0.773 (5 years) 

(Figure 6G). Besides, in the validation cohort, our model 

produced the following results for AUC: 0.746 (1 year), 

0.796 (3 years), and 0.974 (5 years) (Figure 6H). 

Furthermore, the senescence score model outperformed 

pathological characteristics in predicting HCC patients’ 

prognoses in the TCGA-LIHC (Figure 6I, 6K, 6M) and 

HCCDB18 (Figure 6J, 6I, 6L, 6N) cohorts. Moreover, 

the hazard survival status plots between two subgroups 

in both cohorts demonstrated the increase of risk value 

of the novel prediction model with decreased patients’ 

overall survival rate (Figure 6C–6F). Since many 

research teams have also proposed multi-gene signatures 

 

 
 

Figure 3. Expression of the 117 cellular senescence-related DEGs and their functions. (A) The Venn diagram shows an overlap of 

the differential analysis and WGCNA results. (B) GO function analysis. (C) KEGG pathways analysis. 



www.aging-us.com 3070 AGING 

 
 

Figure 4. Generation of a cellular senescence score model using machine learning. (A) Error plot for RF models. (B) Screening of 

candidate genes by SVM models. (C) Twenty-one marker genes in RF and SVM models were intersected in the Venn diagram. (D) LASSO 
regression analysis. 
 

 
 

Figure 5. The genetic alterations and biological functions analysis of the nineteen prognostic genes in HCC. (A) The genetic 

alteration profiles of the 19 genes in the TCGA-LIHC dataset using the cBioPortal database. (B) Circular visualization of chromosomal positions 
of 19 genes. (C) Biological functions analysis of 19 genes in Metascape database and nodes with the same color belong to the same term.  
(D) Hub genes in the protein-protein interaction network. 
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for HCC prognosis, their signatures have apparent 

limitations. Their performance was evaluated parallel to 

our nineteen genes’ signature using time-dependent 

ROC curves and C-indexes. Our nineteen genes’ 

signature had the highest predictive efficiency when all 

the prediction signatures were compared (Table 1). 

 

Independent prognostic value evaluation of cellular 

senescence-related genes prognostic signature 

 

We used univariate and multivariate cox analysis to 

determine if the cellular senescence-related genes 

signature was an independent survival predictor. 

Patients’ overall survival was substantially correlated 

with their senescence score in univariate cox analysis 

(TCGA cohort: HR = 3.941, 95% CI = 2.3925-5.312,  

P < 0.001; HCCDB18 cohort: HR = 2.835, 95% CI = 

2.053-3.916, P < 0.001) (Figure 7A, 7B). Multivariate 

Cox analysis determined the cellular senescence score 

model to be an independent patient prognostic factor 

(TCGA cohort: HR = 3.683, 95% CI = 2.678-5.064, P < 

0.001; HCCDB18 cohort: HR = 2.697, 95% CI = 1.934-

3.761, P < 0.001) (Figure 7C, 7D). Heatmap showed the 

senescence score model’s nineteen genes’ clinical 

characteristics (Supplementary Figure 6). Additionally, 

the DCA evaluation revealed that the senescence score 

model performed better than other clinicopathological 

characteristics in predicting patients’ overall survival 

(Figure 7E, 7F). The accuracy of the nomogram in 

predicting patient outcomes was proven by the fact that 

the calibration curves had an optimal degree of fitting to 

the observed data (Figure 8A, 8B). As a result, this 

innovative senescence score model can effectively 

forecast HCC patients’ prognoses. 

 

Gene set enrichment analysis 

 

GSEA analysis indicated that CD22-mediated BCR 

modulation, cell cycle checkpoints, FCGR activation, and 

mitotic prometa centrally involve in regulating neoplasm 

development and immune response in high-risk 

individuals (Figure 9). Meanwhile, metabolic-related 

biological processes and pathways in the individuals of 

low-risk group were mainly cytochrome p450 arranged by 

substrate type, peroxisomal protein import, and response 

to metal ions. This implied that the worse prognosis of 

high-risk individuals could be driven by the further 

activation of immune signaling suppression in tumor cells 

and the dysregulation of oxidative metabolism. 

 

Analysis of immune response 

 

Based on multiple immune algorithms, the heatmap and 

bubble plot represented that the immune cells’ response 

expression was upregulated in patients with a high risk 

of HCC (Figure 10A and Supplementary Table 9). To 

explore the two risk groups’ immune response, we 

evaluated the immune cells’ relative percentage of each 

sample among immune cells in CIBERSORT. The 

relative percentage of the immune cells differed within 

and between groups (Figure 10B). According to our 

analysis of the relationship between nineteen cellular 

senescence-related genes signature and immune cells 

infiltration, CDCA5, CENPF, CENPW, CDCA8, 

 

 
 

Figure 6. Survival analysis of the senescence score model. KM survival analysis for the senescence score model in TCGA-LIHC (A) and 
HCCDB18 (B) dataset. Survival status plots of HCC patients in TCGA-LIHC (C) and HCCDB18 (D) datasets. Senescence score distribution plots of 
HCC patients in TCGA-LIHC (E) and HCCDB18 (F) datasets. Time-dependent ROC analysis at 1-,3-, and 5-year follow-up in TCGA-LIHC (G) and 
HCCDB18 (H) datasets. Clinical characteristics and senescence score model ROC analysis at 1-year follow-up in TCGA-LIHC (I) and HCCDB18  
(J) datasets. Clinical characteristics and senescence score model ROC analysis at 3-year follow-up in TCGA-LIHC (K) and HCCDB18 (L) datasets. 
Clinical characteristics and senescence score model ROC analysis at 5-year follow-up in TCGA-LIHC (M) and HCCDB18 (N) datasets. 
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Table 1. Comparison of recent gene signatures built for predicting overall survival in HCC patients. 

Study Our study 
PMID: 

32198063 

PMID: 

35123387 

PMID: 

35123420 

PMID: 

35705729 

PMID: 

35699863  

PMID: 

35402624 

PMID: 

33758763 

PMID: 

35535359 

Statistical 

methods 

Univariate Cox 

Multivariate 

Cox SVM-REF 

Random Forest 

LASSO Cox  

PPI 

network 

MCODE 

Multivaria

te Cox 

Univariate 

Cox 

LASSO 

Cox 

Univariate 

Cox 

LASSO 

Cox 

Multivariat

e Cox 

Univariate 

Cox 

LASSO 

Cox 

Multivariat

e Cox 

Univariate 

Cox 

LASSO 

Cox 

Univariate 

Cox 

LASSO 

Cox 

Univariate 

Cox LASSO 

Cox 

Multivariate 

Cox  

Univariate 

Cox 

LASSO 

Cox 

Training 

cohorts 
         

1-year AUC 0.815 0.710 0.770 0.851 0.683 0.767 0.734 0.805 0.790 

3-year AUC 0.762 0.740 0.713 0.727 0.559 0.680 0.692 0.803 0.770 

5-year AUC 0.775 0.640 0.693 0.691 — — 0.663 — 0.770 

Validation 

cohorts 
         

1-year AUC 0.746 0.640 0.641 0.705 0.534 0.677 — 0.721 0.780 

3-year AUC 0.796 0.590 0.663 0.717 0.635 0.689 — 0.693 0.740 

5-year AUC 0.974 0.650 0.681 0.684 — — — 0.737 0.780 

C-index 0.741 0.692 0.658 0.706 0.634 0.646 0.675 0.671 0.714 

 

SPC25, CDKN3, CENPA, BUB1, DLGAP5, HMMR, 

TOP2A, RAD54L, TTK, GINS1, PTTG1, GINS2, and 

PKMYT1 were positively associated with T cells CD4 

memory activation, negatively associated with T cells’ 

CD4 memory resting. The resting state of dendritic  

cells was found to have a favorable association with 

ETV4. GINS1 and HMMR were positively correlated 

with T cells follicular helper (Figure 10C). Assessment of 

MCPcounter showed that high-risk patients had more  

T cells, fibroblasts, monocytic lineage, and myeloid 

dendritic cells infiltration than low-risk patients.  

(Figure 10D). Pearson’s correlation analysis results 

indicated that our senescence score significantly 

correlated with the expression level of immune cells. 

Mast cells activated, T cells follicular helper, and T cells 

CD4 memory activated linked positively with senescence 

scores, while mast cells resting and T cells CD4 memory 

resting correlated negatively. Single-sample gene set 

enrichment analysis showed significant immune function 

differences between two risk subgroups. (Figure 11A). 

The immune functions most significantly upregulated in 

high-risk were Treg, Macrophages, aDCs, and MHC 

class-I. In contrast, high-risk group down-regulated B 

cells, mast cells, neutrophils, cytolytic activity, type II 

INF response, and NK cells, implying that the cellular 

senescence reduced liver cancer cell susceptibility to NK 

cell cytotoxicity and inhibition of IFN production and 

released leads to hepatocellular carcinomatous growth. 

 

 
 

Figure 7. Evaluation of the senescence score model's prognostic accuracy. Univariate independent Cox analyses in TCGA-LIHC  
(A) and HCCDB18 (B) datasets. Multivariate independent Cox analyses in TCGA-LIHC (C) and HCCDB18 (D) datasets. The decision curve 
analyses of the senescence score model in TCGA-LIHC (E) and HCCDB18 (F) datasets. 
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Figure 8. Nomogram based on senescence score model. (A) Nomogram. (B) The nomogram’s calibration curves. 

 

 
 

Figure 9. GSEA analyses between different cellular senescence-related genes signature risk groups. 

 

 
 

Figure 10. The immune response of the cellular senescence-related genes signature. (A) The immune infiltration status of the 
high-risk and low-risk groups. (B) The ratio of 22 immune cells components of the two risk groups. (C) Heat map depicting the relationship 
between the 19 genes associated with cellular senescence and immune cells. (D) Comparison of immune infiltration calculated using 
“MCPcounter” between two risk groups. (E) Relevance between senescence score and immune cells response. 
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In light of the significance of immunotherapy based  

on checkpoint inhibitors in treating HCC, the amount  

of immune checkpoint expression was investigated  

in two groups (Figure 11B, 11C). In comparison, 

immunological checkpoints were more actively 

expressed in high-risk individuals, thus suggesting  

a better response to immunotherapy. Moreover, 

“oncoPredict” tool assessed high- and low-risk patients’ 

targeted therapy responsiveness. The results showed 

that high-risk and low-risk individuals had considerably 

different estimated IC50s for the ten targeted therapy 

medications (Figure 11D). It suggested that high-risk 

HCC patients were more susceptible to Sorafenib, 

Axitinib, Dihydrorotenone, JQ1, and TAF1, further 

refining the medication range. 

 

Pseudo-time and trajectory analysis revealed 

dynamic change of hub genes in cellular senescence-

related prognostic signature 

 

The cells of HCC samples and non-tumor liver samples 

(control group) were classified into 15 clusters via 

UMAP algorithm (Supplementary Figure 7). Then, 

Dendritic cells, endothelial cells, T cells, hepatic stellate 

cells, hepatocytes, and HCC malignant cells were the 

cell types assigned to the 15 clusters (Figure 12A). The 

frequency of cell types between two specimens shows 

that dendritic and T cells were predominant in control 

group cells (Figure 12B). Next, the cells in the HCC 

group were assigned to three states with one main path 

by pseudo-time and trajectory analysis (Figure 12C, 

12D and Supplementary Figure 8). State one mainly 

contained dendritic cells. State two mainly contained 

HCC malignant cells. State three mainly contained 

endothelial cells and hepatic stellate cells. T cells were 

positioned in three timeline trajectories. Pseudo-time 

flows for distributions of cell states are displayed in 

Figure 12E. The color gradient indicates the direction of 

pseudo-time flow. The root of the cell differentiation 

trajectory is at state one and then partitioned into  

state two and state three at the intersection point. 

According to the results from the above steps, CDCA8, 

CENPA, SPC25, and TTK were hub genes in cellular 

senescence genes signature. Therefore, we analyzed 

them further in single cells. CENPA and TTK were 

overexpressed in the dendritic and T cells of HCC 

samples. Only CDCA8 of the four hub genes is 

expressed higher in normal liver endothelial cells than 

in HCC samples. The expression profiles of CDCA8, 

CENPA, SPC25, and TTK in malignant hepatocytes 

were higher than in normal hepatocytes. HCC hepatic 

stellate cells expressed all four hub genes substantially 

higher than controls (Figure 12F). The dynamic 

expression patterns of the four hub genes along the time 

trajectory of HCC progression were further analyzed. 

Pseudo-time series analysis showed that the expression 

values of CDCA8, CENPA, SPC25, and TTK  

were relatively high in malignant cells and immune 

 

 
 

Figure 11. Immune function and immunotherapy comparisons between the two risk groups. (A) Immune function analysis.  

(B) Immune checkpoint analysis between risk groups. (C) Relevance between senescence score and immune checkpoints expression.  
(D) Comparison sensitivity of targeted therapeutic drugs of individuals in different risk groups. 
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cells at the late stage of differentiation, indicating that 

their expression direction was consistent with the 

progression of HCC toward poor prognosis (Figure 12G, 

12H and Supplementary Figure 9). 

 

DISCUSSION 
 

Cellular senescence is a reasonably permanent state in 

which cells irreversibly decouple from the cell cycle and 

lose proliferative potential as a result of continuous 

stress-induced damage [29]. Many changes occur in the 

liver as a result of aging and various stressors, such as 

oxidative stress or oncogene activation, including a 

decrease in the size and a total number of normal 

hepatocytes, a decrease in regenerative and metabolic 

capacity, and an increase in the proportion of polyploid 

and multinucleated hepatocytes [30, 31]. Clinical studies 

have shown that hepatocyte senescence occurs in vivo in 

 

 
 

Figure 12. Single cell analysis for the four hub genes in cellular senescence-related prognostic signature. (A) Visualization of cell 
types in non-tumor liver specimens and HCC specimens. (B) The frequency of cells in two groups. (C) Cells in HCC were colored based on 
state. (D) Distribution of cells in HCC in pseudo-time trajectory. (E) Cells were colored on the basis of pseudo-time. (F) The dithering plot 
shows the expressions of the four hub genes in five cell types between control and HCC samples. (G) Pseudo-time analysis for expression 
kinetics of four hub genes in cell types trajectory. (H) Pseudo-time analysis for expression kinetics of four hub genes in different states 
trajectory of cells. 
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patients with HCC [32]. Hepatocyte senescence slows 

the proliferation of injured hepatocytes, ensuring a stable 

halt in proliferation and division and causing changes in 

the microenvironment and homeostasis. Early in cancer, 

senescence-associated signaling pathways undergo 

regulatory dysfunction, rendering damaged cells unable 

to senesce normally, and the cell cycle becomes 

uncontrolled [33]. It follows that cellular senescence 

may be a possible anticancer mechanism. 

 

The primary object of this research was to explore the 

function of cellular senescence in determining the 

prognosis for HCC and in developing treatments for the 

disease. Our analysis first uncovered 117 cellular 

senescence-related DEGs in HCC and non-neoplastic 

tissues. These DEGs were found to be involved in the 

cell cycle, nuclear division, organelle fission, 

chromosomal segregation, mitotic nuclear division, and 

the p53 signaling pathway. These results are compatible 

with those reported in previous experiments. Cell 

senescence is regulated by p53 / p21 and p16INK4a 

signaling pathways [34]. As a natural barrier to tumor 

suppression, p53 tumor suppressor limits malignant 

transformation by triggering cell-autonomous programs 

such as cell cycle arrest or apoptosis [35]. The 

senescence state triggered by p53 leads to a significant 

increase in the secretion of factors that promote M1 

polarization, enabling IL1 β Expression and an increase 

in the propensity for cell killing and phagocytosis, 

inhibiting the secretion of M2 polarization-related 

factors [36]. 

 

To further investigate cellular senescence-related 

predictive therapeutic biomarkers and identify novel 

effective therapeutic targets in HCC, we created a 

nineteen cellular senescence-related genes model, 

senescence score using multiple machine learning 

algorithms. The cellular senescence score model 

identified high-risk and low-risk HCC patients with 

different survival rates. Survival analyses indicated 

high-risk groups with worse HCC prognoses. 

Correspondingly, the senescence scoring system was 

practiced well in the external validation dataset and 

outperformed existed prognosis classifier in HCC. 

Finally, hybrid nomogram incorporating a senescence 

score model applied in predicting HCC prognosis was 

robust in evaluation. Acquired nineteen cellular 

senescence-related prognostic biomarkers were shown 

to play corresponding roles in the cell cycle via the 

“metascape” annotation tool analysis. Among nineteen 

cellular senescence-related genes signature, CENPA, 

SPC25, CDCA8, and TTK were hub genes. As a histone 

H3 variant of centromeric nucleosomes, CENPA must 
ensure that kinetochores are used for correct 

chromosome separation and assembly [37]. The 

aberrant expression or functional defect of CENPA 

leads to the interruption of genome integrity and 

abnormal cell division, thus inducing the emergence of 

cancer [38]. Previous literature [39] showed that 

CENPA was abnormally overexpressed in HCC tissues 

[40], consistent with our findings. Basic experimental 

researches have demonstrated a reduction in CENPA 

levels can stifle the growth of HepG2 cells, ending the 

cell cycle in the G1 phase and leading to apoptosis. In 

contrast, CENPA overexpression promoted the growth 

of HCC cells and reduced apoptosis. The present study 

revealed that a correlation between the upregulation of 

SPC25 expression and increased cell proliferation and 

poor prognosis in HCC patients. From a molecular 

aspect, SPC25 is one of four proteins that make up the 

nuclear division cycle 80 (NDC 80) complex, playing a 

crucial role in the assembly of kinetochore microtubule-

binding domain and mediates the alignment of 

chromosomes with the metaphase plate [41]. 

Dysfunction of the NDC 80 complex due to various 

factors can lead to abnormal chromosome segregation, 

affecting cell division and ultimately resulting in 

abnormal proliferation [42]. As a critical component of 

the NDC 80 complex, the induction of disorganized cell 

mitosis by SPC25 overexpression leads to enhanced 

proliferative capacity and deepening of malignancy  

in tumor cells and further worsens the prognosis  

of patients with tumors [43]. CDCA8 encodes 

Borealin/Desra B protein, an essential component of 

chromosome passenger complex [44]. It is crucial in 

locating chromosome passenger complex to the 

centromere, correcting kinetochore binding errors, and 

stabilizing bipolar spindles [45]. Studies have reported 

that the transcriptional activity of CDCA8 was 

increased in embryos, embryonic stem cells, and cancer 

cells, and its expression was very weak or not expressed 

in normal tissues [46]. The experiment proves that 

CDCA8 regulates HCC cells’ proliferation via 

activating cell cycle, and Huh7 cells that knock out 

CDCA8 are blocked in G0/G1 phase, inhibiting the 

proliferation of HCC cells [47]. Meanwhile, the mitotic 

checkpoint and faulty chromosomal linkages depend on 

TTK’s dual serine/threonine and tyrosine protein 

kinase. As a potential oncogene, its elevated expression 

level leads to centrosome amplification, hyperactivation 

of the mitotic spindle checkpoint, and chromosomal 

instability, resulting in tumorigenesis [48]. In vitro and 

in vivo functional experimental assays showed that TTK 

overexpression promoted HCC cell proliferation and 

formed resistance to sorafenib. Either depletion or 

activity inhibition of TTK significantly inhibited the 

viability of HCC cells [49, 50]. Other fifteen genes were 

also identified to contribute to HCC carcinogenesis and 

progression [51–55]. 
 

In neoplastic process, cellular senescence intersects at 

many levels with the immune responses [56, 57]. GSEA 
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analysis revealed that the high-risk group enriched 

immunological and tumor-related pathways, indicating 

two distinct effects of cellular senescence on HCC cells 

biogenesis and death. The results of multi-immune 

algorithms indicated that the cellular senescence model 

was closely associated with immune cell infiltration. And 

HCC patients with worse clinical outcome had higher 

immune infiltration than low-risk patients. Tumorigenesis 

occurs via evading autoimmune-mediated elimination 

triggered by senescent cells’ senescence-associated 

secretory phenotype [58]. CD4+ T cells are resistant to 

age-related phenotypic and functional changes, and a 

gradual increase in the percentage of senescent-like CD4+ 

T lymphocytes is generally seen when an individual  

ages [59]. Functional alterations in subsets of human 

tumor-induced senescent CD4+ T cells, which inhibit  

the proliferation of responder T cells through the cell-to-

cell contact, are tumor-promoting mechanisms [60]. 

Tumor cells induce senescence T cells to secrete pro-

inflammatory cytokines that induce premature 

senescence of surrounding cells through a paracrine 

mechanism, allowing senescent T cells to increase in the 

tumor microenvironment [61]. High levels of senescent T 

cells predict poor prognosis in tumors. A previous study 

[62] showed that senescent melanoma cells could activate 

dendritic cells through direct cellular contact, allowing 

them to acquire and present antigens more efficiently. 

Compared with a non-senescent cell environment, 

dendritic cells in a senescent cell environment are better 

able to activate OT-I CD8+ T cells, resulting in strong 

anti-tumor protection. Furthermore, an immune function 

analysis in this study suggested significant attenuation of 

B cells, mast cells, neutrophils, cytolytic activity, type II 

INF response, and NK cells at high risk of HCC, 

indicating that suppression of antitumor immunity 

reaction results in a poor prognosis. It follows that 

boosting the innate antitumor immune responses is 

crucial for halting the HCC progression and devising 

effective treatments. Studies have shown that artificially 

induced senescent cells secrete pro-inflammatory 

senescence-associated secretory phenotype factors, which 

further recruit various immune cells, infiltrate the 

periphery of diseased tissues, activate immune 

surveillance, rapidly recognize and clear senescent  

cells, and block tumorigenesis [63–65]. The effect of 

senescence on the efficacy of immune checkpoint 

inhibitors remains insufficiently evaluated in current 

preclinical studies. In this study, PDCD1, CTLA4, 

TIGIT, LAIR1, CD47, TNFRSF4, TNFRSF9, and 

TNFRSF18 were upregulated in the high-risk group, 

reflecting HCC’s immunosuppressive microenvironment. 

The levels of expression of immunological checkpoints 

growing in synchrony with senescence scores might 
explain why patients who respond to immune checkpoint 

blockade show stable growth arrest of tumors rather than 

complete tumor regression. Because the senescence 

response is frequently inactive in cancer cells, activating 

it is an essential and potentially fruitful technique for 

treating tumors [66]. Oncogene-induced senescence 

maintains tumor cells in a non-invasive, pre-malignant 

stage, restricting future cell development, whereas cells 

that do not generate senescence responses advance to a 

malignant state [33, 67, 68]. The increasing prevalence of 

HCC and the difficulties in treating it due to a lack of 

approved drugs highlight the critical need for novel 

pharmacological strategies and systemic therapy [69]. 

Inducing senescence is a unique way to treat HCC, 

especially with medications that kill senescent cancer 

cells [70]. Therefore, based on the senescence score, we 

investigated the treatment sensitivity of immunotherapy 

drugs in a population of patients at different risks  

for HCC. Our research discovered that the individuals 

with worse prognoses were more susceptible to  

ten drugs, including Sorafenib, Axitinib, Cisplatin, 

Dihydrorotenone, Gemcitabine, JAK1_8709, JQ1, 

Ribociclib, TAF1_5496, PLX-4720. One study found 

[71] that Sorafenib therapy of doxorubicin-induced 

senescent cancer cells altered the sensitivity to apoptosis 

and decreased the number of SA-β-gal positive cells, 

indicating the possible senolytic effect of sorafenib  

in these cells. Axitinib has also been demonstrated to 

reduce cell proliferation and delay tumor growth by 

inducing cell cycle arrest, senescence, apoptosis, and 

antiangiogenesis in the G2/M phase [72]. Meanwhile, it 

has been shown that Ribociclib interferes with cell cycle 

progression, induces cellular senescence, and promotes 

cancer cell destruction through cytotoxic T-cell-mediated 

effects [73]. This evidence may also contribute to guiding 

targeted therapies for HCC. 

 

Although we determined and validated the utility of a 

profile of a cellular senescence score prognostic model 

for HCC, our bioinformatics research has several 

limitations. Although cellular senescence-associated 

differential genes in HCC were examined at the 

transcriptional level, they have not been validated at the 

protein level. Multi-omics studies, such as proteome 

and metabolomics, may provide additional insight into 

its mechanism. Since the data samples from public 

databases were retrospective, the inherent case selection 

bias that may have influenced the outcomes. The 

mechanism of prognostic-associated cellular senescence 

genes in HCC and immune activity needed further large 

samples of experimental exploration. 

 

CONCLUSIONS 
 

In conclusion, this study constructed an advanced 

machine-learning based cellular senescence-related 
gene signature, a reliable prognosis predicting approach 

for HCC patients, and sheds light on future targeted 

therapeutics. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Quality control of the single cell data. (A) The number of genes and relative hemoglobin, mitochondrial, and 
ribosomal transcript abundance from non-tumor liver cells. (B) The number of genes and relative hemoglobin, mitochondrial, and ribosomal 
transcript abundance from HCC cells. 
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Supplementary Figure 2. The elbow plot of PCA analysis. 
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Supplementary Figure 3. KM analysis of 19 cellular senescence-related genes signature. 
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Supplementary Figure 4. The 19 cellular senescence-related genes’ signature expression in training and validation cohorts. 

 

 
 

Supplementary Figure 5. ROC curves for diagnostic efficacy verification. (A) TCGA-LIHC (B) GSE45267 (C) GSE121248. 

 

 
 

Supplementary Figure 6. Heatmap of the 19 cellular senescence-related prognosis signature and clinicopathological 
manifestations. (A) TCGA-LIHC cohort (B) HCCDB18 cohort. 
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Supplementary Figure 7. Cells in non-tumor liver samples and HCC samples were classified into 14 clusters by UMAP 
dimension reduction. 

 

 
 

Supplementary Figure 8. The trajectory plots of each cell cluster. 
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Supplementary Figure 9. The dithering plot shows the expressions of the four hub genes among five cell types in different 
states. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 4–8. 

 

 

Supplementary Table 1. Clinical information of patients in the 
TCGA-LIHC and HCCDB18 datasets. 

Variable TCGA-LIHC HCCDB18 

Gender   

Male/Female 255/122 192/68 

Age at diagnosis   

≤65/>65/NA  235/141/1 98/162 

Grade   

G1/G2/G3/G4/NA 55/180/124/13/5 NA 

Stage   

I/II/III/IV/NA 175/87/86/5/24 40/117/80/23 

T   

T1/T2/T3/T4/NA 185/95/81/13/3 NA 

M   

M0/M1/NA 272/4/101 NA 

N   

N0/N1/NA 257/4/116 NA 

 

Supplementary Table 2. Samples information of GSE121248 dataset. 
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Supplementary Table 3. Samples 
information of GSE45267 dataset. 

Sample Type Age 

GSM1100370 Tumor 48 

GSM1100371 Tumor 41 

GSM1100372 Tumor 67 

GSM1100373 Tumor 41 

GSM1100374 Tumor 53 

GSM1100375 Tumor 47 

GSM1100376 Tumor 57 

GSM1100377 Tumor 51 

GSM1100378 Tumor 57 

GSM1100379 Tumor 60 

GSM1100380 Tumor 57 

GSM1100381 Tumor 55 

GSM1100382 Normal 41 

GSM1100383 Normal 41 

GSM1100384 Normal 41 

GSM1100385 Normal 51 

GSM1100386 Normal 57 

GSM1100387 Normal 60 

GSM1100388 Normal 57 

GSM1100389 Normal 68 

GSM1100390 Normal 63 

GSM1100391 Normal 63 

GSM1100392 Normal 67 

GSM1100393 Normal 68 

GSM1100394 Normal 64 

GSM1100395 Normal 50 

GSM1100396 Normal 68 

GSM1100397 Normal 51 

GSM1100398 Normal 62 

GSM1100399 Normal 61 

GSM1100400 Normal 74 

GSM1100401 Normal 46 

GSM1100402 Normal 68 

GSM1100403 Normal 56 

GSM1100404 Normal 51 

GSM1100405 Normal 51 

GSM1100406 Tumor 43 

GSM1100407 Tumor 62 

GSM1100408 Tumor 51 

GSM1100409 Tumor 68 

GSM1100410 Tumor 63 

GSM1100411 Tumor 68 

GSM1100412 Tumor 64 

GSM1100413 Tumor 41 

GSM1100414 Tumor 52 

GSM1100415 Tumor 50 

GSM1100416 Tumor 68 
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GSM1100417 Tumor 62 

GSM1100418 Tumor 61 

GSM1100419 Tumor 52 

GSM1100420 Tumor 73 

GSM1100421 Tumor 61 

GSM1100422 Tumor 46 

GSM1100423 Tumor 65 

GSM1100424 Tumor 68 

GSM1100425 Tumor 51 

GSM1100426 Tumor 28 

GSM1100427 Tumor 30 

GSM1100428 Tumor 33 

GSM1100429 Tumor 36 

GSM1100430 Tumor 26 

GSM1100431 Tumor 39 

GSM1100432 Normal 38 

GSM1100433 Normal 28 

GSM1100434 Normal 37 

GSM1100435 Normal 37 

GSM1100436 Normal 28 

GSM1100437 Normal 36 

GSM1100438 Normal 36 

GSM1100439 Normal 37 

GSM1100440 Normal 31 

GSM1100441 Normal 30 

GSM1100442 Normal 33 

GSM1100443 Normal 32 

GSM1100444 Normal 36 

GSM1100445 Normal 37 

GSM1100446 Normal 32 

GSM1100447 Tumor 37 

GSM1100448 Tumor 31 

GSM1100449 Tumor 36 

GSM1100450 Tumor 37 

GSM1100451 Tumor 34 

GSM1100452 Tumor 33 

GSM1100453 Tumor 32 

GSM1100454 Tumor 37 

GSM1100455 Tumor 38 

GSM1100456 Tumor 40 
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Supplementary Table 4. Samples information of GTEx dataset. 

 

Supplementary Table 5. A brief description of 1582 cellular senescence-related genes set. 

 

Supplementary Table 6. Differential expressed cellular senescence-related genes expression profile. 

 

Supplementary Table 7. The outcomes of univariate and multivariate cox regression analyses for DEGs associated 
with cellular senescence. 

 

Supplementary Table 8. 19 cellular senescence-related genes signature transcript expression matrix. 

 

Supplementary Table 9. The immune responses in low- and high-risk groups. 

Immunological response Model P-value Correlation coefficient 

B cell_TIMER Senescence Score 0.0000202702295798352 0.258373290755954 

T cell CD4+_TIMER Senescence Score 0.000108400568341618 0.276193355263645 

Neutrophil_TIMER Senescence Score 4.29428339298687E-08 0.359266872808306 

Macrophage_TIMER Senescence Score 7.36486902728179E-09 0.362765093078553 

Myeloid dendritic cell_TIMER Senescence Score 5.76044404685146E-07 0.338784817248774 

B cell memory_CIBERSORT Senescence Score 0.0378522902508948 0.112089355993383 

T cell CD4+ memory 

resting_CIBERSORT 

Senescence Score 0.0175612750770366 -0.128923578822784 

T cell CD4+ memory 

activated_CIBERSORT 

Senescence Score 0.0233864281546951 0.147743753544652 

T cell follicular helper_CIBERSORT Senescence Score 0.0200831092012567 0.136804131490506 

T cell regulatory (Tregs)_CIBERSORT Senescence Score 0.000801931929368885 0.197993745095327 

NK cell resting_CIBERSORT Senescence Score 0.0439073636948704 -0.140285865065209 

Monocyte_CIBERSORT Senescence Score 0.020956636507953 -0.227470384720351 

Macrophage M0_CIBERSORT Senescence Score 0.0000325616513527694 0.262960455627498 

Neutrophil_CIBERSORT Senescence Score 0.00557075957224343 -0.132177142557853 

B cell memory_CIBERSORT-ABS Senescence Score 0.0241246554160234 0.132131610961948 

B cell plasma_CIBERSORT-ABS Senescence Score 0.0208314473996641 0.125737390349023 

T cell CD4+ memory 

activated_CIBERSORT-ABS 

Senescence Score 0.0212610117613799 0.143284248953572 

T cell follicular helper_CIBERSORT-

ABS 

Senescence Score 0.0000507802656797722 0.155706743376464 

T cell regulatory (Tregs)_CIBERSORT-

ABS 

Senescence Score 4.17710717662559E-07 0.15061580904037 

NK cell activated_CIBERSORT-ABS Senescence Score 0.000554593464978019 0.257548166634541 

Macrophage M0_CIBERSORT-ABS Senescence Score 9.65177541381699E-08 0.329426496419035 

Macrophage M1_CIBERSORT-ABS Senescence Score 0.0130128009570688 -0.12552569328725 

Macrophage M2_CIBERSORT-ABS Senescence Score 0.0000150217615593861 0.222457927373238 

Myeloid dendritic cell 

resting_CIBERSORT-ABS 

Senescence Score 0.0241178289648506 0.339560040235058 

Neutrophil_CIBERSORT-ABS Senescence Score 0.00124200448640288 0.192751394140667 

B cell_QUANTISEQ Senescence Score 0.0000643869176409429 0.276161027384921 

Macrophage M1_QUANTISEQ Senescence Score 0.00337453681854056 0.1598896783221 

Monocyte_QUANTISEQ Senescence Score 0.0000231614083032618 0.108902626217504 

T cell CD8+_QUANTISEQ Senescence Score 0.00199222518193981 0.16571989414694 

T cell regulatory (Tregs)_QUANTISEQ Senescence Score 0.000286306833010126 0.27318618309581 
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T cell_MCPCOUNTER Senescence Score 0.000119493212173534 0.238465792530489 

NK cell_MCPCOUNTER Senescence Score 0.0422062311358533 0.116740419271637 

B cell_MCPCOUNTER Senescence Score 0.00145059540981016 0.251447153246182 

Monocyte_MCPCOUNTER Senescence Score 2.77700216856047E-07 0.221234849725056 

Macrophage/Monocyte_MCPCOUNTER Senescence Score 2.77700216856047E-07 0.271456621431428 

Myeloid dendritic cell_MCPCOUNTER Senescence Score 0.0045805073001399 0.292025625396387 

Cancer associated 

fibroblast_MCPCOUNTER 

Senescence Score 0.0425087936013699 0.15507511636032 

B cell_XCELL Senescence Score 0.0000608363256432314 0.120319182277413 

T cell CD4+ memory_XCELL Senescence Score 0.000555083730584137 0.230720862339996 

T cell CD4+ central memory_XCELL Senescence Score 0.0248439449331524 0.337129925991368 

T cell CD8+ naive_XCELL Senescence Score 0.00634942257844814 0.337129925991368 

Class-switched memory B cell_XCELL Senescence Score 0.0041932350457448 0.22906769852649 

Common lymphoid progenitor_XCELL Senescence Score 8.21845778024016E-11 0.152585860131335 

Common myeloid progenitor_XCELL Senescence Score 0.0465844913423528 0.213402788168852 

Endothelial cell_XCELL Senescence Score 1.87407397993098E-13 0.237835606872808 

Granulocyte-monocyte 

progenitor_XCELL 

Senescence Score 0.0156335953980959 -0.142477250025859 

Hematopoietic stem cell_XCELL Senescence Score 2.33714682908975E-08 -0.171024757884418 

Macrophage M2_XCELL Senescence Score 0.000704581626806011 0.373384278942444 

Monocyte_XCELL Senescence Score 0.0136449770828341 -0.130356009928635 

B cell naive_XCELL Senescence Score 0.0429814835103456 -0.445954313045994 

T cell gamma delta_XCELL Senescence Score 0.0222387582939616 -0.160291337446559 

T cell CD4+ Th2_XCELL Senescence Score 1.57099602617734E-13 -0.352018615036676 

Stroma score_XCELL Senescence Score 1.03853480503691E-09 0.121120459501573 

Microenvironment score_XCELL Senescence Score 0.0181827404380113 -0.177367742413254 

B cell_EPIC Senescence Score 0.0341078893148881 -0.115437672590154 

Cancer associated fibroblast_EPIC Senescence Score 0.0000465336670014947 0.266462663767851 

Macrophage_EPIC Senescence Score 7.06005744729839E-12 -0.405241805129521 

 


