
Supplementary Theoretical Framework

1. Constraint-based stoichiometric modeling

We briefly present the fundamentals of constraint-based stoichiometric modeling to introduce readers

from other fields. The rationale behind the constraint-based stoichiometric models of cellular

metabolism (Bordbar et al., 2014) stems from fundamental physicochemical principles (Gottstein et

al., 2016) that are exposed in the following sections.

1.1 Fundamental derivation of constraints-based stoichiometric models

Based on Gottstein et al., (2016), in the first place we define the concentration of metabolite as𝑖

being the number molecules of metabolite , and the volume of the cell. Taking into account that𝑛
𝑖

𝑖 𝑉

metabolite concentration undergoes dynamic changes, and are time-dependent. By applying the𝑛
𝑖

𝑉

quotient rule to derive equation S1.1, the evolution over time of is𝑐
𝑖

Assuming that neither astrocytes nor neurons change their volume during neurotransmission, we

have that then S1.2 can be rewritten as∂𝑉
∂𝑡 = 0,
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Here, corresponds to the net flux of metabolite . Each metabolite can be produced,𝑉−1 ∂𝑛
𝑖

∂𝑡 𝑖

exchanged, or consumed by different reactions. Thus, metabolite net balance is equivalent to the flux

balance of all reactions in which the metabolite participates in. Transporters and channels are

considered as reactions since they also generate flux. Formally, the mass balance for metabolite 𝑖

consists of the sum of all fluxes ( in total) multiplied by their respective stoichiometric coefficients𝑛

where represents the stoichiometric coefficients for metabolite regarding reaction . These𝑠
𝑖𝑗

𝑖 𝑗

coefficients are zero when metabolite does not participate in reaction , negative for reactions that𝑖 𝑗

consume metabolite , and positive for reactions that produce metabolite . In can be noted that𝑖 𝑖

equations S1.3 and S1.4 are equivalent, then

We can generalize S1.5 for metabolites and reactions using vector notation as follows𝑚 𝑛

here, is an vector that contains the terms , while is the vector notation
𝑑𝑐

𝑑𝑡 𝑚 𝑥 1
𝑑𝑐

𝑖

𝑑𝑡   ( 𝑖 =  1,...,  𝑚) 𝑆𝑣

for . The term is an matrix that contains all the stoichiometric coefficients, and is a
𝑗

∑ 𝑠
𝑖𝑗

𝑣
𝑗

𝑆 𝑚 𝑥 𝑛 𝑣

vector that represents all the fluxes. In this way, equation S1.6 accounts for all of the𝑛 𝑥 1

relationships between metabolites and reactions in a given network being the cornerstone of

constraint-based modeling.

1.2 The dynamic steady-state assumption in the neuron-astrocyte metabolic network

The metabolic state where no accumulation or depletion of intracellular metabolites occurs is a steady

state. Although metabolic networks are not strictly steady-state systems, many homeostatic states

over short periods of time are close to being stationary (Fang et al., 2020; Palsson, 2015), including

neurotransmission. In this sense, neuronal metabolism can adjust its fluxes to maintain ATP and ADP
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levels invariable (Baeza-Lehnert et al., 2019). The steady-state implies that intracellular fluxes are

balanced, thus yielding zero variation in intracellular metabolite concentration. Under this condition eq.

S1.6 can be rewritten as

Equation S1.7 can be regarded as an abstraction of a dynamic quasi-stationary metabolic state. This

steady-state is dynamic because boundary metabolites can have a non-zero balance, thus allowing

input and output fluxes (Fell, 2021; Yasemi and Jolicoeur, 2021). For instance, in the case of

neurotransmission, extracellular glucose and oxygen are constantly depleted and replenished; thus,

both molecules yield a negative (non-steady) balance. To maintain the right-hand side of equation

S1.7 as a zero column vector, extracellular glucose and oxygen mass balances are composed of two

balanced fluxes, one associated with the uptake (negative flux) and the other simulating the

“incoming” of new extracellular molecules (positive flux). The same principle is applied to secreted

metabolic products that have positive (non-steady) balance, such as the lactate produced by the

astrocyte. In this case, the sense of the fluxes is in the opposite direction of the substrates, and the

flux that simulates the “incoming” of new extracellular molecules is replaced by a flux that accounts for

the “wash out” of extracellular molecules. Biologically, a dynamic steady-state occurs when constant

“incoming” and “wash out” of extracellular molecules can be assumed, avoiding substrate exhaustion

and product accumulation in the cell. Metabolites associated with constant “incoming” and “wash out”

are boundary metabolites. In the neuron-astrocyte metabolic network, glucose, oxygen, lactate,

glutamate, glutamine, and sodium ions are boundary metabolites and define the response to

neurotransmission workload. Hence, we assumed a constant replenishment of oxygen and glucose,

thus ensuring that boundary uptake fluxes are always established. Also, we considered that lactate,

glutamate, and glutamine are rapidly exchanged between neurons and astrocytes, emulating an

extracellular “wash out.” Finally, we regarded extracellular sodium ions as fast-diffusing ions that

rapidly diffuse.

1.3 The null space of and flux constraints𝑆

Given the degrees of freedom the model has (more reactions than metabolites), fluxes can vary with

no fixed ratios, and the system still would be at steady-state. This means that vector in equation𝑣
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S1.7 represents a set of flux vectors that satisfy the steady-state condition. Mathematically, this set of

vectors is known as the null space of , and contains all the stationary flux distributions attainable by𝑆

the model (Palsson, 2015). In this sense, equation S1.7 is regarded as the steady-state constraint.

Flux direction (that accounts for reaction thermodynamics) and flux bounds (lower and upper limits)

also fall into the category of constraints and correspond to inequalities expressed as

where is the flux vector while and are the lower, and upper bounds, respectively. These𝑣 𝐿
𝐵

𝑈
𝐵

conditions plus equation S1.7 are constraints that define a space of attainable metabolic states, also

known as the feasible space. All constraint-based models are formulated based on these principles.

1.4 Computing biologically meaningful metabolic states

Constraint-based models have many possible metabolic states, which are contained in the null space

of . We can assume that any biologically meaningful state is optimized for whatever the cell is aiming𝑆

to achieve. Hence, physiologically states may be predictable by employing optimization-based

approaches, such as linear programming (Heirendt et al., 2019). In order to determine this biologically

meaningful metabolic state, optimality conditions should be imposed. In this sense, we define an

objective function which encodes what is aimed to be optimized. Objectives are context-specific and

depend on the particular phenotype or cellular compartment that one tries to model (Chen et al., 2019;

Feist and Palsson, 2010; Sánchez et al., 2012; Smith and Robinson, 2011). The steady-state and flux

constraints serve as constraints for the optimization. Once solved, the solution is associated with an

optimal metabolic state, or optimal flux distribution. This optimization approach is known as Flux

Balance Analysis (Orth et al., 2010) and is formulated as

here, the objective function is , which correspond to a linear combination of the fluxes that are𝑐𝑇𝑣

involved in the objective.
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2. Analysis based on network topology

This section explains the theoretical basis for the topological analysis of the stoichiometric matrix and

shows how such an approach complements what the FBA informs. Readers already introduced to the

mathematics of constraint-based modeling may skip all previous sections. However, for readers

outside the field, we highly recommend them revising this supplementary material from the beginning

since this section builds upon previous ones.

2.1. The stoichiometric matrix as a bipartite network

An intuitive network representation of the metabolism is a bipartite network. A bipartite network has

two types of nodes with edges connecting only nodes from the different types. For metabolic

networks, the two types of nodes represent metabolites and reactions, with edges joining each

metabolite to the reactions it participates in (either as a product or substrate). The algebraic

representation of a bipartite metabolic network is an incidence or bi-adjacency matrix. Considering n

as the number of reactions and m as the number of metabolites, the incidence matrix is a m x n𝐵

matrix that has elements such that𝐵
𝑖𝑗

In our case, the stoichiometric matrix can be transformed into the matrix by binarizing it. In this𝑆 𝐵

sense, let us denote any given element of as , then denote the binary version of as . The𝑆  𝑠
𝑖𝑗 

𝑆 𝑆

elements of are computed as𝑆

Here, if is one, the metabolite participates in reaction . It can be noted that is equal to . As we𝑠
𝑖𝑗

𝑖 𝑗 𝑆 𝐵

will see in the following sections, the matrix is key to perfomed the topological-based analysis.𝑆

2.2 Reaction projection of the stoichiometric matrix



As we are interested in finding critical genes, hence enzymes and transporters, we constructed the

adjacency matrix for the relationships between reactions. This reaction adjacency matrix was

computed from column projection of as follows𝑆

Here, the off-diagonal elements of the matrix are the inner product of the columns of , i.e.𝐴
𝑣

𝑆

. Each of the off-diagonal elements indicates the number of metabolites that reactions i(𝑎
𝑣
)

𝑗𝑖
= 𝑠

𝑗

𝑇
𝑠

𝑖

and j have in common. The diagonal elements of correspond to the number of metabolites that𝐴
𝑣

participate in each reaction. Because we are interested in the fundamental structure of the network,

was binarized and its diagonal was set to zero. Finally, we denoted this last binary adjacency𝐴
𝑣

matrix as , and was used for all of the centrality calculations. Figure S3 illustrates the main steps for𝐴

deriving the reaction (binary) adjacency matrix from the stoichiometric matrix.

Figure S3. Projection of the stoichiometric matrix into a binary adjacency matrix of reactions.

2.3 Node centrality as an index of node importance and availability



Centrality metrics are a group of topology-based measures that quantify the relevance of a node in a

network. These metrics inform the level of integration or availability a node has in the network by

encoding different aspects of its topological context (Borgatti and Everett, 2021). High availability

means that a node can influence or be influenced by others, thus informing about its integration. In

our work, we combined two different kinds of centrality metrics to quantify the availability of the

sensitivity nodes previously computed via FBA. One kind of centrality was a proxy of the probability of

having an interaction with any given node, and the other kind represented the inverse of the cost of

establishing such an interaction. Thus, our index for nodal availability was formulated so that high

availability may be reached by having a high probability of receiving signals, having easy access, or

both. Such a probability was computed using a degree-like centrality metric, while the cost was

estimated by using closeness-like centrality metrics. In simple terms, degree-like centralities count the

trajectories in which a node participates, while closeness-like centralities measure the length of such

trajectories. Thus, degree-like metrics encode the number of possible interactions (probability), and

closeness-like metrics encode the node's reachability (cost). In graph-theoretical terms, these two

metrics are called radial centralities because they consider the node in question as the endpoint of

interactions (Borgatti and Everett, 2006). Thus, the sum of the two metrics yields the radial

involvement of the node. Henceforward, we will adopt the state-of-the-art denominations for the

centrality metrics; namely, degree-like centrality will be referred to as connectedness-based centrality

and closeness-like as closeness-based centrality (Borgatti and Everett, 2021). We used one

connectedness-based and two closeness-based centralities which at the end were aggregated into a

single quantity of node centrality. In the following section, we provide the mathematical formulations of

these metrics.

3.0 Centrality metrics description

3.1 Connectedness-based centrality

Connectedness-based centralities count the unrestricted trajectories in which a node participates as

the ending point. Notably, these metrics represent the certainty or probability of receiving a signal.
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These centralities are computed by employing the eigendecomposition of the adjacency matrix

(Newman, 2018).

Eigenvector centrality (EC). This centrality metric accounts for the quantity and quality of a node’s

connections by accounting for its degree and the degree of its neighbors (Bonacich, 1987; Fornito et

al., 2016). The eigenvector centrality of node i ( ) is proportional to the sum of the centralities of its𝐸𝐶
𝑖

neighbors. The eigenvectors ( ) and eigenvalues ( ) of the adjacency matrix ( ) are employed for the𝑥 λ 𝐴

calculation, where the eigendecomposition is rearranged. Having as our adjacency𝐴𝑥 = λ𝑥 𝐴

matrix,  the eigenvector centrality of reaction i is defined as

Here, is the leading eigenvector, i.e., the eigenvector corresponding to the largest (positive)λ
1

eigenvalue (Fornito et al., 2016; Newman, 2018).

3.2 Closeness-based centralities

Two nodes are topologically close if a path with few edges connects them. In this sense, a node has

high closeness centrality if, on average, it is topologically close to many other nodes. A node with a

short average path length can interact with many network elements via only a few links, meaning that

it is topologically central (Fornito et al., 2016). Closeness-based centralities are different from the

eigenvector-derived (connectedness-based) ones as they measure the trajectories' length instead of

counting them.

Closeness centrality (CC). This centrality measures the mean distance from a node to other nodes.

Let be the shortest distance from node to , then the mean distance from to every node is𝑑
𝑖𝑗

𝑖 𝑗 𝑖

then, the CC for node is (Beauchamp, 1965):𝑖

https://www.zotero.org/google-docs/?jcWtbq
https://www.zotero.org/google-docs/?ndDusv
https://www.zotero.org/google-docs/?ndDusv
https://www.zotero.org/google-docs/?AdVbtz
https://www.zotero.org/google-docs/?IHmyq0
https://www.zotero.org/google-docs/?HhGV2q


Information centrality (IC). This metric makes use of all paths between pairs of nodes but gives

them relative weighting as a function of the information they transmit (Stephenson and Zelen, 1989).

This kind of centrality differs from closeness centrality as it does not only consider shortest paths. The

IC assumes that all paths do not transmit the same information. If nodes i and j are connected by 𝑘
𝑖𝑗

paths, such paths are

for each path we have

Where is the length of from equation S3.5, the resulting quantity is defined as the𝐷
𝑖𝑗

(𝑠) 𝑃
𝑖𝑗

(𝑠) 𝐼
𝑖𝑗

(𝑠)

information of . Then we combine the information of the paths between the  nodes i and j𝑃
𝑖𝑗

(𝑠)

and finally, we compute the information centrality for node as the harmonic mean of the combined𝑖

information of the paths from to all the other nodes𝑖

(Stephenson and Zelen, 1989).

4.0 Reactions topology can represent metabolic states outside the steady state

We can interpret equation S1.6 as the row space of . According to the properties of the four𝑆

fundamental subspaces of linear transformations, the row space is orthogonal to the null space, which

means that the row space contains the non-steady state mass balances of (Palsson, 2015). Thus𝑆

we can express the row space of as𝑆
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where is a dynamic flux distribution, and a metabolite mass balance outside𝑣
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑏
𝑛𝑜𝑛−𝑠𝑡𝑒𝑎𝑑𝑦

steady-state. We can express as𝑣
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

here, is invertible as it is a squared matrix, and it is equivalent to the product shown in equation𝐴

S2.3, then it encodes the reactions topology. This shows that any given non-steady metabolic state

can be represented as a function of the reactions topology. The fact that reaction topology represents

non-steady states allows the use of centrality metrics to determine reaction importance in states that

are not considered by the FBA. Thus making centrality analysis and FBA complementary approaches.

5.0 Proof of concept of the entire network analysis

The whole network analysis tackled two aspects of network functionality, one regarding flux-related

behavior and the other related to topology, where the former yields two kinds of results, i.e., fluxes

and sensitivities. Flux informs about execution and the latter about control. Reactions with high

sensitivity values were categorized into the so-called sensitivity set. This group acts as an "interface"

through which the whole network can perturb the optimal response to metabolic workload. Even

though both quantities (flux and sensitivity) successfully described the behavior of the

neuron-astrocyte network during neurotransmission, these are limited to model only stationary fast

responses. Hence, we formulated another quantity that measures each node's controllability over the

centrality of the nodes belonging to the sensitivity set, we named such a quantity as Absolute

Centrality Contribution (ACC). In other words, we measured how much any given node controls the

level of integration or availability of the sensitivity set or “interface”. The nodes with substantial control

over the availability of the interface can be regarded as gatekeepers. In sum, our approach had three

outcomes: fluxes, sensitivities, and absolute centralities. In Figure S4, we provide a proof-of-concept

for our approach, where a small-scale pseudo-metabolic network was subjected to the complete

network-analysis workflow. Here, fluxes were computed using the objective pathway P5 in Figure S4a,

thus obtaining the optimal metabolic response (Figure S4d). Sensitivities were also computed, and the

sensitivity set comprised reactions with non-zero sensitivity, i.e., ATP_sink, A_uptake, and L_diffusion.

These reactions constitute the "interface" (Figure S4e). Then we computed the ACC for each node



and determined the nodes with the highest AC. For simplicity, we denoted the top 3 ACC reactions as

the central metabolic reactions or gatekeepers (Figure S4f).

Figure S4. Network-analysis workflow applied on a small-scale network mimicking metabolic

pathways. a: pseudo-pathways representing different metabolic subsystems: respiration and oxidative

phosphorylation (P1), glycolysis (P2), lactate exchange (P3), Krebs Cycle (P4), and an

energy-demanding metabolic objective (P5). b: results from the network-analysis workflow. c: bipartite

network representation of the network; here, circles correspond to reactions, and triangles are

metabolites. Node size was adjusted to fit the text inside. d: Fluxes computed by maximizing the P5

pathway. e: sensitivities, non-zero sensitivities are considered as the interface. f: absolute centrality

values, where the top 3 were classified as central metabolic reactions or gatekeepers.
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