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INTRODUCTION 
 

Skin wound healing is an essential and evolutionarily 

conserved mechanism that benefits multiple species 

including mammals. Because of the role of skin as a 

physical, chemical, and bacterial barrier, skin wound 

healing can serve as a surrogate marker for skin aging 

and overall skin health [1]. Wounds can be classified 

based on various factors, including wound duration as 

an acute versus chronic wound [2]. Chronic wounds, 

which include diabetic ulcers, vascular ulcers, and 

pressure ulcers, among others, are defined as a skin 

barrier defect that persists beyond three months despite 

standard-of-care, contributing to healthcare burden and 

morbidity [3]. Despite a complex series of cellular 

signaling and behavioral events that ensure skin barrier 

closure in acute wounds, minor disruptions rarely cause 

issues in wound healing due to high levels of cell 

redundancy and compensatory mechanisms [4, 5]. For 

instance, the ablation of specific subsets of hair follicle 

stem cells [6], MMPs [7], fibroblast growth factors [8], 

TGF-α [9], and VEGFR2 [10] each individually fail to 

substantially hinder wound closure. Hence, 

understanding molecular and pathological causes of 

chronic wounds, which primarily affect elderly and 

diabetic populations, is crucial. 

 

An emerging area in studying wound healing, particularly 

chronic wounds, is the role of cellular senescence. 

Cellular senescence is a cell fate that involves essentially 

irreversible replicative arrest, apoptosis resistance, often 

amplified protein synthesis, metabolic shifts with 

accentuated glycolysis, reduced fatty acid oxidation, 

increased reactive oxygen species generation, and 

acquisition of a senescence-related secretory phenotype 

[11]. Senescent cells have been shown to have a causal 

role in aging and age-related disorders [12–14]. In fact, a 

combination of stimuli (i.e., tissue injury) can trigger 

cells to enter a state marked by significant chromatin and 

secretome alterations, increased expression of the cell 

cycle inhibitor p16INK4a, replicative arrest, and apoptosis 
resistance [12, 15]. Furthermore, senescent cells can 

produce senescence-associated secretory phenotype 

(SASP) factors, which can include pro-inflammatory 
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ABSTRACT 
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cytokines, chemokines, and proteins that degrade the 

extracellular matrix (ECM) [16–19]. As senescent cells 

accumulate during aging in the skin, the presence of even 

low numbers of senescent cells can be sufficient to cause 

tissue dysfunction [20–22]. 

 

Herein we hypothesize that persistent senescent cell 

accumulation contributes to delayed healing in chronic 

wounds. This study presents a novel oxidative stress-

induced chronic murine wound mouse model in which 

there is capacity to target aberrant senescent cell 

expression. Pharmacological manipulation of oxidative 

stress can influence wound healing and result in delayed 

wound closure [23, 24], which offers the opportunity to 

characterize cellular senescence in late stages of wound 

healing. The molecular and histological profiles of 

senescent cells in the epidermis and dermis demonstrate 

the adverse influence of SASP factors in the chronic 

wound bed, a new avenue for root-cause, targeted 

therapeutic interventions. 

 

MATERIALS AND METHODS 
 

Animals, diet, and cohorts 

 

All mouse experiments were performed in accordance 

with protocols approved by the Institutional Animal Care 

and Use Committee (IACUC) at Mayo Clinic. Twenty-

week-old wild-type C57BL/6 mice were obtained from 

the Jackson Laboratories and maintained in a pathogen-

free facility at 23–24°C under a 12-hour light, 12-hour 

dark regimen with free access to normal chow diet 

(standard mouse diet with 20% protein, 5% fat (13.2% fat 

by calories), and 6% fiber; Lab Diet 5053, St. Louis, MO, 

USA) and water. Localized oxidative stress was induced 

by using 3-amino-1,2,4-trizole (ATZ) and mercapto-

succinic acid (MSA), which inhibit catalase and 

glutathione peroxidase, respectively, as previously 

described [25]. ATZ (Sigma Aldrich, St. Louis, MO) was 

injected intraperitoneally at 1g ATZ/kg of mouse weight 

in sterile PBS roughly 20 minutes prior to surgery. An 8 

mm full-thickness excisional wound was made on back 

of each mouse after hair removal by shaving and 

application of depilatory lotion. MSA (Sigma Aldrich, St. 

Louis, MO, USA) was administered topically onto the 

wound site at 150 mg MSA/kg of mouse weight in sterile 

PBS and subsequently covered with 3M™ Tegaderm™ 

Film Dressing (Figure 1A). For analgesia, mice were 

treated with carprofen intraperitoneally at 10 mg/kg in 

sterile PBS prior to surgery and 6 hours post-surgery. 

Mice were housed individually after wounding. 

 

Wound imaging 

 

Wound photography was performed using an Olympus 

TG-6 Digital Camera with LED Light Guide (Olympus, 

Shinjuku, Japan). Wounds were photographed at 

baseline, day 2, day 7, and day 14. Wound imaging from 

RNA in situ hybridization (ISH) was performed using a 

Nikon T1 microscope (Nikon, Japan). Background 

correction and intensity thresholding were defined using 

controls and applied to all samples using Advanced NIS 

Elements software (Nikon, Tokyo, Japan). A total of 4 to 

5 sections/slide with the best tissue integrity were 

selected for counting, and merged images were exported 

to ImageJ FIJI. We applied a centralized grid of 125 × 

125 mm, generating 15 fields/section. p16Ink4a+ and 

p21Waf1/Cip1+ cell counting markers were used to retrieve 

cell numbers in each square. A single channel for DAPI 

was exported to ImageJ and the same 125 × 125 μm grid 

was applied to count nuclei in each square slice. 

 

Quantitative real-time reverse transcriptase PCR 

(RT-qPCR) 

 

Tissues were flash-frozen in liquid nitrogen and kept 

frozen until RNA extraction. Tissues were lysed using 

TRIzol Reagent (Invitrogen, Waltham, MA) and RNA was 

isolated using a Direct-zol RNA MiniPrep Kit (Zymo 

Research, Irvine, CA, USA) with a DNA digestion kit 

(Zymo Research, Irvine, CA, USA). Isolated RNA was 

reverse transcribed into cDNA using the SuperScript III 

First Strand Synthesis System (Invitrogen, Waltham, MA, 

USA). Gene expression was quantified using RT-qPCR in 

which each reaction was performed with 10 ng cDNA per 

10 µl, a QuantiTect SYBR Green PCR Kit (Qiagen, 

Hilden, Germany), and the CFX384 Real-Time System 

machine (BioRad, Hercules, CA, USA). Transcript levels 

were quantified using the 2ΔΔCt method and normalized to 

the housekeeping gene β- actin using gene-specific primer 

sequences (Supplementary Table 1). 

 

Senescence-associated β-galactosidase (SA-β-gal) 

activity assay 

 

Frozen tissues were cut into 7 μm sections and fixed 

immediately in 2% formaldehyde (F877-500 ml Sigma) 

+ 0.2% glutaraldehyde (G5882-10 × 10 ml Sigma) in 

PBS for 10 minutes at room temperature and washed 

with PBS. Tissues were incubated in SA-β-gal activity 

solution, pH6.0 at 37°C for 16–18 hours (overnight), 

washed, stained with Hoechst dye, and kept in PBS 

until imaged with a fluorescence microscope (Nikon 

Eclipse Ti, Japan). Ten to 15 random fields were 

imaged per sample. SA-β-gal+ cells are expressed as a 

function of all nuclei in the fields [26]. 

 

RNA in situ hybridization and histological 

assessment 

 

Tissues were formalin-fixed and paraffin-embedded. 

RNA‐ISH was performed using the RNAscope protocol 
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from Advanced Cell Diagnostics, Inc. (Hayward, CA, 

USA). Paraffin sections were deparaffinized, rehydrated 

in graded ethanol, and then H2O2 was applied. Sections 

were processed as previously described [27]. A 

RNAscope 2.5 HD Reagent kit‐RED was used for 

chromogenic labeling. Tissues were mounted using 

ProLong Gold Antifade Mountant with DAPI 

(Invitrogen, Waltham, MA, USA) [27]. Counts for 

p16Ink4a- and p21Waf1/Cip1-positive cells were calculated 

using Fiji-ImageJ software. 

 

Statistical analysis 

 

GraphPad Prism 7.0 was used for statistical analysis. 

Two-tailed Student’s t-tests were used to estimate 

statistically significant differences between two groups. 

One-way analysis of variance (ANOVA) with Tukey’s 

post hoc comparison was used for multiple 

comparisons. Values are presented as mean ± SEM 

unless otherwise indicated, with p ≤ 0.05 considered to 

be significant. 

 

Data availability 

 

The datasets generated during and/or analyzed during 

the current study are available from the corresponding 

author upon reasonable request. 

 

RESULTS 
 

Oxidative stress-induced wounding results in a 

chronic wound model that is distinct from an acute 

wound model 

 

Wound healing time is determined by several metrics, 

including wound size, depth, location, age, and the 

presence of local and systemic disease. Chronic wounds 

fail to undergo an orderly sequence of repair to restore 

 

 
 

Figure 1. Oxidative stress-induced wounding results in a chronic wound with increased SA-β-gal expression and SASP 
burden. (A) Study design: an acute wound model (top) created with skin punch biopsy and vehicle (normal saline) application and a 
chronic wound model (bottom) created with localized oxidative stress induced by intraperitoneal 3-amino-1,2,4-trizole (ATZ; 1 g/kg) prior 
to wounding and topical mercaptosuccinic acid (MSA; 150 mg/kg) after wounding in wild-type C57BL/6 J mice (20-weeks-old). (B) 
Representative images of wound healing and histological images from hematoxylin and eosin-stained sections of acute versus chronic 
wounds (n = 6 in each group at day 14), low power magnification. (C) Wound contracture assessment as a function of % wound closure. (D) 
Wound contracture assessment as a function of area (mm2). (E) SA-β-gal staining indicates presence of senescent cells (red arrows) in the 
epidermis and dermis 14-days post-wounding. (F) Relative expression of senescence and SASP markers in the skin after 14-days in normal 
skin, acute wounds, and chronic wounds. Measurements are expressed as mean ± SEM. Statistical analysis was performed using Student’s 
t-test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 



www.aging-us.com 2855 AGING 

normal anatomy and function, whereas acute wounds 

progress through the wound healing phases in a 

stereotypic sequential fashion. We created an 8-mm 

wound in the acute versus chronic murine model and 

measured wound closure and wound area alteration 

through the 14-day time course (Figure 1B–1D). For the 

chronic wound model, oxidative stress was induced by 

treating the wounds with two inhibitors of antioxidant 

enzymes, catalase (inhibited by 3-Amino-1,2,4-triazole 

(ATZ) [28]) and glutathione peroxidase (inhibited by 

mercaptosuccinic acid (MSA) [29]), resulting in a 

chronic wound that shares similar features observed in 

human diabetic chronic wounds due to prolonged 

inflammation from oxidative stress [25]. Potential off-

target effects from ATZ and MSA include decreased 

nitric oxide availability, vasoconstriction, and other 

sequalae from increased reactive oxygen species (ROS) 

[30, 31]. These effects of oxidative injury are limited 

given localized versus systemic delivery. Wound 

closure rate and wound size significantly decreased in 

acute wounds compared to oxidative stress-induced 

chronic wounds. Wound healing occurs in four 

overlapping phases: hemostasis, inflammation, 

proliferation, and remodeling [32]. Within minutes 

following injury, neutrophils bind to endothelium, 

initiating the inflammatory phase that causes bacterial 

phagocytosis, matrix protein degradation, and further 

neutrophil migration [33]. We considered a pathological 

criterion that indicates the degree of inflammation by 

examining sparse, moderate, and diffuse inflammation. 

We found diffuse and persistent inflammation in all 

chronic wounds in contrast to acute wounds, 

which exhibited minimal to no inflammation at day 14 

(Figure 1B). The proliferation phase includes 

fibroplasia, granulation, epithelialization, and angio-

genesis, which begin within 24 hours [34]. TGF-β 

stimulates keratinocytes to migrate from the wound 

edge through fibrin matrix to subsequently develop a 

network in the wound bed [35]. None of the acute 

wounds displayed epidermal hyperplasia at day 14, 

whereas most of the chronic wounds revealed subtle 

foci of epidermal hyperplasia (Figure 1B, 1D), 

suggesting minimal wound contraction, and confirming 

the histological difference between acute and chronic 

wounds. Blood vessel thickening was also detected in 

chronic wounds (Figure 1B). Therefore, we considered 

this oxidative stress-induced model to be reliable 

method that recapitulates physiologically relevant 

chronic wounds. 

 

Increased SA-β-gal and SASP burden in chronic 

wounds compared to acute wounds 

 
SA-β-gal, a cellular senescence biomarker [36],  

has been used to evaluate elevated, pH-shifted 

β-galactosidase activity in senescent cells. The SA-β-gal 

assay in acute versus chronic wound samples indicates 

that SA-β-gal-positive cells are increased in both 

epidermis and dermis in the chronic wounds compared 

to relatively lower numbers of positive cells in the 

dermis of acute wounds (Figure 1E). 

 

Senescent cells can have a complicated secretome that 

includes a variety of cytokines, chemokines, and 

proteases, among other factors [19, 37]. This SASP, 

also known as the senescence messaging secretome 

(SMS) [19], indicates senescent cells’ non-cell 

autonomous functioning and may explain their in vivo 

participation in chronic wound pathophysiology. 

MMPs play essential roles in all wound healing phases: 

during the inflammatory phase, they remove damaged 

extracellular matrix (ECM); throughout the 

proliferation phase, they collapse the capillary 

basement membrane, facilitating angiogenesis and cell 

migration; and during the remodelling phase, they 

contract and reconstruct skin tissue. All wounds require 

a threshold of these enzymes for optimal healing. 

However, high enzymatic activities can cause excessive 

breakdown and decreased wound healing [38]. For 

example, TGF-β has been demonstrated to induce 

senescence and senescence-related characteristics in 

fibroblasts [39]. Similarly, MCP has been shown to be 

a SASP-related protein [40]. We found significantly 

elevated Mmp3, Mmp9, Mcp, and TGF-β mRNA levels 

in chronic wounds (Figure 1F), potentially contributing 

to the increased senescent cell abundance in chronic 

wounds. 

 

Elevated p16Ink4a and p21Waf1/Cip1 expression in 

epidermal and dermal tissues from chronic 

compared to acute wounds 
 

CDKs phosphorylate and modulate various proteins 

are involved in cell cycle progression. CDK inhibitors 

encoded in the CDKN1A (p21Waf1/Cip1), CDKN2A 

(p16Ink4a), and CDKN2B (p15Inc4b) loci are key drivers 

of cell cycle arrest in senescent cells [41] and have 

been used as markers of cellular senescence [13, 42, 

43]. RNA in situ hybridization data evaluated p16Ink4a 

(Figure 2) and p21Waf1/Cip1 (Figure 3) in the epidermis, 

papillary dermis, and reticular dermis. Low numbers 

of p16Ink4+-positive cells were identified in the 

epidermis and papillary dermis (Figure 2A–2C). There 

was a statistically significant higher number of p16Ink4a 

cells with 2–3 nuclear foci in chronic wounds 

(Figure 2D). In contrast, there were higher numbers of 

p21Waf1/Cip1-positive cells in the epidermis and reticular 

dermis of chronic wounds, with 2–3 prominent nuclear 

foci compared to acute wounds (Figure 3A–3C). This 
was statistically significantly higher in chronic wound 

beds compared to normal skin and acute wounds 

(Figure 3D). 
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Figure 2. p16Ink4a RNA-ISH transcription is upregulated in dermal tissues in chronic wounds. Representative RNA-ISH images 

showing p16Ink4a nuclear localization in (A) normal skin, (B) an acute wound, and (C) a chronic wound, 20× magnification (top) and focused 
zoom (bottom) (n = 6 in each group at day 14). (D) Quantification of p16Ink4a positive cells in epidermis, papillary dermis, and reticular 
dermis. Measurements are expressed as mean ± SEM. Statistical analysis was performed using Student’s t-test; ***p < 0.001, ****p < 0.0001. 
RNA-ISH, RNA in situ hybridization. 

 

 
 

Figure 3. p21Waf1/Cip1 RNA-ISH transcription is upregulated in both epidermal and dermal tissues in chronic wounds. 

Representative RNA-ISH images showing p21Waf1/Cip1 nuclear localization in (A) normal skin, (B) an acute wound, and (C) a chronic wound, 
20× magnification (top) and focused zoom (bottom) (n = 6 in each group at day 14). (D) Quantification of p21Waf1/Cip1 positive cells in 
epidermis, papillary dermis, and reticular dermis. Measurements are expressed as mean ± SEM. Statistical analysis was performed using 
Student’s t-test; *p < 0.05, ****p < 0.0001. RNA-ISH, RNA in situ hybridization. 
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DISCUSSION 
 

Cutaneous wound healing is a highly regulated process 

that is integral to maintaining the skin barrier. In acute 

wounds due to, for example, trauma, surgery, or even bug 

bites, a well-coordinated series of events are deployed for 

proper wound healing. In contrast, a chronic wound can 

form when pathologic factors are present such as poor 

blood supply (peripheral vascular disease), immune 

dysfunction (immunosuppression or acquired immuno-

deficiency), metabolic diseases (diabetes), medications, 

or prior local tissue injury (radiation therapy) [44]. A 

chronic wound is a wound that has deviated from its 

natural physiologic course into a stalled end point. It 

appears that the sequence of wound healing events 

involves an intricate interplay, which can be better 

understood when cellular senescence is appreciated as a 

core regulator of regeneration [45]. Here, we report a 

chronic wound healing model that can be used to 

decipher the paradoxical role of cellular senescence in 

acute versus chronic wound healing. 

 

Temporal dynamics of senescent cells during wound 

healing and effects of senescent cell removal on acute 

wound repair have been reported [46, 47]. In an acute 

wound, eliminating p16- and p21-positive cells led to 

delayed wound closure. Conversely, we report that 

chronic wounds have higher expression of p21Waf1/Cip1 in 

all skin layers compared to p16Ink4a, suggesting better 

specificity of p21 as a senescence marker in pathological 

chronic wounding. Despite their cell cycle arrest, 

persisting senescent cells in the wound bed remain 

metabolically active and communicate with their cellular 

environment through paracrine signaling, known as the 

SASP. Yet, transient senescence and the associated 

short-lived SASP were found to benefit the tissue repair 

environment [46]. This long-held dogma that senescent 

cells are beneficial when transiently present after acute 

injury, particularly in young tissue, has been challenged. 

Moiseeva et al. reported that senescence either 

transiently (in mild injury) or persistently (in chronic 

injury) was deleterious for muscle regeneration, 

irrespective of age [48]. Prior studies have shown that 

chronic wounds harbor senescent fibroblasts, which 

produce high levels of matrix-degrading proteases and 

inflammatory cytokines [49, 50]. Increased skin 

senescence and SASP markers in young mice were 

reported to be associated with delayed wound healing 

[51]. In accordance, we found increased expression of 

matrix metalloproteinases (Mmp3 and Mmp9) and other 

proteases (Mcp) in the chronic murine skin wound, 

which could contribute to growth factor degradation and 

wound healing delay. As such, cellular senescence 

exhibits a dual action and context-dependent role in 

wound healing that appears to involve a continuum from 

a transient senescent cell-induced beneficial effect in 

acute wounding to a persistent senescent cell-induced 

detrimental effect in chronic wounds. 

 

Our study has limitations. The oxidative stress-induced 

chronic wound bed was compared to the acute wound 

bed at a single timepoint. To adequately elucidate wound 

chronicity and its relation to cellular senescence, various 

timepoints from hours to days post-wounding will need 

to be examined in future studies. Nonetheless, these 

chronic wounds had impaired dermal-epidermal inter-

actions, abnormal matrix deposition, and damaged 

vasculature, as is the case in human chronic wounds. 

Future studies will also need to evaluate sex differences, 

given biological differences. In addition, senescent cells 

are highly heterogeneous [52] and the markers we used in 

this study might not be specific to every type of senescent 

cell. More investigation is needed once more sensitive 

and specific senescence markers have been developed. 

Other limitations of murine models for wound healing 

include variations in wound contracture rate compared to 

human wounds that heal by granulation and epithelial cell 

resurfacing of granulation tissue [53]. 
 

Wound care specialists often encounter stalled wounds 

after they have reached chronicity for weeks or months, 

limiting understanding about the inciting event of such 

stalled wounds. The number of patients afflicted with 

chronic wounds has been growing annually since the 

prevalence of diabetes and other chronic diseases that 

impact on wound healing has been increasing [54]. Thus, 

a preclinical animal model that recapitulates the 

complexity of human chronic wounds holds high value. 

To our knowledge, this study is the first chronic wound 

murine model to profile the effects of the chronic cellular 

senescence that is linked to delayed wound healing. This 

may have implications for developing interventions that 

target cellular senescence for chronic or stalled wounds 

as a root cause-driven therapeutic strategy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. RT-qPCR primers. 

RT-qPCR Primers (5′–3′) 

Gene symbol Forward Reverse 

Mmp3 CTCTGGAACCTGAGACATCACC AGGAGTCCTGAGAGATTTGCGC 

Mmp9 GCTGACTACGATAAGGACGGCA TAGTGGTGCAGGCAGAGTAGGA 

IL-6 GTC AAC TGC ATG AAC AGA AAG G AGC AGG CAG GTC TCA TTA TTC 

Mcp CATCACGGACAGAGGTTCTGAG TCCTCTGTTGTGTGGATTCACTC 

Tgf-β GCCTGAGTGGCTGTCTTTTGA CACAAGAGCAGTGAGCGCTGAA 

Act-b CATTGCTGACAGGATGCAGAAGG TGCTGGAAGGTGGACAGTGAGG 

Transcript levels were quantified using the 2Ct method and normalized to the housekeeping gene β- actin, using gene 
specific primer sequences. 

 

 


