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ABSTRACT 
 

The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a 
drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended 
“healthspan” or healthy longevity are urgently needed. 
The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic 
phenomena are modifiable in response to an individual’s environmental exposures, and therefore link an 
individual’s environment to their gene expression pattern. Epigenetic studies demonstrate that aging is 
associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which 
promotes the accumulation of errors. 
In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can 
positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by 
histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in 
DNA methylation at promoters has been observed, which represses transcription of previously active genes, in 
parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - 
usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to 
the transcription of previously repressed genes. 
Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced 
nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed 
chromatin, fewer PTMs and greater regulation by ncRNAs. 
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INTRODUCTION 
 

Aging is a complex time-dependent multifactorial 

biological process, involving a gradual decline in 

cognitive and physiological functions over time. This 

results in a reduced capacity to respond to stressors, 

which in turn increases morbidity and mortality [1–3]. 

Pathological phenotypes associated with aging include 

frailty (a condition associated with progressive physical 

and mental decline [4], chronic medical conditions, 

such as diabetes and cardiovascular disease [5, 6], 

visual impairment, for example age-related macular 

disease [7, 8], cancer [9], and neurodegenerative 

disorders, such as Alzheimer’s, Parkinson’s and 

Huntington’s diseases [10, 11], to name some of the 

most prevalent. 

 

Nonetheless, and despite many studies on aging, this 

subject remains poorly understood [2, 12]. Over the 

last 7 decades, human lifespan has steeply increased, 

which was reflected in the global population – as a 

result, the population of individuals over age 60 has 

increased dramatically from 205 million in 1950 to 

1 billion in 2019. According to a World Health 

Organization (WHO) prediction, by 2030, individuals 

over 60 years old will outnumber children younger 

than 10 years old, and by 2050 the over-60 population 

will number 2.1 billion [13]. On the one hand, this 

extended lifespan is a tribute to the technological 

advances achieved in the last century, in terms of 

health, medicine, sanitation, and education. On the 

other hand, such increase of aged populations sets 

pressure on societies to develop specialized policies 

and services for the elderly, to reduce the impact of 

this trend on our communities [13]. 

 

The decade of 2020–2030 was termed by the WHO as 

the “Decade of Healthy Aging”, with the target of 

sustainably extending healthspan [14]. WHO has 

defined “Healthy Aging” as the possibility for everyone 

to be and do what they value throughout their life. For 

older adults, this means remaining independent and 

capable of participating in their daily activities, even if 

affected by illness [15]. 

 

Strategies to improve healthy aging include lifestyle 

modification (to limit the effects of risk behaviors, 

namely tobacco consumption, and alcohol abuse), 

regenerative medicine and tissue/organ engineering, 

manipulation of genes and pathways associated with 

longevity, and pharmacological compounds to extend 

healthy lifespan [12, 16]. 

 

Epigenetic alterations and genomic instability are also 

potential targets for healthy aging interventions [17–

19]. The importance of epigenetic alterations for 

healthy aging was suggested in 1995 by Herskind and 

colleagues, who reported on a large cohort of Danish 

twins, demonstrating that 25% of their longevity (26% 

for males and 23% for females) was related to DNA 

sequence [20]. The 75% unaccounted for was 

attributed to the modulation of age-associated genetic 

factors by non-heritable environmental influences such 

as diet habits, physical activity, tobacco consumption, 

as well as social interactions established and education 

[21, 22]. Notwithstanding, several studies were 

performed in both animal models and humans, that 

highlighted the relevance of particular genes such as 

insulin or insulin-like growth factor 1 (IGF-1), 

Forkhead box O 3 (FOXO3) and AMP-activated 

protein kinase (AMPK) [23, 24]. Also, these genes 

were shown to be drug targetable, therefore promoting 

healthspan [24]. 

 

During the last decades, several studies suggested a key 

role for epigenetics during the aging process, in contrast 

to the first hypotheses formulated, which attributed 

aging to the accumulation of mutations in the genome 

[25]. Recent studies developed by David Sinclair’s Lab 

further explored this topic, demonstrating that using a 

system that induces changes of the epigenome in mice 

accelerated approximately 50% the DNA methylation 

epigenetic clock [25, 26]. 

 

The present manuscript provides an overview of aging 

from the (epi)genetic perspective, and summarizes 

lifestyle strategies that can be adopted to potentiate 

healthier epigenetic modifications and consequentially 

slow down biological aging.  

 

Epigenetics 
 

Epigenetics can be defined as de novo or inherited 

reversible modifications of the genome, which can 

affect gene expression without altering the DNA 

sequence. Epigenetic alterations are mediated by 

multiple mechanisms, of which histone modifications, 

DNA methylation and changes in non-coding RNAs 

expression are the best studied [18, 27] and whose 

alterations with aging are schematized in Figure 1.  

 

Eukaryotic DNA is organized into higher-order 

chromatin through nucleosomes, which are core 

particles composed of histone octamers. Each octamer 

is constituted by two of each core histone proteins (H2, 

H3A, H3B and H4), around which 147 base pairs of 

DNA are wrapped [28, 29]. The linker histone H1 is 

also found in proximity to this core, promoting its 

stability [30]. Nucleosome core particles are arranged 

on the DNA like “beads on a string”, with a distance of 

approximately 200 base pairs between “beads”. This 

open DNA conformation is termed “euchromatin”. 
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Additionally, the tightly packed or closed conformation 

that DNA and nucleosome core particles adopt after 

condensation by higher-order structures was termed 

“heterochromatin”. Condensation of the DNA into 

heterochromatin makes it inaccessible and protects it 

from damage – a benefit that is gradually lost with old 

age [30, 31]. 

 

Histone modifications and heterochromatin decline 

 

Post-translational modifications (PTMs) on histones 

have multiple effects on gene expression. PTMs 

regulate chromatin compaction by altering histone-

histone or histone-DNA interactions, modulate local 

gene expression directly and impact the recruitment  

of effector proteins and transcription factors,  

thereby controlling gene expression indirectly [31, 32]. 

There are more than 20 post-translational histone 

modifications currently described in literature - among 

these are methylation, acetylation, phosphorylation, 

ubiquitylation and sumoylation - and their effects are 

interdependent, making it challenging to study how one 

specific alteration impacts genetic regulation [33], since 

it is often a combination of modifications which guides 

specific regulatory functions [34]. 

 

Histone modifications occur in the flexible (and easily 

accessible) N-terminal histone tails protruding from the 

nucleosome core or in other histone domains, such as 

the lateral histone regions or the central globular 

domains, directly impacting chromatin binding and 

associated activity [33]. Additionally, histone variants, 

such as H2A.W and H3.3, gradually replace some of the 

core histones during aging, promoting chromatin 

architecture changes, and adding another layer of 

complexity to an already intricate system [35]. 

 

 
 

Figure 1. Representation of age-associated epigenetic changes. (A) Representation of a young individual chromatin: tight chromatin 

compactation, high levels of DNA methylation, few histone PTMs (particularly acetylation), canonical histones and balanced non-coding 
RNA regulation; (B) Representation of an old aged individual chromatin, we may observe a looser chromatin structure, lower levels of DNA 
methylation, higher levels of histones PTMs (particularly acetylation), histone variants presence, chromatin remodeling and disturbances in 
ncRNA regulation, what is reflected in an overall chromatin instability increase, when compared with the structure presented in A. The 
transition between the structures presented in A and B is represented by arrows. The arrows in red present the causes (here presented as a 
lifetime of risk behaviors (namely tobacco and alcohol consumption), unbalanced diet and sedentarism) whose effects are reflected by the 
arrows in orange/red, where darker colors represent more pronounced epigenetic alterations. 
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In the last decade, several studies have described how 

histone modifications work in tandem to regulate 

genomic expression [36, 37]. The best studied PTMs are 

acetylation and methylation, which occur primarily on 

lysine and arginine residues in the histone tails [38, 39]. 

These residues are likely selected for PTM due to their 

positive electrostatic charges, which interact with the 

negatively charged nucleic acid nucleotides forming 

strong electrostatic bonds [38, 40]. In the case of 

acetylation, the addition of acetyl groups neutralizes the 

positive charge of arginine or lysine residues, 

decreasing the strength with which the modified 

histones interact with the DNA, resulting in 

euchromatin formation, increased transcription and 

increased genomic instability [38, 41]. Nonetheless, a 

study by Li and colleagues reported that the acetylation 

of lysine 85 of linker histone 1 resulted in 

heterochromatin condensation, a clear example of how 

the same PTM may impact genomic structure 

differently, depending on which residue is modified and 

the interactions it establishes [42]. The impact of 

histone methylation is similarly complex, with the 

stability of the genome being altered in accordance with 

the position of the modified residue and its interactions 

with other PTMs, with some methylated residues 

favoring genomic transcription in some contexts, while 

promoting repression in others [43, 44]. For example, 

methylation of H3K4 (lysine 4 of histone 3) represses 

transcription in the presence of H3K9 methylation but 

increases transcription when H3K9 is acetylated [45]. 

 

Histone methylation is mediated by lysine or arginine 

methyltransferases (KMTs and PRMTs, respectively) 

that add methyl groups to the target histone residues 

using S-adenosylmethionine (SAM) as a methyl group 

donor [46]. Demethylation is mediated by histone 

demethylases (HDMs), that remove methyl groups [41, 

47]. Histone acetylation is mediated by histone 

acetyltransferases (HATs), which add acetyl groups 

from acetyl-CoA [46]. Deacetylation is mediated by 

histone deacetylases (HDACs) – which remove those 

groups [47]. HATs and HDACs have been the target of 

recent pharmaceutical studies, looking for therapeutic 

agents that can modulate gene expression in cancer [44, 

48] and aging.  

 

Aging is associated with an overall increase in histone 

acetylation [49]. A group of HDACs known as Sirtuins 

have been studied as a target for improving healthspan 

[50]. Sirtuins belong to a family of NAD+ dependent 

proteins with histone deacetylase function and their 

activity levels decrease with aging, in tandem with a 

decrease in NAD+ levels [49, 51]. Members of the 
Sirtuin family (SIRT), namely SIRT1, SIRT3 and 

SIRT6, have been shown to promote health and 

longevity in various model organisms, from yeast to 

mammals (particularly in situations of caloric restriction 

and high exercise). As a result, Sirtuins have been 

considered as potential therapeutic targets to extend 

healthy aging, either by increasing the availability of 

NAD+, essential to keeping metabolism at the required 

rates, or by using pharmacological compounds (such as 

resveratrol) that directly activate Sirtuins function [49, 

52–54]. 

 

Several specific PTMs have also been associated with 

aging including H4K16ac, acetylation of lysine 16 of 

histone H4 (associated with reduced chromatin 

condensation), H4K20me2 and H4K20me3, di- and tri-

methylation of lysine 20 of histone H4 (which increase 

chromatin compaction in vitro) and H3K9me3, tri-

methylation of lysine 9 of histone 3 (which promotes a 

stronger binding between the DNA and the histone 

octamer - a modification that is gradually lost with 

aging) [29, 31, 55]. 

 

In addition to changes in acetylation and other PTMs, 

aging is associated with a global reduction in core 

histones proteins accompanied by a decline in protein 

synthesis [17]. The loss of histones implies a decrease 

in heterochromatin, an observation which led to the 

“heterochromatin loss model of aging”. This model 

suggests that there are conformational changes in 

heterochromatin structure with aging that result in the 

activation of genes that were previously silenced. These 

alterations, in turn, cause aging and cellular senescence 

along with increased genomic instability - further 

aggravated by chromatin relaxation, leading to age-

associated changes in gene expression and increased 

genome damage [18, 29]. 

 

DNA methylation and aging 

 

DNA methylation (DNAm) is observed in all 

eukaryotes, from plants and fungi to animals, and it  

is central to cell differentiation and embryonic 

development [56]. After replication, a methyl group is 

added to the fifth carbon of the cytosine base ring 

(5mC), most commonly in genomic locations that are 

rich in cytosine-guanine dinucleotides, known as CpG 

islands [57]. Methylation can also be observed at other 

nucleotide pairs (adenine-cytosine; thymine-cytosine; 

cytosine-cytosine), which are known as non-CpG, or 

CpH sites [39, 58], although it is less frequent than at 

CpG sites. Non-CpG methylation is particularly 

common in embryonic stem cells [59] and neurons [60]. 

DNAm is much more prevalent in heterochromatin than 

euchromatin [30]. 

 
DNAm is mediated by the DNA methyltransferases 

(DNMTs) 1 and 3, with S-adenosyl methionine (SAM) 

serving as donor for the methyl group, the same 
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molecule that serves as donor for histone 

methyltransferases [46, 61]. The function of DNMT1 is 

to maintain existing methylation sites, by adding methyl 

groups at CpG sites that are methylated on only one 

DNA strand, such as after DNA replication. Conversely, 

DNMT3A, DNMT3B and DNMT3L promote de novo 

DNA methylation [57, 58, 61]. 

 

DNMTs activity is balanced by DNA demethylation, 

which can be either passive or active. In passive or 

spontaneous demethylation, the cytosine loses its 

methyl group during replication and is converted to 

thymine, which is posteriorly exchanged through 

repair mechanisms to an unmethylated cytosine. 

Active demethylation is mediated by Ten-Eleven 

Translocation (TET) proteins. These catalyze the 

demethylation process through successive oxidations, 

from 5mC to 5-hydroxymethyl cytosine (5hmC) and 

afterwards to 5-formylcytosine and 5-carboxyl-

cytosine, which are recognized by Thymine DNA 

Glycosylase (TDG) and returned to their unmethylated 

cytosine state by the base excision repair (BER) 

pathway [57, 62]. There are several proteins involved 

in this process. Among them, are the protein 

GADD45A (“Growth Arrest and DNA Damage 

Protein 45 A”) and the members of the AID/APOBEC 

(Activation Induced Cytidine Deaminase (AID)/ 

Apolipoprotein B Editing Complex (APOBEC)) 

protein family. GADD45A recruits TDG in situations 

of DNA damage [63], and recognizes promoters’ R-

loop conformation, leading to TET recruitment and 

demethylation at CpG islands [64]. In addition, the 

members of the protein family AID/APOBEC are 

described as having a role in demethylation through 

deamination of 5mC cytosine [65], which generates a 

G-T mismatch that is posteriorly corrected by TDG 

[66].  

 

In young stages of life, eukaryotic DNA is 

hypermethylated in repetitive elements of the genome, 

in intergenic regions and in gene bodies. Hyper-

methylation promotes genomic stability and limits 

transcription of these regions of the genome. With 

aging, there is global hypomethylation of previously 

methylated regions, leaving these more available to 

transcription factors and other effectors and 

consequently promoting transcription of these genomic 

sites [59]. This hypomethylation is associated with a 

decrease in DNMT1 expression [67], which likely 

contributes to impaired maintenance of DNAm patterns 

associated with aging. 

 

There is also, contradictorily, some evidence of age-
associated DNA hypermethylation in genomic regions 

that in young individuals’ DNA are usually un-

methylated. Methylation of these regions is associated 

with genomic compactation, restricting gene 

transcription, which may also lead to genomic 

instability, if genes that should be transcribed find 

themselves restricted by this event [29, 56, 68]. 

 

DNAm alterations are widely described in cancer 

studies. Hypermethylation of tumor suppressor genes 

and hypomethylation of oncogenes are both associated 

with genomic imbalance and dysregulated proliferation 

of cancer cells [69]. A similar phenomenon is 

hypothesized to occur in aging, with age-associated 

genes as the target - in this case, hypomethylation at the 

promoters of genes regulating senescence may translate 

into increased expression of these genes and accelerated 

aging.  
 

Recently, DNAm has been used as a biomarker to 

measure aging by analyzing methylation status across a 

large set of CpG sites [70]. This led to the creation of 

epigenetic clocks (e.g. Horvath’s, Hannum’s, PhenoAge 

and GrimAge [71, 72], which were designed to predict 

chronological age based on epigenetic criteria. 

Subsequently, epigenetic clocks have been used as a 

proxy for biological age and have been extensively 

studied for their ability to predict healthspan, disease 

risk and mortality [73, 74] Epigenetic clocks are reliable 

predictors of chronological age, but their utility in 

predicting mortality and healthspan is less clear. Further 

studies are required to determine whether specific CpG 

sites can be used to predict healthy longevity [75–78]. 

 

Modulation of aging by non-coding RNAs  

 

Non-coding RNAs (ncRNA) contribute for the control 

of gene expression as they have key regulatory 

functions in both physiological and biological processes 

[79]. As measurable molecules, circulating ncRNAs and 

particularly microRNAs (miRNAs), are considered 

promising biomarkers for the study of aging and age-

associated processes, as they have been linked to aging 

(and age-related pathways), cellular senescence and 

age-associated conditions [80–83]. 
 

MiRNAs, the most studied of the ncRNAs, are short 

molecules of 18 to 25 nucleotides that regulate gene 

expression by binding to the 3′ untranslated region 

(3′UTR) of their target genes blocking protein 

translation or inducing mRNA degradation [84]. There 

are more than 2800 miRNAs encoded in the human 

genome, and it is estimated that at least 60% of all 

human genes are regulated by miRNAs [80, 85, 86]. 

MiRNAs may also impact other epigenetic events by 

regulating their associated enzymes. For instance, 

members of miR-29 family, modulate the expression of 

DMNTs and TET enzymes in both healthy and 

pathological conditions, namely brain maturation and 
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cancer [84, 87], leading to the reduction of DNA 

hypermethylation in tumor suppressor genes [87, 88]. 

 

LncRNAs or “long non-coding RNAs” are a diverse 

class of ncRNAs longer than 200 nucleotides. They can 

bind to DNA, RNA or proteins and are involved in the 

post-transcriptional and post-translational regulation of 

gene expression. It has also been suggested that 

lncRNAs may interfere with chromatin structure 

modulation and/or transcription [79, 89]. 

 

Both of these ncRNAs have been implicated in 

senescence and inflammation-related pathways (such as 

the p23/p21 and the nuclear factor kappa light-chain 

enhancer of activated B cells (NF-κB)), in the 

development of neurological disorders (such as 

Huntington’s and Alzheimer’s disease) [90] and other 

age associated conditions, such as fibrosis [79], 

cardiovascular disease [89, 91] and osteoporosis [92]. 

Thus, ncRNAs are increasingly being targeted for anti-

aging therapies [93]. 

 

ncRNAs influencing aging include miR-28e3p and 

miR-126, whose levels are reduced in diabetes mellitus 

type 2 [94], and miR-146a, that inhibits NF-κB pro-

inflammatory activity and shows reduced expression 

levels associated with aging [6]. Another ncRNA, miR-

21, was demonstrated to modulate inflammation and the 

NF-κB pathway and shows altered levels in cardio-

vascular diseases and osteoporosis [92, 95]. Another 

ncRNA that has been linked to aging is nc886 (or pre-

miR-886), which was shown to impact senescence by 

reducing the expression of senescence biomarkers, such 

as p16INK4A and Cyclin Kinase Inhibitor p21 

(p21Waf1/Cip1), and decreasing reactive oxygen species 

(ROS) levels in fibroblast cell models. This molecule is 

under investigation as a potential target for anti-aging 

therapy [96]. 

 

In short, the aging process leads to alterations in non-

coding RNA levels, which in turn modify the 

expression levels of age-related genes and increases 

age-related genomic instability. 

 

Application of nutritional and lifestyle strategies 

to epigenetically modulate healthspan 
 

Studies have shown that from an economic point of 

view is more advantageous for society to promote even 

a slight increase in healthspan, rather than investing in 

disease-specific adaptions that cater to an aged 

population [16, 97]. Henceforth, it is important to 

identify biomarkers and develop biological clocks that 
can assess the value of novel strategies that may 

potentially overcome or delay conditions leading to 

poor health amongst the elderly [98–100]. 

Over the years, there have been many theories about 

how to extend healthy lifespan: from eating superfoods 

and following fad diets, to adopting specific 

behavioral habits – making it difficult to distinguish 

what is myth from what is backed up by scientific 

evidence. While there is broad scientific consensus 

that daily habits impact aging, there is no magic 

solution, much less a “one size fits all” approach to 

achieving a long and healthy life. Nonetheless, some 

practices have shown promising results in scientific 

studies [97]. 

 

One lifestyle factor that has an impact on healthspan is 

literacy [101]. Intriguingly, low levels of literacy are 

associated with epigenetic changes, similar to the effect 

of alcohol consumption [102, 103]. Other lifestyle factors 

that impact epigenetic age acceleration include living 

environment, stress levels [104, 105], the complexity of 

an individual’s social network and their economic power 

[99, 102]. Lack of sleep [106, 107], coffee and tea 

consumption [108, 109], and smoking [110] are also 

associated with similar epigenetic age acceleration.  

 

In the following sections, we examine the evidence for 

the impact of lifestyle factors on healthy aging and 

present suggestions for ways to promote healthy aging 

through simple changes regarding nutrition and physical 

activity. 

 

The impact of nutrigenomics on healthspan 

 

Nutrigenomics is the study of nutrients and diet, and of 

their influence on the epigenome. It aims to describe, 

characterize, and understand the mechanisms by which 

our dietary intake influences gene expression. The field 

of nutrigenomics has emerged with the adoption of better 

sequencing technologies, such as next-generation 

sequencing (NGS), and the development of precise 

techniques for whole-genome chromatin analysis, namely 

HiC and ATAC-seq (which stand for “High‐throughput 

Chromosome Conformation Capture technique” and 

“Assay for Transposase-Accessible Chromatin with high-

throughput sequencing”, respectively) [111–113]. These 

technologies have enabled scientists to study the impact 

of nutrition on gene expression both in the short and long 

term [111, 112].  

 

Popular wisdom suggests that there are multiple diets 

and foods that can promote healthy aging. However, 

few of these have been shown to positively impact 

aging and aging associated pathologies. Evidence does 

exist for the Mediterranean and the Okinawan diets, 

both of which are associated with lower levels of 

inflammation and oxidative stress, reduced incidence of 

cancer, as well as a decreased risk of cardiovascular 

disease [114–116]. 
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Both the Mediterranean and Okinawan diets include 

low glycemic index foods and favor the consumption of 

seasonal local foods - particularly fruits, vegetables, and 

nuts – along with moderate intake of animal products, 

olive oil, spices and red wine. They ensure a proper 

intake of valuable nutrients (see Table 1), while 

preventing overeating [115, 117, 118]. In epigenetic 

studies, both diets have demonstrated anti-aging 

benefits in human subjects (Table 1) [114], and they 

have also been shown to reduce epigenetic age, 

according to the DNAGrimAge epigenetic clock 

[72, 102]. 

 

“Superfoods”, such as algae [119, 120], curcumin [121, 

122], kale [123, 124], and olive oil [125–127] as well as 

particular nutrients and/or food components, such as 

anti-oxidants [53, 128, 129], vitamins [113, 130] and 

polyphenols [131–133] have also been studied to 

determine their impact on epigenetics. In Table 1, we 

present food-associated epigenetic alterations reported 

in the scientific literature with evidence from human 

studies.  

 

Caloric restriction 

 

Caloric restriction (CR), reducing an individuals’ 

caloric intake by 10% to 40% without compromising 

nutritional value, has been shown to have a significant 

and sustained effects on health and lifespan in several 

model organisms, from yeasts to mice, as well as in 

humans [134–137]. In communities with extended 

longevity, particularly the Okinawa region of Japan, 

there is evidence of reduced calorie consumption, 

which several researchers have suggested is a key 

reason for increased healthspan [1, 138–140]. In 

addition, there are reports of individuals practicing CR 

who have achieved remarkable healthspan [141, 142]. 

A concept associated with caloric restriction is 

hormesis, which may be defined as the adaptative 

response of an organism to its exposure to chemical 

compounds or environmental factors. Dietary 

restriction is considered an environmental factor on 

hormetic studies [143]. 

 

At a cellular and molecular level, the benefits of CR 

include an increase in DNA repair - by promoting the 

maintenance of BER activity [144]-, delayed 

neurodegeneration in the central nervous system, 

improvement in glucose metabolism [145], a reduction 

in the incidence of diabetes and cancer, and a reduction 

in epigenetic aging-associated events, namely age-

associated global hypomethylation [1]. CR is also 

closely related with autophagy. This is in large cause 
due to nutrient depletion, which leads to a reduction of 

intracellular acetyl coenzyme A (AcCoA) and 

consequentially to protein deacetylation [146]. 

On a physiological level, CR exerts its influence 

through nutrient-sensing pathways [147] by generating 

a cascade that begins with a reduction in blood glucose 

levels, leading to an increase in insulin sensitivity 

[148] and to a reduction in insulin/insulin-like 

signalling and its’ associated pathways such as IGF-1 

pathway [149]. These alterations decrease cell growth 

and proliferation and promote cell maintenance 

through repair mechanisms [150]. Furthermore, the 

reduced availability of nutrients also inhibits the 

serine/threonine protein kinase mechanistic Target Of 

Rapamycin (mTOR) pathway and FOXO proteins, 

particularly FOXO3 [151]. FOXO3 and SIRT1 are 

phosphorylated by AMPK, whose activation leads to a 

decrease in protein synthesis and to the referred 

increase of autophagy at the cellular level [151, 152] 

as well as ketogenesis and fatty-acid oxidation in the 

liver [141]. 

 

One of the results of CR is weight loss, that diminishes 

the risk of age-associated diseases, namely 

cardiovascular, as well as an increase in lifespan [1, 

139]. The CALERIE 2 study, which studied the impact 

of CR on longevity in humans, recruited over 200 

healthy participants who maintained 25% CR for two 

years. In this study, CR led to improvements in multiple 

dimensions including quality of life, sleep and sexual 

function of the participants [153].  

 

At the epigenetic level, CR has a significant impact on 

epigenetic events associated with aging. CR delays 

DNAm age-related alterations [136, 145], such as the 

increase in DNMT3a immunoreactivity [154], reduces 

histone modifications, partly through Sirtuin activation 

[155], and alters microRNA activity [156], namely 

miR-125 whose target gene - chinmo - impacts fat 

metabolism and longevity [157]. Interestingly, a study 

by Maegawa and colleagues, in 2017, reported a 

significant decrease in age-related methylation 

progression in Rhesus monkeys who maintained 30% 

to 40% CR during approximately 10 years. The 

monkeys also showed epigenetic age deceleration 

relative to their chronological age [158]. The benefits 

of CR are further supported by a study from Pifferi 

and team in 2018 that demonstrated a 50% increase in 

the lifespan of the grey mouse lemur in response to 

30% CR. There was also a significant reduction in age-

associated diseases, compared to a control group with 

a normal diet [159]. 

 

Notwithstanding these advantages, CR is not easy to 

adopt, which led to the development of intermittent 

fasting approaches in the hopes of reaping some of the 
benefits of CR [160]. These range from alternating 

fasting with normal feeding on different days of the week 

[139, 161] to restricting the time of the day individual 
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Table 1. Food-induced epigenetic alterations. 

Compound Foods Overall impact Epigenetics impact References 

Betalains 

(Indicaxanthin) 

Red 

Beetroot; 

Cactus Pear 

(Opuntia 

Ficus Indica) 

Antioxidant, Anti-

inflammatory activity, 

Anti-carcinogenic 

DNAm modulator: increases the 

expression of genes involved in DNA 

demethylation of tumor suppressor gene 

promoters 

[216, 217] 

Catechin/ 

Epicatechin  

(EGCG) 

Green Tea, 

Cocoa, 

Apple 

Antioxidant, 

Neuroprotective, Anti-

inflammatory activity, 

Anti-carcinogenic 

MiRNA modulator: increases expression 

of oncosuppressor miRNAs (i.e., miR-29) 
[88, 133, 218] 

Curcumin 

(diferuloyl-

methane) 

Turmeric 
Anti-inflammatory 

activity 

DNAm modulator: DNMTs’ regulating 

functions through hypomethylation of 

oncosuppressor genes; Histone 

modifications: regulates HATs and 

HDACs; MiRNA modulator: increases 

expression of oncosuppressor miRNAs 

[122, 219, 

220] 

Hydroxytyrosol 

Oleic acid 
Olive oil 

Antioxidant, 

Cholesterol and Low-

Density Lipoprotein 

(LDL) reductor 

MiRNA modulator: increases expression 

of oncosuppressor miRNAs, as well as 

miRNAs associated with fatty acid 

biosynthesis (let-7e-5p) and age-associated 

signalling (miR-17-5p) 

[117, 126, 

127] 

Lycopene Tomato 
Antioxidant, Anti-

inflammatory activity 

DNAm modulator: high lycopene levels 

coincided with T-cell signalling protein 

hypermethylation and altered T-cell 

signalling pathway in “head and neck 

cancer survivors” 

[121, 221] 

Omega-3 fatty 

acid 

Fish oil 

(i.e., Sardine, 

Salmon), 

Nuts 

Anti-inflammatory 

activity, Antioxidant 

Histone modifications: suppresses 

HDACs, promoting gene transduction; 

DNAm modulator: alters TET1 

expression; MiRNA modulator: 

upregulates hsa-miR-551a (tumor 

suppressor miRNA)  

[222–224] 

Quercetin 

Tomato, 

Onion, 

Capers 

Anti-inflammatory 

activity, Anti-

carcinogenic, 

Neuroprotective 

MiRNA modulator: increases expression 

of oncosuppressor miRNAs 

[131, 225, 

226] 

Resveratrol 

Grapes, 

Nuts, 

Berries, Red 

Wine 

Anti-inflammatory 

activity, Antioxidant, 

Vasoprotective 

properties; 

Neuroprotective 

Histone modifications: inhibits HATs and 

HDACs; DNAm modulator: regulates 

DNMTs; MiRNA modulator: upregulates 

the tumor suppressor miR-let7A  

[53, 182] 

Sulforaphane/ 

isothiocyanates 

Broccoli, 

Cabbage, 

Kale 

Anti-carcinogenic, 

Anti-inflammatory 

activity, Antioxidant, 

Proteostasis promoter 

Histone modifications: inhibits HDACs; 

DNAm modulator: regulates DNMTs, by 

decreasing DNMTs’ expression and 

promoting the activation of tumor 

suppressor genes 

[227–229] 
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Sulfur-containing 

compounds, i.e., 

diallyl trisulfide 

(DATS) and  

S-allylcysteine 

(SAC) 

Garlic Anti-carcinogenic 

DNAm modulator: DNMTs’ regulating 

functions, suppressing tumor proliferation; 

Histone modifications: reduces HATs and 

HDACs activity 

[230, 231] 

Organization by alphabetical order of compounds. For each compound there exists at least one study performed in human subject. 

 

eats (time-restricted feeding) [160, 162]. However, the 

health benefits of these strategies are not as clear as the 

benefits provided by classic caloric restriction. 

 

The benefits of CR need to be balanced against 

potential negative effects [141]. A study of grey mouse 

lemurs reported grey matter reduction in the group that 

underwent 30% CR [159]. Extreme CR may also result 

in significant weight loss and decreased body fat, which 

can lead to health complications such as bone density 

disorders (osteoporosis) and compromised healing 

[163], infertility, and increased cognitive impairment 

and weight gain in offspring [164]. There is also the risk 

of eating disorders, such as anorexia and bulimia [165]. 

 

For these reasons, there is great interest in 

pharmaceutical agents that provide the beneficial effects 

of CR without the need to undergo a calorie-restricted 

diet [166]. Several drugs are already in clinical trials 

[167], while other compounds are being commercialized 

by emerging companies [168]. One class of potential CR 

mimics is the NAD+ precursors [169] including 

nicotinamide mononucleotide (NMN) [170, 171] and 

nicotinamide riboside (NR) [172]. These molecules have 

been shown to have a preventive effect on age-

associated conditions. FOXO3 transcription factor is 

also emerging as a therapeutic-target in age-related 

diseases and healthspan focused studies, as it has been 

associated with longevity in human and animal model 

studies [173–175]. Since proteins from this family group 

are mainly regulated through PTMs (namely by HATs 

and HDACs), they become particularly desirable targets 

to drug-based treatments [173, 174]. Moreover, in  

the USA it was established a consortium named 

“Interventions Testing Program (ITP), where drugs are 

tested to assess their effects in mice’ lifespan [24, 176]. 

 

Some polyphenol treatments have also demonstrated to 

mimic CR effects by interacting with longevity associated 

signalling pathways and molecules [50, 52, 138, 150, 

177]. Among these we can find resveratrol (presented in 

Table 1) [146], metformin (an anti-diabetic drug used in 

type 2 diabetes mellitus to control high blood sugar) [178, 

179] and rapamycin [180] that demonstrated not only to 

have anti-inflammatory and anti-oxidant activities, and to 

promote autophagy, but also to induce positive aging-

associated epigenetic alterations: 

• In an extensive revision work performed by Pyo et al., 

the mechanisms through which resveratrol impacts 

aging in humans and in different animal models were 

thoroughly described. It was considered that the main 

mechanisms involved were the activation of proteins 

from Sirtuin family (such as SIR2 and SIRT1, which 

have deacetylase activity) and peroxisome-

proliferator-activated receptor-g coactivator-1α (PGC-

1α), and regulation of the AMPK pathway [53, 181, 

182]. Furthermore, studies with human old aged 

subjects demonstrated that resveratrol supplemen-

tation decreased inflammation markers such as 

Interleukin (i.e., IL-6) and Tumor Necrosis Factor-α 

(TNF-α), and reversed histone PTM markers of aging, 

particularly through modulation of acetylation [182–

184]. In addition, a study performed by Jimenez et al. 

showed resveratrol is able to induce nuclear 

translocation of FOXO3 and to activate this protein 

independently of phosphoinositide 3-kinase (PI3K)/ 

AKT signalling [173]. 

 

• Studies developed using metformin - both as a 

therapeutic intervention on aging and age-associated 

diseases as well as on the hallmarks of aging 

themselves - further demonstrated the potential of this 

compound, through modulating IGF-1 and AMPK 

activation and mTOR pathways [185, 186]. It was 

demonstrated that this drug impacts the epigenetic 

events described above by altering the activity of 

HATs, HDACs and DNMTs enzymes, which are 

phosphorylated by AMPK [187]. Moreover, a study 

by Cuyas and colleagues computationally predicted 

metformin’ targets, including several epigenetic 

modifiers, among which KDM6A/UTX, a member of 

the H3K27me3-specific demethylase subfamily [188]. 

 

• Rapamycin is a drug able to mimic CR by 

compromising a cell capacity to sense the nutrients in 

its environment [150]. It targets the mTOR pathway, 

by binding to FK-506 binding protein 12 (FKBP12) to 

establish a complex of three different molecules, 

which inhibits the mTORC1 subunit. This mechanism 

showed advantages when applied to disease models, in 

both animal models and humans [150, 180, 189, 190], 

as well as lifespan, by increasing autophagy rates. 

Additionally, the impact of rapamycin on epigenetics 
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has also been demonstrated in several studies. It was 

shown that it not only maintains young markers of 

DNAm in mice [191], but also that it promotes the 

recovery of histone methylation markers which are 

lost with old age in mice brain tissues [189]. 

 

Henceforth, it is possible to observe the closeness of the 

mechanisms described as associated to CR and to the 

compounds presented, further reiterating the similarities 

between them. Furthermore, this also suggests the 

potential of these strategies as being both com-

plementary and extensions of each other. 

 

The impact of physical exercise on epigenetics 

 

Another strategy to achieve extended healthspan is 

physical exercise. Physical activity may be defined as 

“any movement executed by skeletal muscles, that 

requires energy expenditure” [48, 192]. Its opposite, 

sedentary behavior, is known to increase age-associated 

conditions including cardiovascular conditions, metabolic 

syndrome [193], incontinence [194], cancer, cognitive 

decline, and neurodegenerative disorders [4, 195–197]. 

Studies have demonstrated that even a slight increase in 

physical activity positively impacts healthspan and 

reduces frailty, as well as having neuroprotective effects 

and improving cognition [198, 199]. It also reduces age-

associated conditions and reduces inflammaging (a 

generalized increase in circulating pro-inflammatory 

cytokines, such as Interleukin-6 (IL-6) and Tumor 

necrosis factor α (TNF-α), that is associated with old 

age) and immunosenescence [48, 200]. 

 

Contrasting with the topics of nutrition and caloric 

restriction, the cellular and molecular mechanisms 

underlying the health benefits of physical activity in 

humans remain poorly understood [201, 202]. In a study 

performed by Hoshi et al., 145 bioactive lipids (cellular 

signalling molecules which are strongly related with 

immunity regulation, inflammation and homeostasis) 

were associated with higher levels of physical activity, 

12 of which were shown to be inversely correlated with 

cardiovascular disease events [202]. Moreover, a 

genome-wide association study by Wang et al. screened 

genomic data from approximately 704 000 individuals 

with differing physical activity habits. They targeted 99 

loci, where 104 independent association signals were 

identified, among which p.Glu635Ala, a missense 

variant rs2229456 of ACTN3. This variant was further 

explored using molecular dynamics simulations, and 

was associated with increased “moderate-to-vigorous 

intensity physical activity during leisure time” habits, 

likely “by reducing susceptibility to exercise-induced 

muscle damage” [203]. O’Reilley and colleagues 

reviewed how physical activity relates with mito-

chondrial remodelling and how these, in turn, influence 

neurodegeneration. They highlighted how 

mitochondrial function strongly benefits from aerobic 

exercise in some tissues, and that this may positively 

impact the brain by delaying the age-associated increase 

of oxidative stress that leads to mitochondrial decline 

[204]. Furthermore, a review by Reddy et al. explores 

the “exercise responsome” and several molecules 

(exerkines) which are released during physical activity 

(such as Cathepsin B, Adiponectin, Osteocalcin and 

FGF21) [205, 206]. In this same study, exercise 

mimetic-drugs are studied and it is proposed that 

AMPK-SIRT1-PGC1α-BDNF pathway is the main 

mediator of the “cognitive benefits associated with 

exercise” [205]. 

 

On an epigenetic level, regular exercise leads to slower 

progression of the DNA methylation alterations 

associated with age [207–209], and to beneficial changes 

in miRNAs that regulate inflammation levels [48]. The 

epigenetic effects of physical exercise on human subjects 

reported in the literature are presented in Table 2. These 

studies demonstrate the many positive impacts of 

physical exercise on health status, by reducing age-

associated and disease-associated epigenetic changes. 

 

The World Health Organization has promoted the 

philosophy that “some (exercise) is better than nothing”, 

even if it is just part of an individual’s daily routine, 

associated with everyday tasks [192]. However, studies 

have demonstrated that consistent physical activity of 

variable intensity has more impact on biological aging 

than exercise done in a purely occupational context 

[210], and research also described that exercises targeting 

relaxation - such as yoga and meditation -, show a 

decrease of Intrinsic Epigenetic Age Acceleration 

(IEAA) [211]. Moreover, the epigenetic benefits that 

appear with exercise are severely reduced or disappear 

shortly after physical activity interruption [212], so 

consistency in physical activity is likely to be important. 

 

It has been shown that DNAm events are influenced by 

physical exercise and physical fitness. There are 

emerging DNAm clocks which have presented 

promising results in estimating healthy aging and its’ 

progression. One of those is DNAmFitAge, which 

demonstrated to distinguish between individuals who 

are highly fit from individuals with low to medium 

fitness, while also relating verbal short-term memory to 

decelerated aging [213]. Another DNAm clock is the 

DNAm GrimAge clock, which shows predictive 

capacity of lifespan and healthspan and a strong 

relationship with lifestyle factors, including physical 

activity [72, 214]. Moreover, several other epigenetic 
clocks, including the Hannun’s, Horvath’s and 

PhenoAge [215] associated aging markers with physical 

activity and disease. 
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Table 2. Exercise-associated epigenetic alterations. 

Exercise Individuals tested* 
Intensity/Frequency during/ 

in study 
Epigenetic impact References 

Aerobic 

and 

resistance 

training 

(jogging, 

cycling, 

swimming, 

and others) 

Healthy  

(male marathon 

runners) 

Immediately after and 24h post 

marathon; 

MiRNA modulator: changes in 

circulatory miRNA levels after racing 
[232] 

Healthy  

(male cyclists) 

Before and after the 

supplementation in EVOO ** - 

alongside cycling - 4 weeks 

DNAm modulator: levels of DNMT3A 

and DNMT3B mRNA expression 

decreased following exercise 

[233] 

Non-Healthy 

(obese) 

3 months study,  

2 times per week,  

90 minutes session; 

MiRNA modulator: i.e., miR-146a-5p 

levels were significantly decreased after 

intervention - positive impact in 

inflammation 

[234] 

Non-Healthy  

(hypertensive) 

3 months study,  

4 times per week,  

40 minutes session 

DNAm modulator: repetitive elements 

methylation (i.e., ALU), potential role in 

reducing systemic blood pressure 

[208] 

Non-Healthy 

(colorectal cancer 

survivors) 

6 weeks - resistance exercise 

training - samples collected 

before and after intervention 

DNAm modulator: changes in promoters of 

biologically related genes of processes such 

as immune response and disease; reduced 

methylation of disease preventive genes 

[235] 

Aged  

(women; 68 ± 7.5 

years old) 

4 study groups: resistance 

training, water aerobics, water 

aerobics and resistance exercise, 

and control group (non-

practitioners) individuals, with 

3+ months of practice, 2/3 times 

per week 

DNAm modulator: increased global and 

gene specific (Interleukin-17 (IL-17A) and 

Interferon gamma (IFN-γ)) DNA 

methylation - positively impacting 

inflammation 

[236] 

Aged  

(70–75 years old) 

12 weeks, low frequency, 

moderate intensity, explosive-

type resistance training 

DNAm modulator: reduction of global 

DNAm levels, together with better 

leukocyte telomere length maintenance 

[237] 

Relaxation 

and stress 

targeted 

exercises  

(Tai Chi, 

Meditation, 

Yoga) 

Healthy  

(women – 45 to 88 

years old) 

Tai Chi practitioners for 3+ 

years, for at least 1 hour per 

week) 

DNAm modulator: decreased age-

associated DNAm levels - trend more 

evident in older subjects (>55y) 

[207] 

Healthy  

(individuals younger 

than 52 years old and 

individuals aged 52 

or older) 

Meditation practitioners for 3+ 

years, for at least 30 minutes 

daily 

DNAm modulator: Intrinsic Epigenetic 

Age Acceleration (IEAA) similar in 

practitioners younger and older than 52 

years old. In the control group there were 

significative differences between age 

groups, with higher IEAA in the ≥ 52 group. 

[211] 

Healthy  

(30 to 65 years old) 

Yoga and Meditation Based 

Lifestyle Intervention (YMLI) 

12 weeks, 5 days per week, 

90 minutes per day 

Genomic stability: DNA damage and 

genomic instability reduction. Cellular 

aging biomarkers improvement: increased 

balance of inflammation and cellular 

oxidative stress levels 

[238] 

Non-Healthy  

(infertile males) 

21 days, daily Yoga practice – 

1 hour per day 

Collection of samples before and 

after intervention 

DNAm modulator: over 400 DNAm 

changes observed in fertility-associated 

gene promoters, together with improved 

sperm parameters 

[239] 

Aged  

(community dwelling 

60 + years old) 

1 month, daily Tai Chi practice - 

1 hour per day 

DNAm modulator: Brain-derived 

neurotrophic factor (BDNF) promoter 

demethylation - marker of depression 

recovery: marked results in depression 

symptoms improvement 

[240] 

*The individual tested/participants were discriminated in their respective studies in accordance to medical conditions, gender and age. 
**EVOO stands for Extra Virgin Olive Oil. 
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CONCLUSION AND FUTURE PERSPECTIVES 
 

Aging is a complex and natural process in every living 

organism’s life cycle and it manifests in many ways, 

including epigenetics. In this article we explore aging 

and its associated epigenetic changes as well as how 

these changes may be delayed or reversed through 

nutrition, caloric restriction and sustained physical 

activity, as schematized in Figure 2. In this Figure we 

may observe a looser chromatin structure in the 

component B than in the component A, as well as lower 

levels of DNA methylation and increased histone 

PTMs, but nonetheless these values are closer to the 

component A than to the component B presented in 

Figure 1, where lifestyle strategies to promote a healthy 

aging are not considered, and consequentially imply an 

overall increase of chromatin instability.  

It is important to note, however, that epigenetic events 

are dynamic and interdependent. Moreover, the 

relationship between age-associated epigenetic changes 

and healthspan is not always well-established and one 

epigenetic modification may lead to folding or 

unfolding of the chromatin structure depending on  

other nearby modifications. Future epigenomic studies 

must adopt a genome-wide perspective, rather than a 

targeted approach, and should adopt a three-

dimensional perspective to give deeper insight into their 

impact on chromatin structure. Furthermore, it would be 

relevant to develop strategies that could enable the 

differentiation of standard and healthy older aging from 

age-associated pathologies themselves. 

 

The aging global population is placing ever-growing 

demands on social and health infrastructure. Strategies 

 

 

 
 

Figure 2. Representation of age-associated epigenetic changes after following a healthy lifestyle. (A) Representation of a 

young individual chromatin, with tight chromatin compactation, high levels of DNA methylation, decreased histone PTMs (particularly 
acetylation), canonical histones and balanced non-coding RNA regulation; (B) Representation of a healthy old aged individual chromatin, 
we may observe a looser chromatin structure and lower levels of DNA methylation than in A, and higher levels of histones PTMs 
(acetylation) than in A. There are also different histone variants presence (in exchange of the canonical histones) and an increase of ncRNA 
imbalance, which is reflected in an overall increase of chromatin instability. The alterations between the structures presented in A and B 
are represented by arrows. The arrows in green present the causes (here presented as a mindful lifestyle - achieved through a healthy diet, 
caloric restriction and physical activity) whose effects are reflected by the arrows in yellow/orange, with the lighter colors representing less 
marked epigenetic alterations. 
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to promote health aging are important to maximize 

quality of life for the elderly and minimize pressure on 

health care systems. The simplest “treatments” are 

lifestyle changes including healthy eating and regular 

physical exercise. Pharmacological or biological 

treatments are also in development, and may, in the 

future, help reduce the risks associated with unhealthy 

behaviors, such as smoking and drug abuse. 

Understanding the relationship between biological 

aging and healthspan is critical to assessing the value of 

these interventions and identifying new therapies that 

can promote healthy aging.  
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