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INTRODUCTION 
 

Spermatogenesis is characterized by the mitotic phase, 

meiotic phase and differentiate haploid phase within the 

seminiferous tubules and occurs in association with and 

supported by the somatic Sertoli cells [1]. During this 

journey, the spermatozoa encounter different biological 

fluids secreted by Sertoli cells and interstitial cells. 
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ABSTRACT 
 

Cadmium is a heavy environmental pollutant that presents a high risk to male-fertility and targets the different 
cellular and steroidogenic supporting germ cells networks during spermatogenesis. However, the mechanism 
accounting for its toxicity in multivesicular bodies (MVBs) biogenesis, and exosomal secretion associated with 
spermatozoa remains obscure. In the current study, the light and electron microscopy revealed that, the Sertoli 
cells perform a dynamic role with secretion of well-developed early endosomes (Ee) and MVBs pathway associated 
with spermatozoa during spermatogenesis. In addition, some apical blebs containing nano-scale exosomes located 
on the cell surface and after fragmentation nano-scale exosomes were directly linked with spermatozoa in the 
luminal compartment of seminiferous tubules, indicating normal spermatogenesis. Controversially, the cadmium 
treated group showed limited and deformed spermatozoa with damaging acromion process and mid-peace, and 
the cytoplasmic vacuolization of spermatids. After cadmium treatment, there is very limited biogenesis of MVBs 
inside the cytoplasm of Sertoli cells, and no obvious secretions of nano-scale exosomes interacted with 
spermatozoa. Interestingly, the cadmium treated group demonstrated relatively higher formation of 
autophagosomes and autolysosome, and the autophagosomes were enveloped by MVBs that later formed the 
amphisome which degraded by lysosomes, indicating the hypo-spermatogenesis. Moreover, cadmium declined the 
exosomal protein cluster of differentiation (CD63) and increased the autophagy-related proteins microtubule-
associated light chain (LC3), sequestosome 1 (P62) and lysosomal-associated membrane protein 2 (LAMP2) 
expression level were confirmed by Western blotting. These results provide rich information regarding how 
cadmium is capable of triggering impaired spermatozoa development during spermatogenesis by reduction of 
MVBs pathway through high activation of autophagic pathway. This study explores the toxicant effect of cadmium 
on nano-scale exosomes secretion interacting with spermatozoa. 
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These complex fluids interact with the spermatozoa 

surface and modify the composition of macromolecules 

of the male gamete. These sequential modifications are 

essential for the production, maturation and protection 

of a fully functional spermatozoa. Many organs of the 

male reproductive tract are known to secrete 

membranous particles using apocrine secretions [2].  

 

Exosomes are nanosized vesicles (30–100 nm diameter), 

that are actively secreted by almost all types of cells, 

including endothelial cells, fibroblasts, epithelial cells, 

immune cells, neuronal cells, as well as cancer cells [3, 4]. 

Similar to other biological fluids, exosomes are an 

endosomal pathway vesicle, that releases after multi-

vesicular bodies (MVBs) fuse with the lysosome and 

plasma membrane. These vesicles are enriched with many 

bio-active molecules, such as nucleic acids, proteins, 

lipids, and metabolites, exosomes are endowed with the 

ability to relay signals between cells [5, 6]. Exosomes 

serve as early diagnostic tools for many diseases related to 

aging and cancer [7–9]. Currently, the influence of 

exosomes on the male reproductive system, and in 

particular their influence on the development of gametes, 

is of great interest [10]. Exosomes promote reproductive 

success through supporting spermatozoa development and 

function. Exosomes-MVBs pathways contribute to 

maintain the normal homeostasis of spermatozoa during 

spermatogenesis [1]. Proteomic analysis of exosomes 

from seminal fluids indicates the number of proteins that 

are involved in spermatozoa motility, capacitation or 

acrosomal reaction, prevent premature spermatozoa 

capacitation, and influence the process of fertilization due 

to the fact that they also carry cholesterol and 

sphingomyelin [11–15]. Collecting proofs now support 

vital roles for exosomes in cellular communication and 

molecular transport with extensive animal health 

implications linked to development of spermatozoa  

[16, 17]. However, how exposure of environmental 

toxicant modifies exosomal-MVBs pathway remains 

obscure. 

 

Cadmium is the most widespread global environmental 

pollutant, which exerts various toxic effects in many 

tissues and organs of humans and animals [18, 19]. The 

human population is exposed to cadmium toxicity 

through air, food and the water [20]. The main sources 

of cadmium include agricultural and industrial pollution 

[21]. Cadmium toxicity is dependent on its biological 

characteristics, and it is defined as non-biodegradable 

with an extensive biological half-life, particularly below 

the earth [22]. It has previously been reported that 

exposure to low doses of cadmium predominantly 

affects the testes, and no other organs [23]. Cadmium is 
a strong testicular toxicant that affects different 

physiological processes in the testicular tissue of 

different animals [24, 25]. However, there has not yet 

been a report of the toxicant effect of cadmium on the 

immunological mechanism of exosomal secretion. 

Cadmium is considered as one of the most reproductive 

toxicants in males. Subsequently, the majority of studies 

have focused on the cadmium contributing a negative 

impact on the different testicular bio-chemical functions 

and testicular immune-related secretions, like a male 

gamete secretion and steroidogenic secretion of the 

testis, that represent a high risk factor for male fertility 

[26–31]. Researchers have revealed that cadmium 

interrupts the movement of the sperm-specific cation 

(KSper) and (CatSper) channels that cause male 

infertility [32], cadmium-induced oxidative stress 

through Nrf2 signaling pathway, and cadmium causes 

apoptosis through the p38 MAPK pathway, as well as 

cadmium induces high activated autophagy which 

causes testicular injury [33, 34]. These findings are 

clearly linked to a declining trend in male fertility 

though different pathways. However, our current study 

found for the first time the toxicant effect of cadmium 

on exosomes-MVBs secretion pathway, which may lead 

to destruction of spermatozoa during spermatogenesis. 

In addition, it will be fundamental to map out the key 

signaling pathways that toxicants target to modulate 

secretion of nano-scale exosomes. 

 

RESULTS 
 

According to histological analysis, the control group 

showed the Sertoli cells were characterized by a compact 

morphology, and the more developing germ cells and 

permanent Sertoli cells were lined at the seminiferous 

tubules of testis. Furthermore, a significantly higher 

number of seminiferous tubules were observed in control 

group compared to the cadmium group without a change 

in seminiferous tubules diameter (Figure 1A). 

Controversially, in cadmium treated group, the luminal 

compartment of seminiferous tubules showed 

significantly reduced number of developing sperma-

togonia, spermatocytes, spermatids and spermatozoa. 

Additionally, disorganization of seminiferous tubules 

with extensive degenerative vacuolation and empty 

intercellular space between the germ cells were observed 

(Figures 1B, 2A, 2B). The above listed criteria were 

calculated through the Johnsen score. Johnsen score was 

highest in the control group, indicating normal 

spermatogenesis and germ cells development, whereas 

the contrary was the case in the cadmium group, 

indicating hypo-spermatogenesis.  
 

Cadmium-induced ultrastructural modifications in 

MVBs in the seminiferous tubules  
 

Transmission electron microscopy revealed that during 

the control group’s spermatogenesis, numerous MVBs 

and a limited number of autophagosomes were 
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Figure 1. Light microscopy of seminiferous tubules of testis of control (A) and cadmium treated group (B). A large magnification is illustrated 

in the rectangular area. (C) Numbers of seminiferous tubules. (D) Quantification of the diameter of seminiferous tubules. V: vacuole; (curved 
arrow) basement membrane. Scale bars = 100 µm. 

 

 
 

Figure 2. Light microscopy of seminiferous tubules of testis of control (A) and cadmium treated group (B). JSCs 1-2 lack germ cells, while JSC 
3 contains spermatogonia but no spermatocytes. JSCs 4-5 contain a small number of spermatocytes but no spermatids. JSCs 6-7 contain few 
or many spermatids but no sperm. JSCs 8-10 contain a small or large number of sperms in a seminiferous tubule. Scale bars = 50 µm. Data 
presented as Mean ± SEM. 
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dispersed in the seminiferous tubules (Figure 3A). 

Likewise, well-developed Ee and MVBs were observed 

in the cytoplasm of Sertoli cells. Collectively, Sertoli 

cells possessed exocytic pathway, and showed some 

apical blebs containing various-sized nano-scale 

exosomes located to cell surface. Finally, apical blebs 

were fragmented and contents were released, and these 

nano-scale exosomes were directly associated with 

spermatozoa in luminal compartment of the semi-

niferous tubules of testis (Figure 4). 

 

 
 

Figure 3. Electron micrograph of MVBs in the seminiferous 

tubules of control (A) and cadmium (B) treated group.  
(A) Seminiferous tubules containing several MVBs and limited 
formation of autophagosome. (B) Seminiferous tubules 
containing numerous formations of autophagosome and 
limited MVBs. Ee: early endosome; MVBs: multivesicular 
bodies; Ac: acromion process; Sp: spermatozoa; ER: 
endoplasmic reticulum; L: lysosome; (arrow) autophagosome. 
Scale bars 2 µm.  

Conversely, in cadmium treated group there is  

very limited biogenesis of MVBs and no obvious 

secretions of nano-scale exosomes that interacted with 

spermatozoa were observed. The higher formation  

of autophagosomes were observed in the Sertoli  

cells of seminiferous tubules. Fascinatingly, the auto-

phagosomes were enveloped by MVBs that later formed 

the amphisome that were degraded by lysosome (Figure 

3B). As further confirmation, the immuno-blots protein 

expression was performed and confirmed the protein 

signaling of CD63 exosomal protein and autophagy-

related proteins like a LC3, P62 and LAMP2. The 

expression level of CD63 protein was significantly 

reduced and LC3, P62 and LAMP2 proteins were 

significantly increased after cadmium treatment (Figure 

5). Overall, findings demonstrated that the cadmium 

inhibits the secretion of nano-scale exosomes and 

MVBs in the Sertoli cells due to the over-activation of 

autophagy, which sustenance the homeostasis of 

spermatogenesis. 

 

Cadmium-induced ultrastructural modifications in 

testis spermatozoa  

 

Testis of the control group 

The testis of the control group was filled with healthy 

spermatozoa. Elongated spermatids had a well-

developed acromion process that was adjacent to nano-

scale exosomes. In the mid-peace of spermatids 

microtubules form an axoneme. In this stage numerous 

mitochondria were distributed throughout the mid-

peace of germ cell, and closely related nano-scale 

exosomes were observed. In elongated spermatids tail 

formed the sheath of the axial filament (Figure 6A). 

The cytoplasm of Sertoli cells showed mitochondria 

were near associated with MVBs (Figure 7A, 7B). 

 

Testis of the cadmium treated group 

The cadmium treated group’s testis was filled with 

limited and deformative spermatozoa with damaging 

acromion process, mid-peace and tail region, and 

vacuolization inside the cytoplasm of spermatids were 

observed (Figure 6B). The microtubule arrangement in 

the microtubular sheet that surrounded the axoneme was 

also disturbed. Numerous small vacuoles and 

degenerated mitochondria that lose their cristae matrix 

were observed. In addition, many autophagosomes and 

vacuoles were observed in the cytoplasm of Sertoli cells 

(Figure 7C, 7D). 

 

DISCUSSION 
 

Male infertility is a developing worldwide health issue 

after cancer and cardio-vascular diseases [35]. Despite 

reports indicating an increase in male infertility and sub-

fertility based on analysis of spermatozoa quality and 
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testicular cancer [36], recent reports have confirmed that 

decreasing male fertility based on spermatozoa 

concentration and spermatozoa analysis is most likely the 

result of increased male exposure to environmental 

pollutants [37]. Cadmium has been shown to impede the 

male reproduction [18]. Cadmium-induced testicular 

destruction has been fully explored [18, 38–41]. Previous 

studies have observed that the testis is target organ of 

cadmium that damages testicular tissue and reduces 

spermatogenesis [42–45]. In the current study, after the 

cadmium treated group, the luminal compartment of 

seminiferous tubules showed significantly reduced 

number of developing spermatogonia, spermatocytes, 

spermatids and spermatozoa. In addition, cadmium 

 

 
 

Figure 4. Electron micrograph of exosomes in the seminiferous tubules of control group. Seminiferous tubules containing 

formation of early endosomes and MVBs within the cytoplasmic of Sertoli cells. Apical blebs formation connected with plasma membrane of 
Sertoli cell. Sc: Sertoli cell; Ee: early endosome; MVBs: multivesicular bodies; M: mitochondria; ab: apical blebs; (arrow head) exosome. Scale 
bars 1 µm.  

 

 
 

Figure 5. Immunoblots protein expression of autophagy-related proteins like a microtubule-associated light chain (LC3), sequestosome 1 
(P62) and lysosomal-associated membrane protein 2 (LAMP2), and cluster of differentiation 63 (CD63) exosomal protein in control and 
cadmium treated group. 
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Figure 6. Electron micrograph of spermatozoa of control (A) and cadmium treated (B) group. (A) Healthy spermatozoa were observed in 

luminal compartment of seminiferous tubules. (B) Destructive spermatozoa were observed in luminal compartment of seminiferous tubules. 
Sp: spermatozoa; Sh: sperm head; Mp: mid-peace; N: nucleus; Ac: acrosome reaction; M: mitochondria; (arrow head) exosome; (arrow) 
axonema; (curved arrow) vacuolation. Scale bars 5 µm.  

 

 
 

Figure 7. Electron micrograph of ultrastructures of mid-peace of spermatozoa and Sertoli cells of control (A, B) and cadmium treated (C, D) 

group. M: mitochondria; MVBs: multivesicular bodies; V: vacuole; (curved arrow) autophagosome; (arrow) axoneme. Scale bars 2 µm.  
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caused the disarray of seminiferous tubules with 

extensive degenerative vacuolation, and more inter-

cellular empty space in between the germ cells of the 

testis. Cadmium impairs testicular biochemical function 

and steroidogenic activity by affecting Sertoli cells and 

Leydig cells of the testis, as well as causing oxidative 

stress, cadmium induced autophagy, and germ cell 

apoptosis [38, 46, 47]. Cadmium exposure reduces 

spermatozoa quality and spermatozoa penetration power 

into oocytes, and disturbs the embryo development [23]. 

These findings are clearly linked to cadmium which 

represent high risk to male fertility. 

 

Exosomes provide a new insight into intercellular 

communication mechanism because they provide direct 

evidence for the transferring of several important bio-

active cargo molecules (proteins, lipids, DNA, mRNA, 

microRNA, circular RNA, long non-coding RNA) 

between testicular cells and spermatozoa [48]. In the 

current study, we found in the control group the 

numerous exosomal-MVBs secretion at the basal and 

luminal compartment of seminiferous tubules of testis. 

Exosomal secretion is well-known as essential regulator 

of successful reproduction and affording protection to 

high quality of spermatozoa, and eliminates the weak 

and defective spermatozoa [49, 50]. These exosomes 

contact with germ cells to maintain the homeostasis of 

spermatogenesis [51]. The exosomal cargo proteins 

work and perform together to promote the development 

of sperm motility, metabolism, oxidation reduction, 

acrosome reaction, capacitation, and finally fertilization 

[52, 53]. However, after cadmium treatment, there is 

very limited biogenesis of MVBs and no obvious 

secretion of nano-scale exosomes that interacted with 

spermatozoa were observed. Alterations in morphology 

or composition of extracellular vesicle (exosomes) may 

lead to reduce fertility and fetal development that has 

long-term effects on the health of the progeny and 

impair the reproductive status [14, 15]. Modified 

exosomal cargo proteins promote the abnormal the 

phonotypic and genotypic child development [54]. 

Although in cadmium treated group the higher 

formation of autophagosomes and vacuolation in 

spermatozoa were observed in seminiferous tubules. 

Fascinatingly, autophagosome was enveloped by MVBs 

and later formed the amphisomes, then these were 

degraded by lysosomes. After interruption of autophagy 

and MVBs pathway the target of rapamycin complex1 

to be reduced under rich growing conditions [55], also 

over-activated autophagy which causes cell death under 

severe oxidative stress and metal toxicity [56]. Impeded 

autophagy causes abnormal development of acrosome 

and mitochondria crista formation during spermato-
genesis [57]. Autophagy works opposite to high 

secretion of the exosomal-MVBs pathway [1]. 

Cadmium-induced autophagy impairs many body cells, 

and autophagic cell death can cause physiologically 

significant damage [18, 58]. MVBs and their contents 

are degraded by autophagy, and inhibiting autophagy by 

3-methyaldenine may save and increase exosomes 

secretion from MVBs during spermatogenesis [1, 59]. 

These findings indicate that cadmium is capable of 

triggering the impairment of spermatozoa development 

during spermatogenesis through exosomal-MVBs 

pathway as mediators by changing their biogenesis and 

release.  

 

CONCLUSIONS 
 

In summary, we have demonstrated that cadmium has 

obvious toxic effect on the exocytosis pathway of 

exosomes-MVBs secretion, as evidenced by the 

inhibition of biogenesis of MVBs and exosomes 

secretion and over activation of the autophagic pathway 

in the luminal compartment of seminiferous tubules of 

testis, that lead to spermatozoa which were deprived 

from immunological defense mechanism of nano-scale 

exosomes and consequently, more degenerated and 

abnormal development of spermatozoa were observed 

during spermatogenesis (Figure 8). Thus, this study 

provides novel insight into the toxicological effect of 

cadmium on immunological role of nano-scale 

exosomes in the male reproductive system.  

 

 
 

Figure 8. Schematic illustration of cadmium-induced more 
formation of autophagosomes and autolysosome that causes 
reduction of MVBs pathway through over activation of 
autophagic pathway, and spermatozoa were deprived of getting 
the immunological support and protection from exosomal-MVBs 
secretion, which leads to the destruction of spermatozoa during 
spermatogenesis. 



www.aging-us.com 4103 AGING 

Table 1. Development of germ cells in the seminiferous tubules was 
classified according to the Johnsen score. 

S.No Score  

01 Score 10 Full spermatogenesis 

02 Score 9 Incomplete spermatogenesis with many late spermatids 

03 Score 8 Less than 5 spermatozoa per tubules and a few late spermatids 

04 Score 7 No spermatozoa, but spermatids are present 

05 Score 6 Few spermatids are present 

06 Score 5 Only spermatocytes are present 

07 Score 4 Few spermatocytes are present 

08 Score 3 Spermatogonia are present 

09 Score 2 Only Sertoli cells are present 

10 Score 1 Just about empty lumen 

It applies for the numbers from 1 to 10 to a cross-section of each tubule 
according to the following criteria. 

 

Table 2. Information for primary antibodies. 

Antibody Species Catalog no Dilution Source 

CD63 Rabbit AB_2839529 1:1000 Affinity 

LC3 Mouse 12,135-1-AP 1:1000 Proteintech 

P62 Rabbit 51,145 1:1000 Cell signaling technology 

LAMP2 Rabbit 66301-1-lg 1:1000 Proteintech 

 

MATERIALS AND METHODS 
 

Animals and treatment 

 

6-week-old male C57BL/6 mice were obtained from 

Jiangsu University’s Experimental Animal Center 

(Jiangsu, China). The Yangzhou University Institutional 

Animal Care and Use Committee approved the study, 

which was carried out in accordance with the National 

Research Council’s Guide for the Care and Use of 

Laboratory Animals (approval ID: SYXK (Su) 2017- 

0044). A total (n = 30) mice were randomly divided into 

two groups: the control group (n = 15) (which received 

double distilled water), and the cadmium group (n = 15) 

(which received 50 mg/L Cd). Water was freely available 

to both groups. The trial period was 12 weeks (February 

to April). Average body weight of each mature male 

C57BL/6 mice was 28.1±2.4 (control group) and 

26.1±1.9 (cadmium group) After 12 weeks, all mice were 

anesthetized with 2% sodium pentobarbital and sacrificed 

through cervical dissection. The testes were quickly 

collected and fixed to perform the below techniques. 

 

Light microscopy 

 
The testis samples were fixed overnight in 10% neutral 

buffered formalin before being embedded in paraffin wax. 

Sectioning was done at 5 µm. All such sections were 

stained with hematoxylin and eosin (Harry’s hematoxylin 

for 2 minutes and 1% eosin for 30 seconds). For light 

microscope analysis, an Olympus BX53 microscope and 

camera were used (Olympus DP73, Japan).  

 

Johnsen score  

 

We used the criteria developed by Johnsen to evaluate 

germ cells development in the seminiferous tubules [35]. 

Johnsen scores use a ten-point scoring system to quantify 

spermatogenesis based on the cell profile encountered 

along the seminiferous tubules (Table 1). A Johnsen 

score of 10 represents the highest level of 

spermatogenesis activity, while a score of 1 suggests the 

complete absence of germ cells. We generated four 

distinct labels based on Johnsen scores from 1 to 10. The 

four labels corresponded to Johnsen scores 1-3, 4-5, 6-7, 

and 8-10. Johnsen scores of 1-2 contain no germ cells, a 

Johnsen score of 3 contains spermatogonia as germ cells, 

a Johnsen score of 4-5 contains spermatocytes, a Johnsen 

score of 6-7 contains spermatids, and a Johnsen score of 

8-10 contains mature sperm. The mean score was 

estimated using 60 tissue sections with 2 replications of 

each analysis, and each group received an equal number 

of tissue sections (n = 30). 

 
Transmission electron microscopy 

 

For the ultrastructure analysis of testis, samples were 

cut into small pieces (1mm3) and fixed in 2.5% (v/v) 
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glutaraldehyde in 0.1M phosphate-buffered saline 

(PBS; 4° C, pH7.4; for 24 hours). Then they were 

washed in the same buffer and post-fixed with 1% 

(w/v) osmium tetroxide for 1 hour. For the purpose of 

embedding the samples in araldite, the samples were 

dehydrated using ethanol in increasing concentrations. 

It was divided into sections. In order to stain the 

ultrathin sections (50 nm), Formvar-coated grids were 

used. Each staining step took 20 minutes. 

Transmission electron microscope was used to analyze 

the sections (Hitachi H-7650; Japan). 

 

Western blotting 

 

The tissue samples of testis were homogenized in an 

ice-cold RIPA buffer containing protease and phosphate 

inhibitors (Roche Applied Science, Penzberg, 

Germany). The concentration of protein in the 

supernatant was measured using the bicichonic acid 

assay after centrifugation at 13,000 g for 15 mint, 

protein samples 10µl were loaded onto SDS-PAGE gels 

at 4-12%. Electrophoresis was performed at 120 V for 2 

hr at 4° C (Bio-Red Mini-Protein), followed by 

immunoblotting with primary antibodies dilution 

(1:1000) and Actin (1:10,000) (Table 2). Targeted 

proteins intensities CD63, LC3, P62 and LAMP2 were 

normalized against actin. Western blotting quantitative 

measurements were performed in three independent 

experiments. 

 

Statistical analysis 

 

All the quantification was measured through ImageJ 

software. The data were presented as the mean ± SEM. 

To determine whether there were significant 

differences between the two groups, a t-test was 

operated in GraphPad Prism. P < 0.05 was used to 

determine whether the differences were significant 

(one-tailed). 
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