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INTRODUCTION 
 

Sarcoma is a set of mesenchymal and heterogeneous 

neoplasms, which principally is grouped into primary 

osteosarcoma and soft tissue sarcoma and contains 

beyond 100 different diagnostic entities [1]. Several 

causative factors of sarcoma have been identified, 

including Germline mutations, radiation, and 
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ABSTRACT 
 

Objective: This study was conducted to explore the correlation of NCAP family genes with expression, 
prognosis, and immune infiltration in human sarcoma. 
Results: Compared with normal human tissues, six NCAP family genes were highly expressed in sarcoma tissues, 
and high expression of the six genes were significantly associated with the poor prognosis of sarcoma patients. 
The expression of NCAPs in sarcoma was significantly related to the low infiltration level of macrophages and 
CD4+ T cells. GO and KEGG enrichment analysis showed that NCAPs and their interacting genes were mainly 
enriched in organelle fission for biological processes (BP), spindle for cellular component (CC), tubulin binding 
for molecular function (MF), and ‘Cell cycle’ pathway. 
Methods: We explored the expression of NCAP family members by ONCOMINE, and GEPIA databases. 
Additionally, the prognostic value of NCAP family genes in sarcoma was detected by Kaplan-Meier Plotter and 
GEPIA databases. Moreover, we explored the relationship between NCAP family gene expression level and 
immune infiltration using the TIMER database. Finally, we performed GO and KEGG analysis for NCAPs-related 
genes by DAVID database. 
Conclusion: The six members of NCAP gene family can be used as biomarkers to predict the prognosis of 
sarcoma. They were also correlated with the low immune infiltration in sarcoma. 
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carcinogens [2]. Osteosarcoma in adolescents is the 

most frequent occurrence of primary malignant bone 

tumor [3] and has an undesirable mortality rate. [4]. The 

5-year survival rate is relatively low, about 60%–70% 

[5], and the 5-year survival rate of patients with 

metastatic osteosarcoma is only 19–30% [6]. Even with 

the progress of surgical and auxiliary treatment, the 

molecular mechanism of sarcoma needs to be further 

explored [7, 8]. 

 

Condensins participate in cell mitosis and meiosis in the 

human cell cycle [9]. Condensins are involved in 

chromosome aggregation and separation in the cell 

cycle [10]. There are two kinds of condensins in human 

cells, condensin I and condensin II [11]. Condensin I 

complex comprises three non-SMC subunits and 

structural maintenance of chromosomes (SMC) proteins 

[12]. Three non-SMC subunits are named non-SMC 

condensin I complex H subunit (NCAPH), non-SMC 

condensin I complex G subunit (NCAPG), and non-

SMC condensin I complex D2 subunit (NCAPD2) 

separately [13]. Condensin II complex combines with 

enhancer and promoter during DNA transcription and 

can regulate the expression of genes [14, 15]. Non-SMC  

condensin I complex H subunit (NCAPH), non-SMC 

condensin I complex G subunit (NCAPG2) and non-

SMC condensin I complex D2 subunit (NCAPD3) are 

subunits of condensins II [16, 17]. 

 

Up to now, NCAPD2, NCAPG, NCAPH, NCAPD3, 

NCAPG2, and NCAPH2 have not been mentioned in 

sarcoma, except NCAPG mentioned in Ewing sarcoma 

[18]. In this study, ONCOMINE, GEPIA, Kaplan-Meier 

plotter, DAVID (KEGG and GO analysis), and TIMER 

datasets were utilized to study the high expression, 

prognosis analysis, signal pathway and immune 

correlation of NCAPD2, NCAPG, NCAPH, NCAPD3, 

NCAPG2, and NCAPH2 in sarcoma for the first time 

(Figure 1). NCAP family genes are expected to become 

early prognostic biomarkers of sarcoma patients. 

 

RESULTS 
 

Transcriptional levels of NCAPs in sarcoma patients 

 

In our research, differential expression levels of NCAPs 

between normal tissues and cancer tissues were 

analyzed by ONCOMINE and GEPIA databases. 

 

 

 
 

 

Figure 1. Flow chart of the study. 
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Six members of the NCAPs family, including NCAPD2, 

NCAPG, NCAPH, NCAPD3, NCAPG2, and NCAPH2, 

have been found in different types of sarcomas. All of 

them were upregulated in sarcoma samples compared to 

normal tissues in 2 databases (Figure 2). 

 

Firstly, in Detwiller Sarcoma dataset, NCAPD2 was 

overexpressed in Maligant Fibrous Histiocytoma, 

Fibrosarcoma and Leiomyosarcoma with 2.866 (p = 

4.03E-6), 2.661 (p = 1.25E-4) and 2.690 (p = 0.002) fold 

changes. NCAPG was upregulated in Leiomyosarcoma, 

Pleomorphic Liposarcoma, Fibrosarcoma, Malignant 

Fibrous Histiocytoma, Round Cell Liposarcoma and 

Synovial Sarcoma. The fold changes of these sarcomas 

were as follows: 41.047 (p = 4.10E-10), 53.462 (p = 

4.87E-10), 40.123 (p = 7.77E-10), 47.334 (p = 2.31E-

10), 27.533 (5.79E-9) and 18.076 (8.4E-7). NCAPH was 

upregulated in Malignant Fibrous Histiocytoma and 

Fibrosarcoma with fold changes of 11.886 (p = 5.22E-6) 

and 10.772 (p = 7.72E-5). NCAPD3 was upregulated in 

Round Cell Liposarcoma with a fold change of 2.213 

(p = 0.003). NCAPG2 was upregulated in Pleomorphic 

Liposarcoma, Leiomyosarcoma, Malignant Fibrous 

Histiocytoma, Fibrosarcoma, Dedifferentiated 

Liposarcoma, Synovial Sarcoma, and Round Cell 

Liposarcoma. The fold changes were as follows: 11.472 

 

 
 

Figure 2. The expression levels of NCAP genes in different types of human cancers and normal samples. The red cells 

represent evidence of gene overexpression. The blue cells represent evidence of reduced gene expression. The numbers in each cell 
represent the evidential frequencies. The deeper the color, the higher the significance. 
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Table 1. The significant changes of NCAPs expression in transcription level between different types of sarcoma. 

Gene ID Types of sarcoma vs. Normal Fold change p Value t Test  References 

NCAPD2 

Malignant Fibrous Histiocytoma vs. Normal 2.866 4.03E-6 6.926 Detwiller Sarcoma 

Fibrosarcoma vs. Normal 2.661 1.25E-4 5.742 Detwiller Sarcoma 

Leiomyosarcoma vs. Normal 2.690 0.002 4.291 Detwiller Sarcoma 

Myxofibrosarcoma vs. Normal 2.627 4.43E-9 8.927 Barretina Sarcoma 

Pleomorphic Liposarcoma vs. Normal 2.118 1.21E-6 5.938 Barretina Sarcoma 

Leiomyosarcoma vs. Normal 2.361 9.55E-8 6.805 Barretina Sarcoma 

NCAPG 

Leiomyosarcoma vs. Normal 41.047 4.10E-10 11.716 Detwiller Sarcoma 

Pleomorphic Liposarcoma vs. Normal 53.462 4.87E-10 13.338 Detwiller Sarcoma 

Fibrosarcoma vs. Normal 40.123 7.77E-10 10.439 Detwiller Sarcoma 

Malignant Fibrous Histiocytoma vs. Normal 47.334 2.31E-10 10.536 Detwiller Sarcoma 

Round Cell Liposarcoma vs. Normal 27.533 5.79E-9 10.209 Detwiller Sarcoma 

Synovial Sarcoma vs. Normal 18.076 8.40E-7 7.926 Detwiller Sarcoma 

Myxofibrosarcoma vs. Normal 3.118 4.55E-14 11.534 Barretina Sarcoma 

Pleomorphic Liposarcoma vs. Normal 3.051 7.64E-10 9.116 Barretina Sarcoma 

Leiomyosarcoma vs. Normal 2.633 6.60E-8 7.124 Barretina Sarcoma 

NCAPH 
Malignant Fibrous Histiocytoma vs. Normal 11.886 5.22E-6 7.869 Detwiller Sarcoma 

Fibrosarcoma vs. Normal 10.722 7.72E-5 6.961 Detwiller Sarcoma 

NCAPD3 Round Cell Liposarcoma vs. Normal 2.213 0.003 3.265 Detwiller Sarcoma 

NCAPG2 

Pleomorphic Liposarcoma vs. Normal 11.472 3.13E-6 7.015 Detwiller Sarcoma 

Leiomyosarcoma vs. Normal 9.095 1.28E-6 7.015 Detwiller Sarcoma 

Malignant Fibrous Histiocytoma vs. Normal 8.265 2.05E-6 6.320 Detwiller Sarcoma 

Fibrosarcoma vs. Normal 6.340 1.30E-5 5.504 Detwiller Sarcoma 

Dedifferentiated Liposarcoma vs. Normal 3.671 0.002 3.419 Detwiller Sarcoma 

Synovial Sarcoma vs. Normal 5.076 5.20E-5 5.050 Detwiller Sarcoma 

Round Cell Liposarcoma vs. Normal 5.645 2.72E-4 4.529 Detwiller Sarcoma 

Pleomorphic Liposarcoma vs. Normal 2.388 1.98E-8 7.478 Barretina Sarcoma 

Leiomyosarcoma vs. Normal 2.540 1.69E-9 8.105 Barretina Sarcoma 

Myxofibrosarcoma vs. Normal 2.175 1.36E-9 7.718 Barretina Sarcoma 

NCAPH2 Round Cell Liposarcoma vs. Normal 2.013 0.002 3.252 Detwiller Sarcoma 

 

(p = 3.13E-6), 9.095 (p = 1.28E-6), 8.265 (p = 2.05E-6), 

6.340 (p = 1.30E-5), 3.671 (p = 0.002), 5.076 (p = 5.20E-

5) and 5.645 (p = 2.72E-4). NCAPH2 was upregulated in 

Round Cell Liposarcoma with a fold change of 2.013 

(p = 0.002). In the Barretina Sarcoma dataset, NCAPD2 

was overexpressed in Myxofibrosarcoma, Pleomorphic 

Liposarcoma, and Leiomyosarcoma with 2.627 (p = 

4.43E-9), 2.118 (p = 1.21E-6) and 2.361 (p = 9.55E-8) 

fold changes. NCAPG was upregulated in 

Myxofibrosarcoma, Pleomorphic Liposarcoma, and 

Leiomyosarcoma with 3.118 (p = 4.55E-14), 3.051 (p = 

7.64E-10) and 2.633 (P = 6.60E-8) fold changes. 

NCAPG2 was upregulated in Pleomorphic Liposarcoma, 

Leiomyosarcoma, and Myxofibrosarcoma with 2.388 

(p = 1.98E-8), 2.540 (p = 1.69E-9) and 2.175 (p = 1.36E-

9) fold changes (Table 1). 

 

By evaluating NCAPs in normal and sarcoma tissues 

using the GEPIA database, we noticed significantly 

higher expression patterns of NCAPD2, NCAPG, 

NCAPH, NCAPG2, and in sarcoma samples compared 

to normal tissues. NCAPD3 and NCAPH2 were also 

upregulated in sarcoma samples but with no 

significance (Figure 3). 

 

The prognostic value of high expression of NCAPs in 

sarcoma 

 

We investigated the clinical prognostic value of NCAPs 

in sarcoma using the Kaplan-Meier Plotter and GEPIA 

databases and obtained survival data for patients with 

sarcoma. GEPIA database showed that high expression 

of NCAPD2, NCAPH, NCAPG and NCAPG2 had a 

significant correlation with poor overall survival of 

sarcoma patients (P < 0.05). The high expression of 

NCAPD3 and NCAPH2 were also associated with poor 

overall survival but there was no statistical significance 

(P > 0.05). The overall survival hazard ratios of 
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NCAPD2, NCAPG, NCAPH, and NCAPG2 were 1.8 

(P = 0.0028), 1.5 (P = 0.037), 1.6 (P = 0.03) and 1.5 

(P = 0.043) respectively (Figure 4A). The Figure 4B 

showed that high expression levels of NCAPD2, 

NCAPG, and NCAPH were significantly correlated 

with the poor disease free survival of sarcoma patients. 

The disease free survival hazard ratios of NCAPD2, 

NCAPG, and NCAPH were 1.9 (P = 0.00047), 1.7 (P = 

0.0047), and 1.5 (P = 0.032), respectively. 

 

In the Kaplan-Meier Plotter database, high expression 

of NCAPD2, NCAPG, NCAPH, and NCAPD3 was 

 

 
 

Figure 3. The expression levels of NCAP genes in sarcoma. (A–F) The expression levels of NCAPD2, NCAPG, NCAPD3, NCAPG2, 

NCAPH, and NCAPH2 in pan-cancer, (G, H) The expression levels of NCAP genes in sarcoma. Each dot represents an individual sample,  
*P < 0.05. 
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correlated with poor overall survival in sarcoma patients 

(p < 0.05), HR = 2.23 (p = 0.00016), 1.63 (p = 0.015), 

1.83 (p = 0.0025), and 1.63 (p = 0.024), respectively 

(Figure 5A). The high expression of NCAPD2, 

NCAPG, NCAPH, NCAPD3, and NCAPH2 were all 

correlated with the relapse-free survival of sarcoma 

patients, HR = 2.76 (p = 3.3e-05), 2.72 (p = 0.0012), 

2.71 (p = 0.0026), 1.87 (p = 0.01) and 2.08 (p = 0.029) 

respectively (Figure 5B). In addition, the high 

expression of NCAPG2 was also correlated with the 

poor overall survival and disease-free survival of 

sarcoma patients, but with no significance (p > 0.05). 

 

 
 

Figure 4. The prognostic value of mRNA level of NCAP factors in sarcoma patients. Higher expression of NCAP genes is associated 

with worse (A) overall survival and (B) disease-free survival. Abbreviation: HR: hazard ratio. 
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The high expression of NCAPH2 was correlated with 

poor overall survival of sarcoma patients but had no 

statistical significance (p > 0.05). 

 

Association between NCAP genes 

 

The present study investigated the association between 

the expression of NCAPD2, NCAPG, NCAPH, 

NCAPD3, NCAPG2, and NCAPH2 by using the 

GEPIA database. The study found that there were 

positive correlations between NCAPD2 and NCAPG 

(R = 0.58 p < 0.05), NCAPH and NCAPD2 (R = 0.56 p 

< 0.05), NCAPD3 and NCAPD2 (R = 0.63 p < 0.05), 

NCAPG2 and NCACPD2 (R = 0.49 p < 0.05), NCAPH 

and NCAPG (R = 0.72 p < 0.05), NCAPD3 and 

NCAPG (R = 0.57 p < 0.05), NCAPG2 and NCAPG 

 

 
 

Figure 5. The prognostic value of mRNA level of NCAP factors in sarcoma patients. The prognostic value of mRNA level of NCAP 

factors in sarcoma patients was analyzed by Kaplan Meier Plotter. Expression of NCAP family genes was related to poor (A) overall survival 
and (B) relapse-free survival in sarcoma. 
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(R = 0.65 p < 0.05), NCAPH2 and NCAPG (R = 0.4 p < 

0.05), NCAPD3 and NCAPH (R = 0.47 p < 0.05), 

NCAPG2 and NCAPH (R = 0.49 p < 0.05), NCAPG2 

and NCAPD3 (R = 0.64 p < 0.05), NCAPH2 and 

NCAPG2 (R = 0.32 p < 0.05). But there was no linear 

correlation between NCAPH2 and NCAPD2, NCAPH2 

and NCAPH, NCAPH2 and NCAPH (R < 0.3) 

(Figure 6A). 

Predicted functions and pathways of NCAPs and 

their 50 interacting genes in sarcoma 
 

We performed GO function enrichment analysis and 

KEGG pathway analysis of NCAPs and their 50 

interacting genes using DAVID database. The results 

showed that these genes were mainly involved in the 

biological processes (BPs) of organelle fission, nuclear 

 

 
 

Figure 6. Co-expressed analysis, GO analysis, and functional enrichment analysis of NCAP and their interacting genes. (A) 

Correlation between NCAP genes in sarcoma. (B) GO analysis was based on three aspects. Abbreviations: BP: biological processes; CC: 
cellular components; MF: molecular function. (C) KEGG pathway related to NCAP genes and their interacting genes in sarcoma. 
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division and mitotic nuclear division, cellular 

components (CCs) of spindle, chromosomal region, 

chromosome centromeric region, and molecular 

functions (MFs) of tubulin binding, microtubule binding 

and protein serine/threonine kinase activity (Figure 6B). 

In addition, KEGG pathway analysis indicated that 

NCAPs and their 50 interacting genes played a vital role 

in the cell cycle, oocyte meiosis, and progesterone-

mediated oocyte maturation (Figure 6C). 

The relationship between the expression level of the 

NCAPs family and immune cell infiltration 

 

Using the TIMER database, we analyzed the 

relationship between NCAP gene family and immune 

cell infiltration (Figure 7). The results showed that high 

expression of NCAPD2 was significantly associated 

with low infiltration levels of CD4+ T cells (correlation 

coefficient (cor) = −0.223, p < 0.05) and macrophages 

 

 
 

Figure 7. Analysis of immune infiltration. Relationship of differentially expressed (A–F) NCAPD2, NCAPG, NCAPH, NCAPD3, NCAPG2, 

and NCAPH2 with immune cell infiltration. The immune cells we analyzed included B cells, CD8+ T cells, CD4+ T cells, macrophages, 
neutrophils, and dendritic cells. 
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(cor = −0.213, p < 0.05). Similarly, the expression 

levels of NCAPG (cor = −0.134, p < 0.05), NCAPH 

(cor = −0.157, p < 0.05), NCAPD 3 (cor = −0.209, p < 

0.05), NCAPG 2 (cor = −0.228, p < 0.05), and NCAPH 

2 (cor = −0.132, p < 0.05) were significantly negatively 

correlated with the level of CD4+ T cell infiltration. The 

expression levels of NCAPD2 (cor = −0.213, p < 0.05), 

NCAPD3 (cor = −0.209, p < 0.05) and NCAPH2 (cor = 

−0.195, p < 0.05) were significantly negatively 

correlated with the macrophage infiltration level. 

 

DISCUSSION 
 

Sarcoma is a group of heterogeneous interstitial tumors 

with more than 100 different diagnostic entities. It is 

characterized by high malignancy, poor prognosis, and low 

survival rate. Therefore, it is crucial to find biomarkers for 

the early prediction of sarcoma. In our study, this is the 

first time to explore the possibility of using NCAP family 

genes as biomarkers for sarcoma prognosis. 

 

Bioinformatics analysis is a subject that studies biology 

by using informatics, applied mathematics, computer 

science, and statistics [19]. In this study, the expression 

of NCAP members in sarcoma, signal pathway in 

sarcoma, immune cell infiltration in sarcoma 

microenvironment, and its influence on the prognosis of 

sarcoma patients were studied by bioinformatics 

analysis. In addition, we explored the correlation 

between all NCAP family genes. Through the study of 

the ONCOMINE and GEPIA databases, we found that 

four members of the NCAP gene family were highly 

expressed in sarcoma compared with normal human 

tissue. In addition, the expression of NCAP family genes 

was explored in this study and we found that NCAP 

family genes were positively correlated with each other. 

What’s more, we also confirmed that the high expression 

of NCAP family members was significantly related to 

the immune infiltration level of CD4+ T cells and 

macrophages, which provided a new insight for the 

effectiveness of future immunotherapy for sarcoma. 

 

Previously, studies have found that NCAPD2 could 

promote breast cancer progression [20]. NCAPD2 plays 

a role in colorectal cancer through Ca2+/CAMKK/ 

AMPK/mTORC1 pathway and PARP-1/SIRT1 axis and 

can be used as a potential therapeutic target [21]. Our 

research confirmed the value of high expression of 

NCAPD2 in the prognosis of human sarcoma by using 

the Kaplan-Meier plotter and GEPIA database, and 

found that it was negatively correlated with the OS and 

DFS of sarcoma patients. 

 

Similarly, NCAPH can be used as a prognostic 

biomarker for non-small cell lung cancer, lung 

adenocarcinoma, nasopharyngeal carcinoma, breast 

cancer, and hepatocellular carcinoma [22–26]. In 

addition, Meng Wang et al. found that NCAPH 

regulated the occurrence of cervical cancer through the 

PI3K/AKT/SGK pathway [27]. With Kaplan-Meier 

Plotter, we verified the prognostic value of NCAPH in 

sarcoma: the high expression of NCAPH was negatively 

correlated with OS and RFS, and NCAPH can be used 

as a promising potential biomarker for sarcoma. 

 

As for NCAPG, it has been proved to be involved in the 

development of prostate cancer, lung adenocarcinoma, 

hepatocellular carcinoma, and non-small cell lung 

cancer [28–31]. However, our research proved that the 

high expression of NCAPG in sarcoma is relevant to the 

lower OS and DFS of sarcoma patients. 

 

High expression of NCAPG2 has been shown to be 

associated with poor prognosis in patients with lung 

adenocarcinoma and hepatocellular carcinoma [14, 32]. 

In addition, the research of Jianheng Wu et al. 

demonstrated that NCAPG2 in glioblastoma promoted 

cell malignant transformation and activation by 

phosphorylating HBO1 [33]. In GEPIA dataset, we 

verified that the overexpression of NCAPG2 was 

positively correlated with low DFS of sarcoma patients. 

 

Abnormal methylation of NCAPH2 in the blood of 

patients with subjective cognitive decline may be a 

biomarker for early screening of Alzheimer’s disease 

[17], but no related research has mentioned that 

NCAPH2 was related to cancer prognosis. In our 

research, we also found that the overexpression of 

NCAPH2 had statistical significance in correlation with 

low RFS of sarcoma patients. 

 

What’s more, high expression of NCAPD3 was 

confirmed to be related to the occurrence and 

progression of the tumor by Zuolei Jing et al. in 

chromatic cancer, and overexpression of NCAPD3 led 

to poor prognosis of chromatic cancer [34]. From our 

research results, we also found that high expression of 

NCAPD3 was related to the poor prognosis of sarcoma 

in the Kaplan-Meier Plotter database. 

 

In addition, we used GO analysis to analyze the 

biological processes involved in the NCAPs gene 

family and their interacting genes. The results showed 

that NCAPs and their interacting genes were mainly 

involved in the biological processes and molecular 

functions related to the cell division and were mainly 

expressed in structures related to cell division. In 

addition, KEGG analysis also showed that NCAPs gene 

family and their interacting genes were mainly 
concentrated in cell cycle-related signaling pathways. 

These results suggested that the abnormal expression of 

NCAPs and its interacting genes may be involved in the 
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occurrence and development of tumors by altering the 

normal cell cycle. The cell cycle is a complex process 

that involves many regulatory proteins everywhere in 

organisms [35]. Previously, PJan M Suski et al. showed 

that abnormal activity of core cell cycle mechanism 

existed in different types of tumors, so inhibition the 

expression of different cell cycle proteins can be used as 

a new strategy for tumor treatment [36]. 
 

In our study, we explored the expression of NCAPs in 

sarcoma, which had important value for the prognosis of 

sarcoma patients. In other words, the high expression of 

these genes often leads to a more malignant sarcoma. 

Therefore, the six members of the NCAP family genes 

are all expected to become an important biomarker for 

sarcoma diagnosis and prognosis prediction and the 

expression level of NCAPs gene family were all related 

to the infiltration level of immune cells in sarcoma tumor 

microenvironment. However, our research still had some 

limitations. First of all, we used all the existing data but 

needed more experimental verification, including 

histological analysis and qPCR. Secondly, this study only 

explored the NCAP family genes in sarcoma tissues but 

did not study the expression of NCAPs in the blood of 

sarcoma patients. If we can further research the 

expression of NCAPs in the peripheral blood of sarcoma 

patients, it is expected to become a more convenient 

diagnostic screening method. 

 

CONCLUSIONS 
 

In a word, we confirmed the high expression of the 

NCAPs family in sarcoma by bioinformatics analysis, the 

high expression of the six members of NCAP gene family 

were all connected with the prognosis and immune 

infiltration of sarcoma, and their high expression provided 

a novel target for the therapy of sarcoma and a new 

insight for the efficacy of immunotherapy of sarcoma. 

 

METHODS 
 

ONCOMINE (http://www.oncomine.org/) analysis 
 

The ONCOMINE database was usually utilized to 

investigate the NCAP family’s differential expression 

and clinical relevance in various cancers. The 

expression information of the NCAP family in sarcoma 

and the clinical correlation of NCAPs genes were 

retrieved from ONCOMINE, with default settings of 

fold change > 2 and P value < 0.05. The ONCOMINE 

database was discontinued in 2022. 

 

GEPIA (http://gepia.cancer-pku.cn/) analysis 
 

Gene Expression Profiling Interactive Analysis 

(GEPIA) is a web server based on normal gene and 

cancer expression profiling and interactive analysis 

[37]. In this study, GEPIA was extensively applied to 

investigate the distinct expression and the prognostic 

value of the NCAP family genes in sarcoma and 

correlation analysis between NCAP family members, 

with default setting p < 0.05. 

 

Kaplan-Meier plotter (http://kmplot.com/analysis/) 

analysis 

 

In this study, the Kaplan-Meier plotter was used to 

explore the connection between the prognosis of 

sarcoma patients and different expressions of NCAPs, 

including relapse free survival and overall survival. 

Kaplan Meier Plotter contains survival information for 

21 diverse types of cancer, containing sarcomas, and 

expression data for 54,000 genes. In addition, Kaplan-

Meier plotter compares NCAPs mRNA high and low 

expression levels in samples to correlate prognosis with 

hazard ratios (HR) and log-rank P values with 95% 

confidence intervals. 

 

KEGG and GO enrichment analyses of NACPs and 

their interacting genes 

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway and Gene Ontology (GO) Enrichment analysis 

of NCAP gene family and their interacting genes were 

performed using the DAVID database. DAVID 

(Database for Annotation, Visualization and Integrated 

Discovery) is an online tool and database based on 

bioinformatics that aims to assist researchers in 

annotating and analyzing large amounts of gene and 

protein data. The DAVID database contains a wide 

range of biological information and functional 

annotations, including Gene Ontology, biological 

pathways, disease associations, and more. 

 

TIMER dataset (https://cistrome.shinyapps.io/timer/) 

analysis 

 

Tumor Immune Estimation Resource (TIMER) 

database pre-computed the levels of infiltrating 

immune systems in about six subsets for 10,897 

tumors from 32 cancer types and investigated 

molecular characterization of tumor-immune inter-

actions [38]. So, we took full advantage of the TIMER 

database to explore the expression of NCAPs in 

sarcoma and the correlation between the expression 

level of the NCAPs family and the infiltration level of 

different immune cells. 

 

Availability of data and materials 

 

All data generated or analysed during this study are 

included in this published article. 

http://www.oncomine.org/
http://gepia.cancer-pku.cn/
http://kmplot.com/analysis/
https://cistrome.shinyapps.io/timer/
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subunit; NCAPH: non-SMC condensin I complex H 

subunit; NCAPH2: non-SMC condensin I complex H2 

subunit; OS: Overall survival; qPCR: Quantitative PCR; 

RFS: relapse-free survival; SARC: Sarcoma; SMC: 

Structural maintenance of chromosomes; TIMER: 

Tumor Immune Estimation Resource. 
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