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INTRODUCTION 
 

Breast cancer (BC) is the most prevalent malignancy 

among women worldwide [1]. In recent years, despite 

the vigorous development of comprehensive treatment 

strategies, including surgery, chemotherapy, hormonal 

therapy, and immunotherapy, the issues of recurrence, 

metastasis, chemotherapy drug resistance, and other 

poor prognosis remain non-negligible challenges in the 

management of BC patients [2]. The highly complex 

and heterogeneous nature of BC limits the wide 

applicability of existing BC staging. Therefore, the 

exploration of novel biomarkers is imperative to 

provide new possibilities for risk prognosis and 

individualized treatment of BC patients. 

 

Tumor malignant progression is thought to be irrefutably 

related to alterations in the tumor microenvironment 

(TME) [3]. Activated fibroblasts, vascular endothelial 

cells, pericytes, adipocytes, immune cells, and abundant 

extracellular stromal cells together constitute the complex 

TME [4]. Cancer-associated fibroblasts (CAFs) are one 
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ABSTRACT 
 

Breast cancer (BC) ranks first in the incidence of tumors in women and remains the most prevalent malignancy in 
women worldwide. Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) profoundly 
influence the progression, recurrence, and therapeutic resistance in BC. Here, we intended to establish a risk 
signature based on screened CAF-associated genes in BC (BCCGs) for patient stratification. Initially, BCCGs were 
screened by a combination of several CAF gene sets. The identified BCGGs were found to differ significantly in the 
overall survival (OS) of BC patients. Accordingly, we constructed a prognostic prediction signature of 5 BCCGs, 
which were independent prognostic factors associated with BC based on univariate and multivariate Cox 
regression. The risk model divided patients into low- and high-risk groups, accompanied by different OS, clinical 
features, and immune infiltration characteristics. Receiver operating characteristic (ROC) curves and a nomogram 
further validated the predictive performance of the prognostic model. Notably, 21 anticancer agents targeting 
these BCCGs possessed better sensitivity in BC patients. Meanwhile, the elevated expression of the majority of 
immune checkpoint genes suggested that the high-risk group may benefit more from immune checkpoint 
inhibitors (ICIs) therapy. Taken together, our well-established model is a robust instrument to precisely and 
comprehensively predict the prognosis, immune features, and drug sensitivity in BC patients, for combating BC. 
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of the most abundant stromal components in TME and 

are major participants in tumor-stromal crosstalk. A  

large body of evidence implies that CAFs contribute to 

the promotion of tumor development. In addition to 

directly promoting the growth and invasion of cancer 

cells, CAFs can also affect angiogenesis, connective 

tissue formation, hypoxia, immunomodulation, and 

epithelial mesenchymal transition (EMT), thus driving 

tumor metastasis and drug resistance [5]. 

 

Consequently, identifying the matrix components in 

TME not only enables precise targeting of CAFs, but 

also makes it a potentially promising target for BC 

therapy. Multiple studies have described the prognostic 

significance of CAF-associated biomarkers in BC. For 

example, BC patients with a higher proportion of 

Alpha-smooth muscle actin (α-SMA) positive 

fibroblasts exhibited shorter overall and relapse-free 

survival [6]. α-SMA was also identified as a novel 

biomarker of trastuzumab resistance in HER2-positive 

BC [7]. Similarly, the CAF marker, platelet-derived 

growth factor beta (PDGFRβ) receptor, was associated 

with considerably shorter recurrence-free survival and 

brain metastases in BC [8, 9]. Conversely, fibroblast 

activating protein (FAP) is another classical CAF 

marker, exhibiting a significant relationship on longer 

overall and disease-free survival for BC [10]. However, 

several analyses of the prognostic value of the CAF 

marker podoplanin have yielded conflicting conclusions 

[11–13]. Additionally, different studies on caveolin-1 

(Cav1) had also come to contradictory conclusions  

[14–16]. Hence, the specific relationship between the 

reactive stroma indicated by various CAF markers and 

prognostic factors has not been fully elucidated. 

 

CAFs are substantially a group of cell subpopulations 

with spatial, phenotypical, and functional heterogeneity 

[17]. This complexity suggests that a comprehensive 

CAF gene profile is appropriate for characterizing CAFs, 

subsequently defining the prognosis and optimizing 

clinical diagnosis and treatment of BC patients. 

Therefore, the characterization of CAFs by gene 

combinations is a promising direction for combating BC. 

Accordingly, here, we constructed and validated a risk 

prognosis signature based on CAF-associated genes in 

BC (BCCGs) by comprehensive bioinformatics analysis. 

A collection of BCCGs associated with OS survival in 

BC patients was identified based on Kaplan-Meier (K-M) 

survival analysis. Then 5 BCCGs were further identified 

for constructing a prognostic risk score model to predict 

BC prognosis. The risk score derived from BCCGs could 

predict the sensitivity of anticancer drugs and immuno-

therapy response, thus contributing to the precise 
treatment of BC. In addition, there was a substantial 

association between the immune infiltration landscape of 

TME and different risk scores, which might contribute to 

synergistic effects in CAF-targeted treatment and 

immunotherapy. These findings provide new insights into 

the prognostic prediction methods and strategies for 

future individualized therapeutics of BC patients. The 

entire flow of this study was shown in Figure 1. 

 

RESULTS 
 

Identification of BCCGs 

 

Firstly, 643 CAF-related genes were obtained by  

taking the full set of 3 CAF-related gene sets to 

eliminate overlapping genes (Figure 2A). Then, 1,724 

differentially expressed genes (DEGs) were mined from 

TCGA by “DESeq2” R package and “GEO2R”. These 

1724 DEGs were crossed with 643 CAF-related genes, 

and 74 differentially expressed BCCGs were identified 

(Figure 2B). Then, 3924 DEGs were mined from 

GSE38959, and the final 21 BCCGs were filtered by the 

further intersection of 3924 DEGs in GSE38959 with 74 

BCCGs obtained from the previous intersection set 

(Figure 2C). 

 

Association of 21 BCCGs with the survival of BC 

patients 

 

In Figure 3A, the heatmap showed that the expression of 

the 21 BCCGs was significantly different in normal and 

tumor samples. PCA analysis based on these 21 BCCGs 

could distinctly classify the BC patients and normal 

individuals into two clusters (Figure 3B). Therefore, we 

further analyzed the relationship between these 21 

BCCGs and the prognosis of BC patients (Figure 3C). 

K-M survival analysis exhibited that all the 21 genes 

were associated with survival in BC patients. The low 

expression of ALIN, ARHGAP11A, ASPM, ATP6V0B, 

BUB1, CENPF, DLGAP5, CEP55, MKI67, TOP2A, 

TTK was more favorable to the long-term survival of 

BC patients, while the high expression of CAB39L, 

HBA2, STAT5, KIT, MAMDC2, MLPH, TGFBR2, 

SLC16A6, FOS, OLFML2B was more associated with 

the long-term survival of BC patients. This suggested 

that it was feasible to use the CAF genes to stratify the 

prognosis of BC patients. 

 

Establishment of a prognostic model based on CAF-

related risk score 

 

To establish a CAF-related prognostic model, we first 

screened 13 genes of prognostic value from 21 BCCGs 

by univariate Cox regression analysis (Figure 4A), in 

which BUB1, SLC16A6, CEP55, ASPM, CENPF, 

ATP6V0B, TOP2A, DLGAP5, MKI67 were favorable 

factors for patient prognosis (HR < 1), while MAMDC2, 

HBA2, CAB39L, TGFBR2 were unfavorable factors 

(HR > 1). Multivariate Cox regression further identified 
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Figure 1. Flow chart of this study. 

 

 
 

Figure 2. Acquisition of BCCGs in BC. (A) Three CAF gene sets were collected to obtain a comprehensive pool of CAF-associated genes.  

(B) CAF-related gens overlapped with DEGs in TCGA to obtain BCCGs. (C) BCCGs were further validated in GSE38959. 
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5 BCCGs based on the minimum AIC value as BUB1, 

SLC16A6, HBA2, CAB39L, and DLGAP5 to construct 

the prognostic model (Figure 4B). Each patient obtained 

the risk score value by the above formula. Then we 

divided the patients into low- and high-risk groups 

according to the median risk score, and the survival time 

of patients became shorter with the increasing risk score 

(Figure 4C). The expression pattern of the 5 BCCGs was 

distinctly different between the low-risk group and high-

risk group (Figure 4D). Subsequently, K-M analysis 

showed that the overall survival (OS) of patients in the 

high-risk group was shorter than those in the low-risk 

group (Figure 4E), and the results (Figure 4F) 

demonstrated that the AUC of the ROC curve with risk 

scores was 0.613. 

Correlation of clinicopathological features with risk 

scores 

 

The distribution of risk scores in the corresponding 

samples was investigated according to age, clinical 

stage, tumor size, regional lymph node, and distant 

metastasis levels. Higher risk scores were associated 

with the higher clinical stage (P = 0.028), but not with 

the age or TNM of the tumor (Figure 5A). Univariate 

Cox regression analysis was performed for age, gender, 

clinical stage, tumor size (T), regional lymph nodes (N), 

distant metastases (M), and prognostic risk score. The 

findings suggested that age, clinical stage, T, N, and M 

were all prognostic correlates (P < 0.05, Figure 5B). But 

further multivariate Cox regression implied that only 

 

 
 

Figure 3. Survival analysis of 21 BCCGs in BC. (A) Heatmap displayed different expression patterns of the 21 BCCGs in the BC and control 

groups. (B) PCA analysis based on the 21 BCCGs could distinctly divide the BC group and control group. (C) K-M survival analysis of the 21 
BCCGs in BC patients. 
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age and risk score were independent prognostic factors 

for BC (P < 0.05, Figure 4C). 

 

Construction of a predictive nomogram for validating 

the prognostic model 

 

As nomograms are widely utilized to predict patient 

survival, here we constructed a nomogram that could 

predict the probability of survival at 1-, 3-, and 5-year 

(Figure 6A). The length of the risk score line segment 

reflected the greater contribution of the risk factor to 

outcome event. The performance of the risk signature 

could further be quantified in terms of calibration, 

which revealed relatively good predictive accuracy 

between actual and predicted probability (Figure 6B). In 

addition, the 1-, 3-, and 5-year ROC curves showed the 
 

 

Figure 4. Construction and validation of prognostic model based on BCCGs. (A) The association between clinical prognosis and 

potential BCCGs was established by univariate Cox regression. (B) Multivariate Cox regression analysis revealed the underlying predictive 
BCCGs of BC. (C) The survival status distribution of BC patients after grouping by median risk score. (D) Expression profile of the 5 BCCGs of BC 
patients. (E) K-M curves of patients assigned to low- and high-risk groups. (F) ROC curves of risk score and other clinicopathological 
characteristics. 
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corresponding AUC for risk score were 0.635, 0.617, 

and 0.625, respectively (Figure 6C). Furthermore, 

decision curve analysis (DCA) calculated a clinical “net 

benefit” for the prediction models in comparison to 

default strategies of treating all or no patients at 1-, 3- 

and 5-year (Figure 6D). Hence, it concluded that,  

this risk signature was a well-performed predictive 

parameter. In summary, the prediction potential of 

prognostic nomogram was verified from multiple 

perspectives. 

 

Prediction of anticancer agents sensitivity based on 

CAF gene expression 

 

The heterogeneity of BC tumors and individual variability 

of patients often render conventional treatments 

ineffective in achieving desired outcome in all patients. 

Therefore, identifying the molecular characteristics of 

tumors and determining appropriate therapeutic agents is 

a key challenge for precision medicine. CellMiner is a 

suite of genomics and pharmacology-based tools for 

screening effective anti-cancer drugs [18]. Here, we 

explored the relationship between 5 BCCGs and 

chemotherapeutic drug sensitivity using the Cellminer 

database in this study (Figure 7). The expression of HBA2 

was found to be positively correlated with the sensitivity 

of Imatinib, Nilotinib, Ponatinib, Pemetrexed, Bosutinib, 

Bafetinib, and Fulvestrant. The expression of SLC16A6 

demonstrated a positive correlation with the sensitivity of 

Dabrafenib, Vemurafenib, Hypothemycin, Selumetinin, 

Denileukin Diftitox Ontak, PD-98059, Bafetinib, and 

Dasatinib. Besides, the higher the expression of CAB39L, 

the worse the drug sensitivity of BC patients to Eribulin 

mesylate, meanwhile the higher the expression of 

DLGAP5, the better the sensitivity of BC patients to 

Nelarabine. 

 

Different immune landscapes in low- and high-risk 

group 

 

CAFs are an essential component of TME, and the 

immune infiltration characteristics of TME are closely 

linked to tumorigenesis, invasion, and metastasis. 

Accordingly, the CIBERSORT algorithm emphasized 

that B cells naïve, Plasma cells, T cells CD4 memory 

resting, Monocytes, Macrophages M2, Mast cells resting, 

and Mast cells activated were mainly enriched in the 

high-risk group, while T cells CD4 memory activated, T 

cells follicular helper, T cells regulatory (Tregs), 

Macrophages M0, and Macrophages M1 were more 

frequently found in the low-risk group (Figure 8A). We 

further assessed the relationship between immune 

 

 
 

Figure 5. The correlation of clinicopathological characteristics with risk score. (A) The risk score distribution between BC patients 

with different clinicopathological features. (B) Univariate Cox regression analysis of risk scores and other clinical features in forest plots.  
(C) Multivariate Cox regression analysis of risk scores and other clinical features in forest plots. 
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Figure 6. Verification of the predicting capability of prognostic model based on BCCGs. (A) Nomogram model build on CAF-related 
risk score and clinicopathological features to predict 1-, 3-, and 5-year OS of BC patients. (B) Calibration curves for the nomogram revealed 
qualify the predictive accuracy and ability. (C) ROC curves of the prognostic model of BC patients for 1-, 3- and 5-year. (D) The DCA of a 
prognostic model for 1-, 3- and 5-year overall survival, respectively. 
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components and risk scores. There was a significant 

positive correlation between B-naïvenaive, plasma cells, 

T-cell CD4 memory, T-cell gamma delta, and risk score, 

but a negative relationship between NK-cell resting, T-

cell follicular helper, T-cell regulatory (Tregs), 

macrophage M0, and risk score (Figure 8B). In addition, 

each of the 5 BCCGs constituting the risk score was 

significantly correlated with the immune cell score 

(Figure 8C–8G). 

 

Immunotherapy response prediction 

 

Immunotherapy is rapidly emerging for its specificity, 

safety, and effectiveness, and BC is considered one of 

the tumor types that can benefit from immunotherapy. 

Immune checkpoint inhibitors (ICIs) are a huge 

breakthrough in BC treatment. To explore the correlation 

between CAF-related characteristics and immunotherapy 

response, we compared the differential expression of 

immune checkpoints between the low- and high-risk 

groups. There were 39 out of 43 immune checkpoint 

genes with significant differences in expression in the 

low- and high-risk groups (Figure 9A). Most immune 

checkpoints, including CD40, CD40LG, TNFSF15, 

CD244, TNFSF14, and CD200, were upregulated in the 

high-risk group. In addition, we discovered an inverse 

relationship between the risk score and expression of 

TNFSF4, TNFRSF18, and BTNL2, and a positive 

relationship between the risk score with expression of 

CD200 and TNFRSF8 (Figure 9B). These results 

suggested that there might be a correlation between risk 

score and immunotherapy and that the high-risk group 

was more likely to benefit from ICIs therapy. 

 

Functional enrichment analysis 

 

To further explore the differences in gene expression 

patterns between the low- and high-risk groups, we 

analyzed the molecular processes and biological 

pathways between the two groups. The heatmap  

(Figure 10A) and volcano map (Figure 10B) exhibited 

the differential gene expression profiles between the 

low- and high-risk groups. The Gene Ontology (GO) 

analysis revealed that the most enriched Biological 

Processes (BP) were fat cell differentiation, positive 

regulation of cold-induced thermogenesis, and regulation 

 

 
 

Figure 7. Correlation between the expressions of BCCGs and sensitivity of potential anticancer drugs: The relationship 
between the IC50 of various medications and the risk score. 
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Figure 8. The distinct immune infiltration features of TME between low- and high-risk groups. (A) Distribution of the relative 

abundance of immune cells in different risk groups. (B) Correlation analysis of immune infiltrating cells and risk scores. (C) Correlation 
analysis of immune infiltrating cells and CAB39L. (D) Correlation analysis of immune infiltrating cells and DLGAP5. (E) Correlation analysis of 
immune infiltrating cells and HBA2. (F) Correlation analysis of immune infiltrating cells and SLC16A6. (G) Correlation analysis of immune 
infiltrating cells and BUB1. 
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of fat cell differentiation, the most enriched Cellular 

Component (CC) were lipid droplet, immunoglobulin 

complex circulating and endocytic vesicle lumen,  

the most enriched Molecular Function (MF) were 

glycosaminoglycan binding, structural constituent of  

the cytoskeleton and intermedia filament binding  

(Figure 10C). Furthermore, The Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment analysis 

showed that the differential genes in the low- and 

high-risk groups might be involved in the PPAR 

signaling pathway, AMPK signaling pathway, 

Regulation of lipolysis in adipocytes, Adipocytokine 

signaling pathways and cholesterol metabolism 

(Figure 10D). 

 

 
 

Figure 9. Prediction of immunotherapy response. (A) The expression of immune checkpoints in low- and high-risk groups. (B) The 
relationship between risk score and the expression of some immune checkpoints. 
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Expression pattern of CAF gene signature in BC 

tissue 

 

To further explore the important role of CAF-related 

gene signatures in BC, we analyzed protein expression 

patterns of BCCGs in normal and tumor samples in the 

Human Protein Atlas (HPA) database (Figure 11A). 

Immunohistochemistry (IHC) results from HPA 

demonstrated that DLGAP5 protein was found to be 

strongly expressed in BC tumor tissues, while 

SLC16A6, CAB39L, and HBA demonstrated lower 

protein expression in BC tissues (Figure 11B). The 

differential expression of these BCCGs in the BC group 

and the control group suggests that they might play an 

important role in the initiation and progression of BC. 

DISCUSSION 
 

CAFs are a heterogeneous group of cells in terms of 

cellular origin, phenotype, and function, and are also the 

most important components of TME. Activated CAFs 

can facilitate tumor growth, angiogenesis, invasion, and 

metastasis, as well as extracellular matrix (ECM) 

remodeling and chemoresistance through multiple 

mechanisms. Multiple studies have documented the 

critical role of CAFs in BC development and progression. 

For instance, Cohen et al. discovered that fibroblasts 

drove the immunosuppressive and growth-promoting 

microenvironment of BC through secreting Chitinase 3-

like 1 [19]. Besides, fibroblast-derived IL-33 was found 

to promote BC metastasis by altering the immune 

 

 
 

Figure 10. Different gene expression profiles and functional analysis of low- and high-risk groups. (A) The heatmap of the 
expression differences in low- and high-risk groups. (B) The volcanic map depicted dysregulated genes between low- and high-risk groups. (C) 
The enrichment map illustrated GO annotation analysis of DEGs between low- and high-risk groups. (D) The enrichment map illustrated the 
KEGG pathway analysis of DEGs between low- and high-risk groups. 
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microenvironment and driving type 2 immunity [20]. 

In addition, Wen et al. demonstrated that IL-32 

secreted by CAFs promoted BC cell invasion and 

metastasis through integrin β3-p38 MAPK signaling 

[21]. Furthermore, CAF-derived inflammasome was 

reported to promote tumor progression and metastasis 

by regulating the TME in an immunosuppressive 

environment [22]. The characteristics and roles of 

CAFs in BC have been gradually uncovered, and 

CAFs have been considered as potential targets  

for anticancer therapy. Therefore, a comprehensive 

understanding of the molecular characterization and 

functional properties of CAFs in BC is necessary for 

targeted therapy of CAFs. However, most studies 

focused on the role of single CAF-related gene 

regulators in BC, and the combined effects of CAF-

related genes have rarely been elucidated. The 

characteristics of CAF cell subpopulations dictate that 

an integrated gene expression pattern might be more 

appropriate to describe CAFs. The integrated 

characterization of multiple genes is more conducive 

to diagnostic optimization, prognostic prediction, and 

therapeutic guidance for BC patients. 

 

A Comprehensive gene expression pattern is more 

suitable to describe the CAF population and is 

subsequently used for disease prediction. A set of 

stroma-derived prognostic predictors is applied to 

stratify BC prognosis [23]. Several ECM-related genes 

have also been found to be associated with survival and 

risk of recurrence in BC [24]. Oliver Frings et al. 

described a gene expression signature based on PDGF-

activated fibroblasts that could be used to identify  

BC and showed independent and strong prognostic 

significance [25]. Although each of the aforementioned 

genes had considerable prognostic power, the overall 

effect of multiple CAF-associated gene regulation had 

not been fully described. Secondly, there is little genetic 

overlap between these CAF features, so the new 

molecular tool is expected to help elucidate tumor-

mesenchymal interactions for individualized prognostic 

assessment. 

 

 
 

Figure 11. Validation of the 5 BCCGs in normal breast tissue and BC tissue. (A) IHC staining of protein expression for 5 BCCGs. (B) 

Bar charts represent IHC staining and intensities for five BCCGs. 



www.aging-us.com 3492 AGING 

The application of high-throughput technology enables a 

more comprehensive characterization of tumor stroma 

and expands the selection range of CAF biomarkers. 

Here, this study originally investigated the prognostic 

significance of a CAF-associated gene pattern in BC 

patients. In this study, we created a BC prognostic risk 

signature based on 5 CAF-associated genes and 

confirmed their prognostic value. Firstly, to improve the 

comprehensiveness and reliability of the results, a 

combination of the GEO database, TCGA database, and 

GSEA database was used to perform the screening of the 

CAF-related gene set. Next, we identified 5 independent 

BCCGs independently associated with BC prognosis by 

univariate Cox regression and multivariate Cox 

regression analysis, namely BUB1, SLC16A6, HBA2, 

CAB39L, and DLGAP5. Then, we constructed the 

corresponding risk score prognostic model by 5 BCCGs, 

which could accurately predict the prognosis of BC 

patients, as demonstrated by longer OS in the low-risk 

group than in the high-risk group. In addition, the 

combination of the prognostic risk score model with 

prognosis-related clinicopathological features assists to 

ameliorate the predictive power and clinical applicability 

of the model. Ultimately, there was indeed a difference in 

gene function analysis between the low-risk and high-risk 

groups, which further confirmed that the use of risk 

stratification to classify the prognosis of BC patients was 

theoretical. 

 

The signature-constructing BCCGs have been 

acknowledged more or less in BC progression. BUB1 

was found to be variably expressed in BC cell lines as 

early as 2000 [26]. Later, an analysis of 1858 primary 

BC patients recognized that BUB1 was a key kinase in 

low-grade luminal BC, and that low expression of BUB1 

accounted for a poor prognosis of BC patients [27]. 

Recently, metformin treatment reduced oncogenic miR-

21-5p in BC cells, further releasing CAB39L expression 

and evoking activation of AMPK, which was closely 

associated with reduced migratory and invasive capacity 

in BC cell lines [28]. Moreover, HBA2 was significantly 

downregulated in BC tissues and displayed excellent 

diagnostic performance [29]. DLGAP5 is a microtubule-

associated protein and mitotic phosphorylated substrate 

of Aurora-A. Elevated gene expression of DLGAP5 was 

reported to be associated with poor OS in BC patients 

and might be a useful target for BC diagnosis and 

treatment [30]. Furthermore, the genetic signature 

constituted by the transporter protein SLC16A6 and 

other factors is involved in prognostic prediction, 

immune infiltration, and immunotherapeutic response in 

BC [31]. Therefore, the risk signatures based on these 5 

BCCGs have a theoretical foundation. 
 

A key goal of precision medicine is to match drugs to 

the genomic determinants of response. Identifying 

molecular features of tumors that influence response to 

specific drug therapy is particularly challenging because 

of patient diversity, tumor heterogeneity, and incomplete 

knowledge of the multiple molecular determinants  

of response. Therefore, we leveraged the CellMiner 

database to predict candidate drugs that were highly 

associated with the CAF gene. The results of our 

screening suggested that these different types of 

chemotherapeutic agents respond differently to different 

risks. Differences in sensitivity to anticancer agents 

between low- and high-risk groups further help optimize 

personalized treatment for BC patients. 

 

CAFs interact with tumor-infiltrating immune cells as 

well as other immune components, by secreting various 

cytokines, growth factors, chemokines, and exosomes, 

consequently resulting in an immunosuppressive  

TME that allows cancer cells to escape from the 

surveillance by the immune system [4]. Future targeted 

immunotherapies may benefit from in-depth research of 

CAFs and their interactions with the immunological 

milieu, particularly the complex pathways that link 

CAFs with immune cells. Although various studies have 

highlighted the importance of BCCGs, there is a dearth 

of research involved in the immune TME and 

immunotherapy of BCCGs. We further evaluated the 

immune distribution between low- and high-risk groups. 

There was a significant difference in stromal immune 

scores between the low- and high-risk groups. Notably, 

higher levels of activated CD4+ T cell infiltration 

showed better survival outcomes [32], while T-cell 

follicular helper-related activity was significantly 

enhanced in BC clusters with better prognosis [33]. In 

the present work, CD4+ and T-cell follicular helper 

infiltration were indeed significantly increased in the 

low-risk group. In addition, the enrichment of M1 cells 

helps to protect BC patients [34], while a higher 

proportion of M2 cells is a risk factor for BC patients 

[35], which was also consistent with our results. The 

risk scores including 5 corresponding BCCGs were also 

significantly correlated with various immune cell 

fractions. Furthermore, the differential expression of 

immune checkpoint genes suggested that patients in the 

high-risk group might be more sensitive to its treatment. 

 

Although we deciphered a comprehensive feature and 

obtained an excellent predictive capability, there are 

still some issues that warrant to be addressed at present. 

Firstly, this study was a retrospective research based on 

the existing TCGA, GEO, and other databases. In a 

further prospective study, more information and sample 

collections obtained from real-world substances are 

needed to investigate the potency of this signature. 
Secondly, we have preliminarily indicated the excellent 

abilities of this signature in judging the BC strategies. 

Thus, there is a lack of more credible validation within 
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in vivo or in vitro experiments. Thirdly, more 

investigations are needed to identify the molecular 

mechanisms of CAFs during BC progression. In 

addition, more extensive multicenter clinical trials are 

important to confirm the efficacy of immunotherapy 

regimens targeting CAFs. 

 

In conclusion, by manipulating a series of integrated 

bioinformatic methods, this signature was successfully 

constructed based on 5 specific screened BCCGs, 

including BUB1, SLC16A6, DLGAP5, CAB39L, and 

HBA2. This signature exhibited robust, reliable, and 

comprehensive capabilities in predicting the prognosis, 

immune feature, and drug sensitivity for better 

combating BC. Taken together, our study provides a 

feasible strategy for the stratification and individualized 

treatment of BC patients. 

 

MATERIALS AND METHODS 
 

Public data collection 

 

RNA sequencing data, including normal breast samples 

and BC samples, were obtained from The Cancer Genome 

Atlas (TCGA) database (https://portal.gdc.cancer.gov/) 

and Gene Expression Omnibus (GEO) database 

(https://www.ncbi.nlm.nih.gov/geo/). The inclusion 

criteria for the sample were as follows: (a) diagnosed 

with histologically confirmed BC; (b) available survival 

data; (c) complete clinical information. There were 

1101 BC samples and 572 control samples in the TCGA 

database. GSE38959 included 30 BC samples and 13 

normal breast samples. 

 

Acquisition of CAF-associated genes 

 

We used the term “fibroblast” as a keyword for 

searching in the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). Two genomes 

associated with CAF (MISHRA CARCINOMA 

ASSOCIATED FIBROBLAST UP and MISHRA 

CARCINOMA ASSOCIATED FIBROBLAST DN) 

were eventually obtained for subsequent analysis. 

Besides, a gene set, including 596 CAF-associated 

genes determined by Herrera et al. from a previous 

study in 2021 was also included in the study [36]. The 

full gene sets of the three were taken, and 643 CAF-

associated genes were acquired after deleting duplicates. 

 

Acquisition of CAF-associated genes in BC (BCCGs) 

 

The DEGs in TCGA were intersected with the 643 

CAF-associated genes to obtain 74 BCCGs. Then the 74 
BCCGs intersected with GSE38959 DEGs to further 

narrow down the range of BCCGs. Ultimately, we 

obtained a gene set of 21 BCCGs. 

Establishment of a prognostic risk model 

 

K-M survival estimate was conducted to assess the 

relationship between these 21 BCCGs and the survival 

of BC patients. Then, univariate Cox regression analysis 

was used to further screen out key prognostic BCCGs. 

Next, multivariate Cox regression analysis identified 

BCCGs showing independent prognostic associations, 

and a risk score model was developed to predict the 

prognosis of patients with TCGA BC patients. Risk 

scores were calculated for each sample based on a risk 

score formula = (1.164664003* expression level of 

BUB) + (-0.300200106* expression level of SLC16A6) 

+ (0.177001532* expression level of HBA2) + 

(0.99177523* expression level of CAB39L) + (-

1.037652488* expression level of DLGAP5). The 

median risk score was used as the basis for patient 

stratification. All the patients were divided into low- 

and high-risk groups. K-M curves were used to assess 

survival differences. In addition, the utility of the 

prognostic model was validated by the receiver 

operating characteristic (ROC) curve. Survival status 

heatmap was exhibited as expression differences in 

independent prognostic genes and differences in risk 

score distributions. 

 

Prognostic model validation 

 

A nomogram with independent prognostic factors was 

created using the “rms” and “survival” R packages, and 

the accuracy of the nomogram was assessed by ROC 

curves, calibration curves, and decision curve analysis 

(DCA). 

 

Efficacy of chemotherapy response 

 

The CellMiner database (https://discover.nci.nih.gov/ 

CellMiner) was used to assess the relationship between 

risk score and drug sensitivity. The mRNA profiles and 

drug sensitivity half maximum inhibitory concentration 

(IC50) values of NCI-60 human cancer cell lines were 

obtained from the CellMiner. Subsequently, we used the 

CellMiner database to predict potential targeted drugs that 

might target the 5 BCCGs. 

 

Assessment of tumor immune cell infiltration 

 

LM22 (leukocyte gene signature matrix) was  

obtained from the CIBERSORT database 

(http://CIBERSORT.stanford.edu/), which contains 

547 genes that distinguish 22 human hematopoietic cell 

phenotypes, including seven T cell types, naïve and 

memory B cells, plasma cells, NK cells, and myeloid 
subsets. LM22 was used as a reference set to analyze 

tumor immune cell infiltration in BC samples, and the 

CIBERSORT algorithm was used to obtain the 

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://discover.nci.nih.gov/CellMiner
https://discover.nci.nih.gov/CellMiner
http://cibersort.stanford.edu/
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infiltration of immune cells in the low- and high-risk 

groups. The correlation between different tumor 

immune cell types and BCCGs was evaluated by 

Spearman’s correlation test, and the results were 

presented using lollipop plots. 

 

Evaluation of immunotherapy response 

 

43 immune checkpoints were obtained from previous 

studies [37]. We compared the expression of known 

immune checkpoint genes in the low- and high-risk 

groups. The differences were statistically significant 

when the P value < 0.05. 

 

Functional enrichment analysis 

 

The R package “ClusterProfiler” was used to identify 

DEGs between two risk groups and their functions were 

further annotated with Gene Ontology (GO) and the 

Kyoto Encyclopedia of Genes and Genomes (KEGG). 

 

Statistics analysis 

 

To validate the independent prognostic indicators for 

BC, univariate and multivariate Cox regression analyses 

were conducted, and hazard ratios (HR) and 95% 

confidence intervals (CI) were reported. The prognostic 

performance of the risk score was evaluated using the 

area under the ROC curve (AUC). The Wilcoxon test 

analyzed the differences between the two groups’ 

variables. A two-sided P value of 0.05 was determined 

to be statistically significant. All statistical analyses 

were conducted using R x64 version 4.0.5. 

 

Data availability statement 
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