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INTRODUCTION 
 

Lung cancer is not only one of the most common cancers 

throughout the world, but also the leading cause of death 

among cancer patients, with morbidity and mortality 

ranking first among all cancers around the world [1]. 

Adenocarcinoma of the lung (LUAD) is the most 

common subtype, representing the highest percentage of 

lung cancer [2]. For the treatment of lung cancer, in 

addition to surgery, radiotherapy, and chemotherapy, 

targeted therapy and immunotherapy provide new 

directions [3]. However, due to the problems of drug 

resistance, efficiency, and adverse reactions, its curative 

effects are still unsatisfactory. 

 

Currently, the long-term survival outcome of lung 

cancer patients was less than satisfactory, and the  

five-year survival rate was from 4% to 17% [4]. Thus, 

the study of abnormally expressed genes in lung 

cancer, especially in lung adenocarcinoma, is of  

great importance to further elucidate the molecular 

mechanism of its development and progression, and  

to identify prognostic markers and therapy-related 

targets. 
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ABSTRACT 
 

The present study explored the prognosis and biological function roles of chromatin regulators (CRs) in patients 
with lung adenocarcinoma (LUAD). Using transcriptome profile and clinical follow-up data of LUAD dataset, we 
explored the molecular classification, developed, and validated a CR prognostic model, built an individual risk 
scoring system in LUAD, and compared the clinical and molecular characteristics between different subtypes 
and risk stratifications. We investigated the chemotherapy sensitivity and predicted potential immunotherapy 
response. Lastly, we collected the clinical samples and validated the prognosis and potential function role of 
NAPS2. Our study indicated that LUAD patients could be classified into two subtypes that had obviously 
different clinical background and molecular features. We constructed a prognostic model with eight CR genes, 
which was well validated in several other population cohort. We built high- and low-risk stratifications for 
LUAD patients. Patients from high-risk group were totally different from low-risk groups in clinical, biological 
function, gene mutation, microenvironment, and immune infiltration levels. We idented several potential 
molecular compounds for high-risk group treatment. We predicted that high-risk group may have poor 
immunotherapy response. We finally found that Neuronal PAS Domain Protein 2 (NPAS2) involved in the 
progression of LUAD via regulating cell adhesion. Our study indicated that CR involved in the progression of 
LUAD and affect their prognosis. Different therapeutic strategies should be developed for different molecular 
subtypes and risk stratifications. Our comprehensive analyses uncover specific determinants of CRs in LUAD 
and provides implications for investigating disease-associated CRs. 
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In eukaryotic cells, transcriptional regulation can occur 

at multiple levels, including RNA polymerases with 

different structure and function, corresponding broad-

spectrum initiation factors, gene-specific regulators 

(DNA-binding proteins), and various coregulatory 

factors [5]. These coregulatory factors may contribute 

to the formation of transcription initiation complexes 

through chromatin modifications, such as histone 

acetylation and methylation, or more directly [6]. 

These regulation factors can be called as chromatin 

regulators (CRs). Over the past few years, studies have 

shown that epigenetic change, which is one of the most 

important tumor biomarkers, is caused by chromatin 

regulators (CR) [7]. CRs can dynamically regulate 

chromatin structure and epigenetic expression in 

response to endogenous and exogenous signals [8]. 

Somatic alterations and misexpression of CRs would 

reprogram the epigenetic profile of chromatin, leading 

to occurrences of common diseases, particularly 

cancers [9]. CR is an indispensable regulatory element 

in epigenetics [10]. Based on their roles in epigenetics, 

CR falls into three main categories: DNA methylators, 

histone modifiers, and chromatin remodeling factors. 

But these three categories are closely related to each 

other when it comes to biological processes [11]. 

Further studies have shown that aberrant expression of 

CRs correlated with many biological processes, 

including autophagy, proliferation apoptosis, and 

inflammation, indicating that CRs dysregulation may 

lead to the development of many diseases, including 

cancer [12–15]. 

 

In this study, we first explored the molecular subtypes 

based on CR genes and analyzed their clinical and 

molecular characteristics. Next, we established and 

validated a CR prognostic prediction model in LUAD 

patients, and built a nomogram scoring system for 

assessing individual’s prognosis risk. Then, we made 

comparisons for clinical characteristics, gene 

alteration and mutation, biological function, tumor 

microenvironment and immune infiltration levels  

for different risk stratifications. After that, we 

investigated the chemotherapy sensitivity and pre-

dicted potential immunotherapy response. Lastly, we 

collected the clinical samples and validated the 

prognosis and potential function role of NAPS2 (a key 

molecular of cell adhesion) in LUAD. Our study 

provided new insights for the function role of CR in 

LUAD. 

 

MATERIALS AND METHODS 
 

Patients and samples 
 

This study included data was from public data 

platform (The Cancer Genome Atlas, https://portal. 

gdc.cancer.gov/), including 58 normal samples and 

517 LUAD samples. The clinical characteristics and 

follow-up information were used. Based on median 

absolute deviation (MAD)>0.5 and follow-up data, we 

excluded some samples. 870 CR genes were obtained 

from previous study [16]. 

 

A total of 429 formalin-fixed paraffin-embedded lung 

samples, including 41 benign lung disease tissues and 

388 LUAD tissues, were obtained during surgery or 

needed biopsy. The clinical and follow-up information 

were also achieved. These samples were from Jiangmen 

Central Hospital (Guangdong, China) between January 

2010 and December 2020.  

 

Molecular subtypes 

 

The consensus clustering was used for molecular 

subtyping, which was carried out using 

‘ConsensusClusterPlus’ R packages. The optimal 

number was determined by the visualization of the 

consensus matrix [17]. Principal Component Analysis 

(PCA) and Distributed Stochastic Neighborhood 

Integration (tSNE) were used to confirm the 

distribution of molecular sub-types [18]. Gene set 

variation analysis (GSVA) was adopted to compare 

the pathway enrichment difference between two 

molecular subtypes [19]. The CR genes expression 

profile and clinical characteristics were also 

compared. 

 

Development and validation of the prognostic 

model 

 

We developed a CR prognostic model using CR genes 

according to the following steps: we identified the 

prognosis-related CR genes using the univariate cox 

regression. The least absolute shrinkage and selection 

operator (LASSO) method was performed to identify 

the optimal gene groups from the prognosis-related  

CR genes, and the regression coefficients (β) were  

also calculated. We then calculated the risk score  

using the following formula: risk score=β1*Gene 

expression1+…+βN*Gene expression(N). The sample 

data was divided into high-risk and low-risk groups 

according to the median of risk score. Kaplan-Meier 

analysis was conducted to compare survival outcomes 

across high- and low-risk groups. PCA was used for 

visualizing the risk distribution. Using the calculation 

formula of risk score, we obtained the risk score of 

each sample in the GEO validation dataset 

(GSE31210, GSE37445, GSE50081, GSE19188, 

GSE30219) and ArrayExpress validation dataset (E-
MTAB-923). Similarly, we also compared the survival 

curve of high- and low-risk groups in the two 

validation datasets. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Establishment and assessment of individual risk 

scoring system 

 

To investigate the independent prognosis correlation of 

the risk score, we performed the univariate and 

multivariate cox regression analysis with hazard ratios 

(HRs) and corresponding 95% confidence intervals 

(CIs). We built a visual nomogram scoring system to 

assess the induvial risk score based on the risk 

stratification and clinical information. The predictive 

ability was assessed using the receiving operating 

characteristics curve (ROC) and decisive curve. The 

model fit was assessed using the calibration curve that 

showed the correlation of actual outcomes with 

nomogram-predicted outcomes. 

 

GO and KEGG pathway enrichment and gene 

alteration analysis 

 

Based on risk stratification, we obtained the 

differentially expressed genes (DGEs) between high- 

and low-risk groups. Then, Gene Ontology and KEGG 

pathway analyses were performed using the 

“clusterProfiler” package. Gene alterations, variant 

classifications and types, and co-occurrence and 

mutually exclusive were compared between two risk 

groups using “limma” R package. 

 

Tumor microenvironment and immune infiltration 

analysis 

 

We calculated the ESTIMAT, stromal and immune 

scores to evaluate the tumor microenvironment of differ 

groups. The immune infiltration level was evaluated 

using the CIBERSORT method, including 22 kinds of 

immune cells and function, which was used in previous 

study [20]. 

 

Chemotherapy sensitivity and immune response 

 

The chemotherapy sensitivity was assessed via IC50 of 

compounds of different risk groups. The elevated IC50 

means chemotherapy resistant. This process was 

finished using ‘pRRophetic’ R package. Using pre-

treatment expression profiles of tumor patients, we 

estimated Tumor Immune Dysfunction and Exclusion 

(TIDE) to predict patient’s immunotherapy response, 

which was achieved in web application of TIDE 

(http://tide.dfci.harvard.edu/). The elevated TIDE levels 

mean good immunotherapy response. 

 

Immunohistochemistry 

 
We detected the NPAS2, integrin beta4 and p-FAK 

expression in 388 LUAD samples using the immuno-

histochemistry. The process was previously described 

[21]. The specific steps for immuno-histochemistry can 

be found in the Supplementary Material 1. 

 

Statistical analysis 
 

For variables normal distributed variables, data are 

presented as the mean ± standard deviation (SD) and the 

statistical difference between the two groups was 

determined using the student’s t-test. The statistical 

differences between multiple groups were determined by 

One-way ANOVA.  Nonparametric test (Mann-Whitney 

U-test) was used to assess the significance of the 

differences. Survival curves for patients were utilized by 

the Kaplan-Meier method. P < 0.05 indicated a 

statistically significant difference. All analyses were 

conducted by SPSS 23.0 software (IBM Corp, Chicago, 

IL, USA) and diagrams were produced by GraphPad 

Prism 8.0 software (GraphPad Inc, San Diego, CA, USA). 

 

Data availability 
 

The data can be partly available from the public 

database. Data from experiments can be available from 

the corresponding authors upon request. 

 

RESULTS 
 

Molecular subtypes based on chromatin regulators 
 

We obtained 870 CR genes from previous publications. 

After screening using Median absolute deviation (MAD) 

>0.5 and univariate cox regression (P<0.05), we identified 

153 CR genes for molecular subtypes. We firstly built the 

PPI network for 153 CR genes and we found ACTL6A, 

RUVBL1, RUVBL2, ING3, ACTB, DMAP1, MEAF6, 

KAT8, EPC1, and CDK1 top 10 hub genes (Figure 1A). 

Then, we explored the location information and mutation 

frequency of these CR genes (Figure 1B). Using 

ConsensusClusterPlus package, we explored the 

molecular subtypes and found LUAD can be sharply and 

clearly divided into two clusters when the optimal k value 

is 2 (cluster 1 and cluster 2, Figure 1C). The PCA and t-

distributed stochastic neighbor embedding method also 

showed a two-dimensional distribution (Figure 1D, 1E). 

Finally, we performed the Kaplan-Meier analysis and 

found the cluster 2 had poorer prognosis than cluster 1 

(Figure 1F). These results suggested LUAD patients could 

be separated into two subtypes based on CR genes. 

 

We also investigated the CR expression levels and 

compared the clinical characteristics of two clusters. 

Compared with cluster 1, the cluster 2 had higher 

ratios of male, smoking, no radiation, pathology stage, 
N stage, and poor prognosis. ATAD2, LMNB1, 

BRCA1, CDC6, TOP2A, CHEK1, RAD54L, ORC1, 

ERCC6L, MASTL, ASF1B, CDK1, TTK, BUB1,  

http://tide.dfci.harvard.edu/
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Figure 1. Molecular subtypes based on chromatin regulator. (A) Protein-protein interaction of chromatin regulators; (B) The 

position of CRs on the chromosome; (C) Consensus matrix indented two subtypes. (D, E) PCA and corrected PCA identified two 
components. (F) Kaplan-Merrie survival curves of cluster 1 and cluster 2. 
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Figure 2. Clinical and function characteristics between two clusters. (A) Correlations of clinical characteristics with molecular 

subtypes; (B) Gene set variation analysis of two clusters. 
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RAD51, PRC1, PBK, and UBE2T were markedly 

increased in the cluster 2 (Figure 2A). The GSVA 

results suggested that some pathways were positively 

enriched in the cluster 2, including cell cycle, oocyte 

meiosis, one carbon pool by folate, glyoxylate  

and dicarboxylate metabolism, RNA degradation, 

pyrimidine metabolism, homologous recombination, 

DNA replication, mismatch repair, and proteasome. 

The cluster 1 had higher primary bile acid biosynthesis, 

taurine and hypo taurine metabolism, arachidonic and 

linoleic acid metabolism (Figure 2B). 

 

Development and validation of prognostic model 

based on chromatin regulators 

 

We developed a prognostic model for LUAD patients 

based on CR genes. We first carried out the LASSO 

regression and achieved the number of genes in the 

model. Eight genes entered final model (SETDB2, 

NPAS2, HMGA2, TLE1, HJURP, SNAI2, PHF1, 

PRKCD; Figure 3A, 3B). We then calculated the risk 

score of each sample using the regression coefficient 

multiplied by gene expression. All patients were divided 

into two groups (high- and low-risk groups) referring to 

the median of risk score. The Kaplan-Meier analysis 

indicated that high-risk group had poorer OS than the 

low-risk group (Figure 3C, 3D). PCA showed two 

obvious risk groups distributions (Figure 3E). We further 

validated the prognostic model in two datasets including 

GEO validation dataset (GSE31210, GSE37445, 

GSE50081, GSE19188, GSE30219) and ArrayExpress 

dataset (E-MTAB-923). Similarly, the prognosis of high-

risk group was still poorer than the low-risk group 

(Figure 3F, 3G), and PCA showed two-dimensional data 

distributions (Figure 3H). Furthermore, another cohort 

data also confirmed our model (Figure 3I–3K). 

 

Establishment and assessment of individual risk 

scoring system 

 

The univariate cox regression showed that risk score, 

pathology stage, T, N stage, and radiation were 

associated with prognosis (Figure 4A). The multivariate 

cox regression suggested that risk score can 

independently predict the prognosis in LUAD patients 

(HR=16.892, 95%CI:8.283-34.449, P<0.001; Figure 

4B). Age, pathology Stage, T and N stage, radiation and 

chemotherapy were also associated with prognosis in 

LUAD. 

 

To assess prognosis of the individual, we built 

individual risk scoring system using the nomogram. 

This scoring system included the risk score and clinical 
characteristics. Our results indicated the 1-year, 3-year 

and 5-year survival rate were 0.673, 0.428, and 0.135 

(Figure 4C). The ROC showed the risk score achieved 

the highest predictive ability for prognosis compared to 

other clinical parameters (AUC=0.650, Figure 4D). The 

deceive curve indicated that risk score had best net 

benefit when the risk threshold was 20% (Figure 4E). 

Meanwhile, we used the calibration curve to assess the 

predictive ability of model. The predictive outcomes 

and true data had good fits (Figure 4F–4H). 

 

Function and pathway enrichment and gene 

alterations in different risk stratification 

 

Through expression differences analysis, we obtained 

371 differentially expression genes from the results. The 

GO function enrichment suggested that high-risk group 

was mainly enriched in chromosome segregation, nuclear 

division, MHC class II protein complex assembly, single-

stranded DNA helicase activity (Figure 5A). The 

pathway analysis showed that high-risk group mainly 

enriched in cell cycle, DNA replication, ECM-receptor 

interaction, cell adhesion molecules, p53 signaling 

pathway, and focal adhesion (Figure 5B). 

 

The gene alterations were also analyzed. The high-risk 

group had higher alteration levels than low-risk groups. 

The top 10 gene alterations were TP53, CSMD3, TTN, 

ZFHX4, USH2A, MUC16, RYR2, KRAS, LRP1B, and 

SPTA1 for high-risk group (Figure 6A), and the top 10 

genes were TTN, TP53, MUC16, RYR2, CSMD3, 

LRP1B, KRAS, USH2A, ZFHX4, and FLG for low-risk 

group (Figure 6B). No significant differences were 

observed in variant classification and variant type, and 

SNV class for two risk group (Figure 6C, 6D). For high-

frequency gene alteration, the co-occurrence showed 

similar trends between high-risk and low-risk groups. 

Top altered genes were highly correlated (Figure 6E, 

6F) for two risk groups. There are still some differences 

for two groups such as MUC16, KRAS, LRP1B, 

USH2A, and ZFHX4. 

 

Correlations of different risk stratification with 

immune status 

 

The tumor microenvironment and immune infiltration 

levels were also evaluated. The results showed the low-

risk had higher ESTIMATE, stromal and immune score 

(Figure 7A–7C, P<0.05). However, the tumor purity 

increased in the low-risk group (Figure 7D, P<0.01). 

The infiltrations levels of high-risk group were lower 

than low-risk group, including aDCs, B cells, DCs, 

iDCs, mast cells, neutrophils, NK cells, pDCs, T helper 

cells, TIL, HLA, and type II IFN response (Figure 7E). 

However, the MHC class I was higher in the high-risk 

groups. We further compared the immune-checked 
point genes. The VTCN1, TNFSF4, CD276 genes 

presented elevated levels in the high-risk groups (Figure 

7G). Furthermore, macrophages M0, M1, T cells CD4 
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memory activated, and NK cells resting were positively 

related to risk score (Figure 7H–7K), while NK cells 

activated, mast cell resting, T cells CD4 memory 

resting, and dendritic cells resting were negatively 

related to risk score (Figure 7L–7O). 

Chemotherapy sensitivity and immune response 

assessment 
 

To explore the potential treatment molecular, we 

compared the IC50 of two groups in some compounds. 

 

 
 

Figure 3. Development and validation of prognostics model based on CRs. (A, B) LASSO regression identified optimal gene 

number in the model. (C–E) Kaplan-Merri survival curve, risk score and risk components in TCGA training group. (F–H) Kaplan-Merri survival 
curve, risk score (best cut-off value) and risk components in GEO validation dataset (GSE31210, GSE37445, GSE50081, GSE19188, 
GSE30219); (I–K) Kaplan-Merri survival curve, risk score and risk components in ArrayExpress validation dataset (E-MTAB-923). 
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Figure 4. Establishment and assessment of individual risk scoring system. (A, B) Univariate and multivariate cox regression for risk 

score in LUAD; (C) Nomogram plot for individual risk assessment. (D) Comparisons of predictive ability between risk score and other clinical 
parameters; (E) Decision curve analysis for survival risk nomogram; (F–H) Calibration plots for 1-year, 3-year and 5-year OS. 
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Figure 5. Functional and pathway enrichment analysis. (A) GO function enrichment; (B) KEGG pathway analysis. 
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Figure 6. Gene alterations and variations of different risk groups. (A, B) Genes alterations of high- and low-risk groups. (C, D) Variant 

classification and types of high- and low-risk groups. (E, F) Co-occurrences and mutually exclusive status of high- and low-risk groups. 
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Figure 7. Tumor microenvironment and immune infiltration level. (A–D) Comparisons of ESTIMATE, stromal, immune and tumor 

purity between high- and low-risk groups; (E, F) Immune cell infiltration and function score between high- and low-risk group.  
(G) Comparisons of immune-related genes expression levels between two risk groups. (H–O) Scatter plot for the correlations of risk score 
with some immune infiltration cells, including macrophages M0, M1, T cells CD4 memory, NK cells, Mast cells, Dendritic cells. 
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The results suggested that Imatinib and Gefitinib may be 

sensitivity in high-risk group (Figure 8A–8C). Erlotinib, 

Paclitaxel, Cisplatin, Docetaxel, and Gemcitabine may 

show chemotherapy resistance for high-risk group 

(Figure 8D–8I). 

We also predicted the immunotherapy responses based 

on TIDE estimation. The high-risk group had lower 

TIDE levels (Figure 8J), and the exclusion and 

dysfunction were elevated (Figure 8K, 8L). There was 

no difference in MSI between two groups. 

 

 
 

Figure 8. Chemotherapy sensitivity and immunotherapy response assessment. (A–I) IC50 of nine kinds of chemotherapy drug 

between high- and low-risk groups. (J–M) Immunotherapy response prediction based on Tumor Immune Dysfunction and Exclude module. 



www.aging-us.com 3610 AGING 

Prognosis and function roles of NPAS2 in LUAD 

 

The reason we chose NPAS2 for validation is that 

NPAS2 was only significantly elevated in tumor but 

associated with poor prognosis. We collected 388 

samples of LUAD patients to validate our findings. The 

clinical information of 388 patients and normal tissues 

were presented in Supplementary Tables 1, 2. We  

firstly analyzed the NPAS2 expression in TCGA. We 

found significance differences between benign and 

tumor samples (Figure 9A, 9B). The Kaplan-Meier 

curve indicated that high-expressed NPAS2 was 

associated with poor OS, PFS and LRS (Figure 9C–9E). 

We next detected the expression of NPAS2 in 388 

LUAD samples using immunohistochemical method. 

The NPAS2 expressed increased with elevated stage 

(Figure 9F–9H and Supplementary Table 3). The 

univariate and multivariate cox regression also indicated 

that high-expressed NPAS2 was an independent 

prognosis factor (Supplementary Tables 4, 5). We further 

confirmed that high-expressed NPAS2 was related to 

poor PFS, LRFS and DMFS in LUAD (Figure 9I–9K). 

 

The KEGG pathway analysis was performed, and the 

NPAS2 was positively enriched in focal adhesion, 

adherent’s junction, and ECM receptor interaction 

(Figure 10A). We also found NPAS2 was positively 

associated with ITGA2, ITGA3, ITGB4, and ITGB5 

(Figure 9B–9E), which belong to integrin family that 

was closely to cell adhesion [22, 23]. 

 

We further explored the association between NPAS2 

and integrin beta4 and p-FAK that were key molecular 

of cell adhesion. The immunohistochemical tests 

indicated that the integrin beta 4 and p-FAK were 

significantly elevated in high-expressed NPAS2 group. 

We speculated that NPAS2 involved in the progression 

of LUAD via regulating cell adhesion. 

 

DISCUSSION 
 

In the present study, we found that: (1) LUAD can be 

divided into two molecular subtypes based on CR gene 

expression profile, and distinctly different clinical 

characteristics and molecular biological features were 

found for two molecular subtypes. (2) Using eight CR 

genes, we developed and validated a prognostic model 

in LUAD patients. This model was well validated in 

several independent cohort data. The risk score was an 

independent prognosis predictive factor for LUAD 

patients. (3) The nomogram scoring system was 

established for individual risk prediction. (4) Risk 

stratification based on prognostic model can distinguish 

high-risk patients from clinical characteristics, 

biological function, gene alterations and mutation, 

immune infiltration background. (5) Risk stratification 

also affect the chemotherapy sensitivity and 

immunotherapy response. (6) Using the detection of 

clinical samples, we found NNPAS2 involved in the 

progression of LUAD via regulating cell adhesion. Our 

study provided new insights for the functional role of 

CR in LUAD. 

 

Previous studies had divided lung cancer into many 

molecular subtypes. However, these subtypes still 

cannot fully include all kinds of lung cancers and their 

clinical characteristics due to high heterogeneity of 

tumor [24]. In our study, we found LUAD can be 

separated into two molecular subtypes with different 

prognosis based on CR genes expression profile. The 

molecular features and pathway enrichment of two 

molecular subtypes are markedly different. Our results 

provided new perspectives for LUAD prognosis 

management. A recent study also explored the function 

of CR in LUAD [25]. But there were still some 

obviously different between our study and previous. 

First, the method of prognostic establishment was 

different. Previous study included model genes via 

multivariate cox regression. Our study identified the 

model’s genes for prognosis-related genes confirmed 

by univariate cox regression via LASSO regression. 

Our algorithm had many advantages. Compared with 

multivariate cox regression, LASSO can more 

effectively avoid multicollinearity of high-latitude data. 

It can also control the complexity of the model through 

a series of parameters to avoid over-fitting [26]. That’s 

why previous model included two genes that were not 

significant in the multivariate cox regression. Second, 

both our study and previous identified that risk score 

was an independent prognosis factor in LUAD. 

However, our study adjusted for more confounding 

factor including smoking, radiation and chemotherapy 

that were not included in previous studies. Thirdly, we 

not only developed and validated a prognostic model 

but also established an individual risk scoring system 

using nomogram, which was not presented in previous 

study. Finally, we collected 388 clinical samples and 

validated the prognosis and function role of NPAS2 in 

LUAD, and previous study only detected the 

expression of several CR genes in cell lines. Besides, 

we also evaluated the chemotherapy sensitivity and 

predicted immunotherapy response that were not done 

in previous study. Anyway, for such a study topic, our 

study was different from previous study in many 

places. 

 

Previous studies also built some other prognosis model. 

Wang developed a 16 cuproptosis-related lncRNA 

model in LUAD, and the AUC was more than 0.8 [27]. 
Nguyen built a lepidic gene signature that predicts 

patient prognosis, and the AUC was 0.744 [28]. Though 

these two modes have higher AUC but they also more 
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Figure 9. NPAS2 was associated with prognosis in LUAD. (A, B) NPAS2 expression levels between tumor and normal sample in TCGA; 

(C–E) High-expressed NPAS2 was associated with poor OS, PFS and LRS in LUAD based on TCGA; (F–H) NPAS2 expression increased with 
advanced stage. (I–K) High-expressed NPAS2 was associated with poor PFS, LRS and DMFS of LUAD patients in an independent cohort. 
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Figure 10. Potential mechanisms of NPAS2 in the progression of LUAD. (A) KEGG pathways enrichment of NPAS2. (B–E) Correlations 
of NPAS2 with ITGA2, ITGA3. ITGB4, and ITGB5; (F) Immunohistochemical showed the correlations of NPAS2 with integrin beta4 and p-FAK; 
(G) NPAS2-high group had elevated integrin beta 4 levels; (H) NPAS2-high group had elevated p-FAK levels. 
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genes in the model, which was inconvenient for 

predicting in practice. For predicting model, it should  

be easily and inexpensive used. Gong also built a 

pyroptosis-related prognosis model, and the largest 

AUC was 0.677 that was close to our results [29]. The 

future study should be combined more gene sets to 

obtain high predictive ability. 

 

Immunotherapy of lung cancer is a new therapeutic 

method, and some cancer patient’s cancer have 

achieved satisfactory therapeutic effect [30]. We 

analyzed the immune infiltration levels of different 

risk stratification. The infiltrations levels of high-risk 

group were lower than low-risk groups in aDCs, B 

cells, DCs, iDCs, mast cells, neutrophils, NK cells, 

pDCs, T helper cells, TIL, HLA, and type II IFN 

response. However, the MHC class I was higher in the 

high-risk groups. We further compared the immune-

checked point genes between high- and low-risk 

groups. The VTCN1, TNFSF4, CD276 genes 

presented elevated levels in the high-risk groups. 

These results indicated that CR risk stratification can 

affect the immune infiltration. To explore whether 

immunotherapy was affected or not, we predicted the 

immunotherapy based on TIDE. We found high-risk 

group had decreased TIDE levels, which means that 

immune checkpoint blocking therapy (ICB) has poor 

efficacy and short survival after immunotherapy 

treatment [31]. 

 

GO enrichment indicated that high-risk group were 

chromosome segregation, nuclear division, MHC class II 

protein complex assembly, single-stranded DNA 

helicase activity. The KEGG pathway analysis showed 

that high-risk group was mainly enriched in cell cycle, 

DNA replication, ECM-receptor interaction, cell 

adhesion molecules, p53 signaling pathway, and focal 

adhesion. Both of two results indicated that cell adhesion 

may play an important role in the progression of LUAD. 

Cell adhesion was closely associated with invasion and 

metastasis of lung cancer [32–34]. As we all know, lung 

cancer is highly susceptible to metastasis. For the 

NPAS2 validation results, we found that high-expressed 

NPAS2 is positivity enriched in focal adhesion, adherens 

junction and ECM receptor interaction, which are 

important signal pathways in lung cancer metastasis 

[35–37]. We also found that NPAS2 were associated 

with integrin molecular including ITGA2, ITGA3, 

ITGB4, and ITGB5. Integrins mediate the reaction 

between cells and cells and between cells and matrix, 

and participate in various physiological processes such 

as cell signal transmission, cell adhesion and migration, 

control of cell differentiation, proliferation, and 
regulation, among which cell adhesion and signal 

transmission are two basic functions [38]. The invasion 

and metastasis of lung cancer is the result of a series of 

interacted steps, involving lung cancer cell adhesion, 

signal transmission, angiogenesis, apoptosis and other 

links, and integrin is closely related to these links [39–

42]. The clinical sample analyses indicated that high-

expressed NPAS2 group had elevated integrin beta4 and 

p-FAK that were key molecular of cell adhesion [43, 

44]. These results supported that CR genes including 

NPAS2 involved in the progression of LUAD via 

regulating cell adhesion. 

 

Our study had several limitations. One of them was that 

molecular subtypes were complex process and single 

gene set had some restrictions in tumor clustering, and 

multiple gene set should be included. But our results 

still provide some clues for further research. The other 

is that our validation results were performed in clinical 

samples and biological function were still confirmed via 

cell experiments. 

 

In conclusion, our study indicated that CR genes 

involved in the progression of LUAD and affect their 

prognosis. Different therapeutic strategies should be 

developed for different molecular subtypes and risk 

stratifications. Our integrative analysis reveals specific 

determinants of CRs in LUAD and provides 

implications for investigating disease-associated CRs. 
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SUPPLEMENTARY MATERIALS  
 

Supplementary Material 1 
 

The specific steps for immunohistochemistry 

 

The sides of a formalin-fixed paraffin-embedded section 

were antigen retrieved in Tris/EDTA (TE; pH 9.0) 

buffer, 10 minutes by microwave heating, blocked by 

hydrogen peroxide and goat serum, respectively, 

incubated overnight at 4° C in a humidified chamber 

with anti-NPAS2 antibody ((Invitrogen, Carlsbad,  

CA, USA), anti-integrin β4 antibody (Cell Signaling 

Technology, Danvers, MA, USA) and anti-p-FAK 

antibody (Cell Signaling Technology, Danvers, MA, 

USA) diluted in Antibody Diluent (Abcam, Cambridge, 

MA, USA), respectively. After incubation, slides were 

washed in Tris-buffered saline (TBS)/0.05% Tween 20, 

incubated with biotin-conjugated secondary antibody 

(Proteintech, Wuhan, China) and peroxidase-conjugated 

streptavidin (Proteintech), 30 min at 37° C, respectively, 

stained by the 3,30-diaminobenzidine (DAB) Enhanced 

Liquid Substrate System (Sigma-Aldrich, St. Louis, 

MO, USA). We quantified the NPAS2, integrin beta4 

and p-FAK using staining index (SI). The sample was 

scored according to the following criteria: 0 for no 

positive tumor cells, 1 for 0-10%, 2 for 10-35%, 3 for 

36-70%, and 4 for more than 70% positive tumor cells. 

Staining intensity was graded according to the 

following criteria: 0 (no staining), 1 (weak staining, 

light yellow), 2 (moderate staining, yellow brown), and 

3 (strong staining, brown). SI was calculated as the 

product of staining intensity score and the proportion of 

positive tumor cells. Images were collected under 10× 

and 40× objective magnification in human lung tissues 

using M8 Digital Microscopy (PreciPoint, Freising, 

Bavaria, Germany). 
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Supplementary Tables 
 

Supplementary Table 1. The clinical information of 41 patients 
with benign lung disease for NPAS2 in IHC analysis. 

 Cases (n) Percentage (%) 

Gender 
Male 25 61.0  

Female 16 39.0  

Age 
<60 27 65.9  

≥60 14 34.1  

Type of diseases 

Pulmonary bulla 24 58.6  

Hamartoma 11 26.8  

CCAM 4 9.8  

BPS 1 2.4  

pneumothorax 1 2.4  

*CCAM, congenital cystic adenomatoid malformation; BPS, 
bronchopulmonary sequestration. 

 

Supplementary Table 2. The basic information of 388 patients 
with LUAD for NPAS2 IHC analysis. 

 Cases (n) Percentage (%) 

Gender 
Female 187 48.2  

Male 201 51.8  

Age 
<60 178 45.9  

≥60 210 54.1  

Grade 

G1 33 8.5  

G2 252 64.9  

G3 96 24.8  

 NA 7 1.8  

T classification 

T1 112 28.9  

T2 205 52.8  

T3 51 13.1  

T4 20 5.2  

N classification 

N0 217 55.9  

N1 98 25.3  

N2 61 15.7  

N3 4 1.0  

NA 8 2.1  

M classification 
M0 366 94.3  

M1 22 5.7  

Stage 

Stage I 182 46.9  

Stage II 100 25.8  

Stage III 84 21.6  

Stage IV 22 5.7  

*NA, Not available. 
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Supplementary Table 3. The relationship between NPAS2 expression level and clinical 
pathological characteristics in 388 patients with LUAD. 

Parameters Number of cases 
NPAS2 IHC expression 

P values 
Low (n=204) High (n=184) 

Gender     

Female  187 100 87 0.732 

Male 201 104 97  

Age     

<60 178 91 87 0.598 

≥60 210 113 97  

Grade     

G1-G2 285 160 125 0.035* 

G3 96 42 54  

NA 7 2 5  

T classification     

T1-2 317 169 148 0.540 

T3-4 71 35 36  

N classification     

N0 217 134 83 0.0002* 

N1-3 163 69 94  

NA 8 1 7  

M classification     

M0 366 197 169 0.045* 

M1 22 7 15  

Stage     

I-II 282 168 114 <0.0001* 

III-IV 106 36 70  

*IHC, Immunohistochemistry; NA, Not available. 
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Supplementary Table 4. Univariate analysis of NPAS2 expression and 
clinical pathological characteristics associated with distant metastasis-free 
survival in 388 patients with LUAD. 

Parameters Hazard ratio (95%CI) P values 

Gender (male v.s. female) 1.379(0.994-1.914) 0.055 

Age (≥60 v.s. <60) 1.044(0.755-1.444) 0.795 

Grade (G1-G2 v.s. G3) 1.939(1.516-3.144) <0.0001* 

T classification (T1-2 v.s. T3-4) 2.183(1.451-2.967) <0.0001* 

N classification (N1-3 v.s. N0) 2.598(1.853-3.641) <0.0001* 

M classification (M1 v.s. M0) 4.642(2.812-7.661) <0.0001* 

Stage (III-IV v.s. I-II) 4.425(3.188-6.141) <0.0001* 

NPAS2 expression (high v.s. low) 2.102(1.507-2.931) <0.0001* 

 

Supplementary Table 5. Multivariate analysis of NPAS2 expression and 
clinical pathological characteristics associated with distant metastasis-free 
survival in 388 patients with LUAD. 

Parameters Hazard ratio (95%CI) P values 

Gender (male v.s. female) 1.396(0.969-2.013) 0.074 

Grade (G3 v.s. G1-G2) 1.328(0.900-1.961) 0.153 

T classification (T3-4 v.s. T1-2) 0.919(0.574-1.472) 0.726 

N classification (N1-3 v.s. N0) 1.330(0.965-2.045) 0.194 

M classification (M1 v.s. M0) 2.203(1.112-4.367) 0.024* 

Stage (III-IV v.s. I-II) 2.901(1.719-4.894) <0.0001* 

NPAS2 expression (high v.s. low) 1.509(1.053-2.163) 0.025* 

 


