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ABSTRACT

Objective: Mitochondrial genome maintenance exonuclease 1 (MGME1) is associated with DNA depletion,
deletion, duplication, and rearrangement. However, the function of MGME1 in tumors, especially lower-grade
gliomas (LGGs), has not been established.

Methods: Pan-cancer analysis was used to define the expression patterns and prognostic value of MGMEL1 in
various cancers. Subsequently, we systematically determined the associations between MGME1 expression and
clinicopathological characteristics, prognosis, biological functions, immune characteristics, genomic mutations,
and therapeutic responses of LGGs based on their expression patterns. The expression level and specific
functions of MGMEL1 in LGGs was detected by conducting in vitro experiments.

Results: Abnormally enhanced and high MGME1 expressions were associated with poor prognoses of various
tumors, including LGG. Multivariate and univariate Cox regression analyses manifested that MGME1 expression
was an independent prognostic biomarker for LGG. The immune-related signatures, infiltration of immune cells,
immune checkpoint genes (ICPGs), copy number alteration (CNA), tumor mutation burden (TMB), and
treatment responses of LGG patients were associated with the expression of MGMEL. The in vitro experiments
affirmed that MGME1 was elevated and tightly connected with the cell proliferation and cell cycle in LGG.
Conclusions: MGME1 is an independent prognostic biomarker and closely related to the cell proliferation in
LGG.

INTRODUCTION adults [1], and it is graded from I to IV [2]. Grade Il and

Il gliomas are also designated as lower-grade gliomas
According to World Health Organization (WHO) (LGGs) in The Cancer Genome Atlas (TCGA) database.
statistics, glioma is the most common brain tumor in Chemotherapy and radiotherapy are used to treat LGG
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patients; however, their efficacies are suboptimal [3].
Therefore, new effective treatments for LGG need to be
established.

Mitochondrial genome maintenance exonuclease 1
(MGME1) was certified as a mitochondrial DNA
nuclease. MGMEL participated in the mitochondrial
replication by interacting with the POLG, SSBP1, and
TWNK and played an important part in maintaining 7S
DNA [4, 5]. Loss-of-function mutations of MGMEL may
lead to mitochondrial DNA deletions, depletion,
rearrangements and duplications [6, 7]. Additionally,
MGMEL played a part in the termination of replication
and transcription at the end of the control region of
mitochondria DNA [8]. During DNA double-strand
breaks, MGME1 could cooperate with pol y and the
TWNK helicase to degrade linear mitochondria DNA [9].
This may be connected to the malignant development of
some cancers. To clarify the specific roles of MGMEL in
LGGs, we conducted a study to explore the specific
functions of MGMEL in patients with LGGs.

In the research, we carried out pan-cancer analysis of
MGMEL for 33 types of cancers and detected that its
prognostic value in pan-LGG was more significant than
in other cancers. Thus, it is very important to examine the
specific roles of MGMEL1 in LGG. Afterwards, we
further examined the prognostic value of MGMEL in
LGGs using three independent cohorts, including the
TCGA cohort (n = 477), the Chinese Glioma Genome
Atlas (CGGA) cohort (n = 170), and the GSE16011
cohort (n = 102). We separated the samples into high-
and low-MGMEL subtypes in the light of the median
MGMEL expression in patients with LGG and confirmed
that the prognosis of the high-MGME1 subtype was
worse than that of the low-MGME1 subtype through
survival analysis. We also investigated the relationships
between MGMEL expression and age, isocitrate
dehydrogenase (IDH) status, 1p/19q status gender, WHO
classification, and MGMT status by analyzing clinical
pathological information. We employed cox regression
analysis of the aforementioned clinical indicators to
inspect the independent prognostic significance of
MGMEL expression for LGGs. The biological functions
of MGMEL in LGGs were explored via functional
enrichment analysis. We executed the single sample
GSEA (ssGSEA) algorithm to ascertain the connection
between MGMEL1 expression and 29 immune-related
features, immunological features (such as ICPGs and
stromal and immune scores and the expressions of tumor-
infiltrating immune cells (TIICs)), genomic alterations
and treatment responses. Through in vitro experiments,
we can affirm the abnormal expression and biological
functions of MGME1l in LGGs. MGMEl is an
independent prognostic biological marker and might
represent a new therapeutic target for LGGs.

RESULTS
Pan-cancer analysis of MGMEL1

Figure 1 is a flow chart showing the entire research
process. Comparison of the pan-oncogene expression
data obtained from the TCGA and GTEx databases
manifested that MGMEL was abnormally upregulated in
various cancers. MGME1 was significantly elevated in
24 types of cancers, including ACC, BLCA, BRCA,
CESC, CHOL, COAD, ESCA, GBM, HNSC, KIRC,
LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD,
PRAD, SKCM, STAD, TGCT, THCA, UCEC, and
UCS, and slightly in KIRP and READ (Figure 2A).

We exploited a univariant Cox regression analysis to
inspect the association between MGMEL expression
and OS and determine the prognostic significance of
MGMEL1 in 33 cancer types. As shown in the forest
chart, MGME1 expression was negatively correlated
with OS for LGG, KIRC, LUAD, PAAD, UVM, and
READ (Figure 2B). Survival analysis results also
showed that higher expressions of MGMEL1 indicated
worser OS of LGG (Figure 2C), PAAD (Supplementary
Figure 1A), SARC (Supplementary Figure 1B), UCEC
(Supplementary Figure 1C), and UVM (Supplementary
Figure 1D). Additionally, we detected those higher
expressions of MGMEL1 correlated with poorer disease
special survival (DSS) of LGG (Supplementary Figure
1E), SARC (Supplementary Figure 1F), UCEC
(Supplementary Figure 1G), and UVM (Supplementary
Figure 1H).

Subsequently, we explored the correlation between
MGMEL and ICPG expressions in 33 tumors. The
results manifested that MGMEL expression was
interrelated with the expressions of most ICPGs in
BLCA, BRCA, KIRC, COAD, ESCA, HNSC, KIRC,
KIRP, LGG, LUSC, OV, PRAD, SKCM, THCA,
THYM, UCEC, and UVM (Figure 2D). We also probed
the association between TMB and MGMEL expression
in 33 cancers. The expression of MGME1 and TMB
were positively correlated in BRCA, KIRC, LGG,
LUAD, PAAD, PRAD, SARC, and STAD, and
negatively correlated in ESCA (Figure 2E).

We further conducted separate correlation studies to
determine the clinical value of MGMEL in patients with
LGG.

MGME1 and clinicopathological characteristics in
LGG

According to the median MGME1 expression, we
grouped the patients with LGG into low- and high-
MGMEL subgroups and examined the relationships
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between MGMEL expression and clinicopathological
traits in the TCGA, CGGA, and GSE16011 cohorts.
The results proved that the upregulation of MGME1
expression was strongly relevant with old age, 1p/19q
non-codel, higher WHO grade, IDH wildtype, and
MGMT unmethylation in the TCGA dataset (Figure 3A,
3B). We obtained the same results for the CGGA
(Supplementary Figure 2A, 2B) and GSE16011
(Supplementary Figure 3A, 3B) cohorts. Hence,
MGMEL expression was tightly interrelated with the
clinicopathological features of LGG patients.

Adverse prognosis of LGG is associated with
increased expression of MGMEL1

Kaplan-Meier analysis manifested that the OS of the
low-MGMEL1 subgroup was better than that of the high-
MGMEL subgroup in the TCGA (Figure 3C), CGGA
Figure

(Supplementary 2C), and GSE16011

(Supplementary Figure 3C) datasets. We probed into the
associations between the expression of MGMEL, risk
score, and OS of LGG patients and found that the
upregulation of MGMEL expression was connected
with worse OS and higher risk scores in the TCGA
(Figure 3D), CGGA (Supplementary Figure 2D), and
GSE16011 (Supplementary Figure 3D) cohorts. We
also determined the proportions of patients with LGG
with the selected durations of survival in the TCGA
(Figure 3E), CGGA (Supplementary Figure 2E), and
GSE16011 (Supplementary Figure 3E) cohorts. ROC
curves were used to determine the reliability of
MGMEL in forecasting the OS of patients with LGG in
the three cohorts. The AUCs for 1-, 3-, and 5-year OS
were 0.819, 0.805, and 0.747, severally, for the TCGA
cohort (Figure 3F); 0.726, 0.795, and 0.780, severally,
for CGGA cohort (Supplementary Figure 2F); and
0.733, 0.708, and 0.729, severally, for the GSE16011
cohort (Supplementary Figure 3F). These results

Figure 1. Flowchart of research. (A) Pan-cancer analysis. (B) Clinical features. (C) Prognosis analysis. (D) Biological functions. (E) Immune
features. (F) Genetic variations. (G) Experimental verification. (H) Treatment response of MGME1 in LGG.
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forcefully suggest that MGME1
biomarker for patients with LGG.

is a prognostic

Independent prognostic implication of MGMEL in
LGG

Multivariate and univariate Cox regression analyses
were performed to define whether MGMEL was an

independent prognostic indicator for the three cohorts.
The results manifested that MGMEL expression, age,
IDH status, WHO grade, and 1p/19q status were
independent prognostic biomarkers of LGG in the
TCGA dataset (Figure 3G, 3H). We found that MGME1
expression, WHO grade, and 1p/19q status were
independent prognostic factors of LGG in the CGGA
cohort (Supplementary Figure 2G, 2H). MGME1
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Figure 2. Pan-cancer analysis of MGMEL. (A) Differential expressions of MGME1 in normal and cancer tissues. (B) Univariate Cox
regression analysis of MGME1 expression in various tumors. (C) Kaplan-Meier analysis of MGME1 in pan-LGG. (D) Co-expressions of
MGME1 and ICPGs in different cancers. (E) Differential TMB in various cancers. “P < 0.05, **P < 0.01, **P < 0.001.
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expression and age were also considered independent Functions of MGMEL in LGG
prognostic factors for LGG in the GSE16011 cohort

(Supplementary Figure 3G, 3H). Based on the results We identified the DEGs based on the average MGMEL
for the above three datasets, MGME1 expression is an (log2 (fold change)| > 0.5 and P < 0.05) expression to
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Figure 3. Correlation analysis of MGME1 in TCGA. (A) Association between MGME1 expression and clinical characteristics of LGG in
TCGA. (B) Variance analysis of MGME1 expression and different clinical characteristics (including age, gender, grade, and 1p/19q, IDH, and
MGMT statuses) in the TCGA dataset. (C) Prognostic analysis of high-MGME1 and low-MGME1 subtypes in the TCGA dataset. (D)
Distribution of risk scores and OS of high-MGME1 and low-MGME1 subtypes in the TCGA dataset. (E) Distributions of OS of the two
subtypes. (F) ROC curves representing the predictive value of the risk score in TCGA. (G, H) Univariate and multivariate Cox regression
analyses of MGME1 expression and clinicopathological characteristics in TCGA. *P < 0.05, **P < 0.01, **P < 0.001.
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LGG. We selected 600 downregulated (Supplementary
Table 1) and 2207 upregulated (Supplementary Table 2)
DEGs from the TCGA cohort and 899 downregulated
(Supplementary Table 3) and 2253 upregulated
(Supplementary Table 4) DEGs from the CGGA cohort.
The heatmap shows the DEGs in the TCGA (Figure 4A)
and CGGA (Supplementary Figure 4A) datasets. We
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carried out GO-BP and KEGG analysis to deal with
these downregulated and upregulated DEGs. In the
TCGA cohort, the downregulation of MGME1L
expression was related to the regulation of the
modulation of the chemical synaptic transmission,
signal release, regulation of membrane potential, and
neurotransmitter transport according to the GO-BP
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(A) DEGs in the low-MGME1 and high-MGME1 expression subgroups. (B, C)

The GO-BP (B) and KEGG (C) analyses for MGMEL1 in patients with LGG in the TCGA dataset. (D) GSVA in the TCGA dataset.
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analysis results of the downregulated DEGs. In
addition, the upregulated genes were mainly enriched
for neutrophil activation, T cell activation, neutrophil-
mediated immunity, B cell activation leukocyte cell-cell
adhesion, and response to drugs (Figure 4B). These
results were also obtained for the CGGA cohort
(Supplementary Figure 4B). The KEGG pathway
analysis of the TCGA (Figure 4C) and CGGA
(Supplementary Figure 4C) data indicated that the
downregulated DEGs were enriched for neuroactive
ligand-receptor interaction, cAMP signal pathway,
nicotine addiction, and synaptic vesicle circulation,
while the upregulated DEGs were enriched for the
PI3K-Akt signal pathway, MAPK signaling pathway, B
cell receptor signal pathway, NF kappaB signal
pathway, leukocyte transcutaneous migration, cell cycle
and T cell receptor signal pathway.

GSVA analysis was used to inspect the molecular
pathways for the low- and high-MGMEL isoforms of
LGG. The results indicated that the high-MGMEL
isoform was mainly interrelated with the cell cycle,
DNA replication, and P53 signaling pathway in TCGA
(Figure 4D) and CGGA (Supplementary Figure 4D)
cohorts.

MGMEL1 and immune characteristics

The relationship between MGMEL1 and immune
regulation in LGG was revealed by the GO-BP and
KEGG results for the upregulated DEGs. Therefore, we
examined the combination of MGME1 and LGG immune
characteristics. We implanted the ssGSEA algorithm to
identify the abundance of 29 immune-related factors to
examine the combination of MGMEL expression and
immune infiltration. In the CGGA (Supplementary
Figure 5A) and TCGA (Figure 5A) datasets, the low-
MGMEL subgroup had significantly fewer immune-
related characteristics than the high-MGMEL subgroup.
The ESTIMATE algorithm showed that MGME1
expression was positively correlated with estimation,
immune scores, and stromal but negatively correlated
with tumor pureness in the TCGA (Figure 5B) and
CGGA (Supplementary Figure 5B) cohorts. The
CIBERSORT algorithm was applied to study the
infiltration abundance of TIIC in the two MGMEL
subgroups. In the TCGA cohort, the infiltration
abundance of resting memory CD4*T cells, and
macrophage M1 were positively correlated with MGMEL
expression, while those of macrophage M2 and B cell
memory cells were negatively correlated with MGME1
expression (Figure 5C, 5D). We obtained the same result
for the CGCA cohort (Supplementary Figure 5C, 5D).

We executed differential correlation analysis to further
investigate the differential expressions of ICPGs and

MGMEL in patients with LGG. MGME1 expression
and the expressions of most ICPGs in the TCGA cohort
presented a positive correlation (Figure 5E). We used
correlation analysis to explore the associations between
MGMEL and some known ICPGs (such as PD1, PD-L1,
LAG3, CD28, CD80, and CD86) in the TCGA dataset
(Figure 5F). We obtained the same results for the
CGGA cohort (Supplementary Figure 5E, 5F).
Therefore, MGMEL1 may be closely related to the
immune microenvironment.

MGMEL1 is related to genomic variations

Several research have indicated that genomic variations
may fulfil a crucial role in regulating immune invasion
and tumor immunity [10-12]. Given the value of
genomic variations in tumor immune regulation and
infiltration, we used CNA and somatic mutation
analysis to distinguish the differential genomic
mutations in the low-MGME1 and high-MGMEL1
expression subgroups. The frequency of CNAs,
including amplification and deletion, in the low-
MGMEL subgroup was sensibly lower than that in the
high-MGMEL1 subgroup (Figure 6A, 6B). Subsequently,
we established a “waterfall” map of somatic mutations
to show that low-MGME1 expression subgroups had
specific mutant genes. The mutation frequencies of
IDH1 and CIC in the high-MGMEL subgroup were
lower than those in the low-MGMEL subgroup.
Nevertheless, the mutation frequencies of TP53 and
ATRX were higher in the high-MGMEL than in the low-
MGMEL subgroup (Figure 6C, 6D). The expression of
MGMEL1 was positively correlated with TMB in
patients with LGG (Figure 6E, 6F). Besides, MGMEL1
expression and TMB levels were negatively interrelated
with the OS of LGG patients (Figure 6G, 6H). These
results suggested that LGG patients with high MGMEL1
expression may show special immunological models.

In vitro study of MGMEL expression in patients with
LGG

Protein expressions levels of MGMEL in LGG tissues
were sensibly higher, and the results were analyzed
using ImageJ software (Figure 7A). We assessed the
protein and mMRNA expressions of MGMEL in these
LGG cell lines, including the SW-1783, SW-1088,
BT142, and NHA lines, and found that the MGME1
expression in the NHA cell lines was lower than that in
the LGG cell lines (Figure 7B, 7C).

Afterwards, we performed functional experiments to
rate the relationship between LGG cells and MGME1
expression in different groups. CCK-8 assays (Figure
7D), and colony formation assays (Figure 7E, 7F)
manifested that the proliferation ability of SW1088
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si-MGME1 group was noteworthily decreased silencing in SW1088 cells, the number of cells in

compared with the si-NC group. What’s more, we found GO/G1 phase increased, while the number of cells in S
that downregulating MGME1 expression had a strong and G2/M phase decreased (Figure 7G, 7H). Moreover,
effect on cell cycle. Specifically, after MGME1 the downregulation of MGMEL expression could
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Figure 5. TME and immunological features of the low-MGME1 and high-MGME1 subtypes in TCGA. (A, B) Relationship
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significantly restrain cell proliferation by EdU assays in MGMEL1 was closely connected with the cell
SW1088 cells (Figure 71, 7J). These results suggest that proliferation and cell cycle of LGG cells in vitro.
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Figure 7. In vitro experimental verification of MGMEL1 in LGG. (A) Western blot analysis of MGME1 expression in LGG tissues and
corresponding para-carcinoma tissues. (B) Western blot and (C) gRT-PCR analysis of MGME1 expression in NHA and LGG cell lines. (D) The
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formation was counted in SW1088 cells. (G, H) Cell cycle assays were executed to assess the cell cycle distribution of the SW1088 cells
transfected with si-MGME1 or si-NC lentiviruses. (I, J) Representative images (I) and histogram analysis (J) of EdU assays after silencing

MGME1 in SW1088 cells.
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Association between MGME1L expression and

therapeutic response

We determined the associations between MGMEL
inhibitors:

expression and PI3K/AKT
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NF kappaB inhibitor: bortezomib (G). DNA replication inhibitor: Etoposide (H).

wWww.aging-us.com

3700

AGING



chemotherapy. The high MGMEL expression was
relevant to the lower inhibitory centration (IC50) of
these anti-cancer drugs. In effect, the high-MGME1
expression subtype was more susceptible to the anti-
cancer drugs. Therefore, these anti-cancer drugs may be
used for chemotherapy for patients with LGG with high
MGMEL expressions in the future.

DISCUSSION

Despite the advances of surgery and postoperative
comprehensive treatment of LGG, the overall clinical
prognosis of patients with LGG is still poor [13, 14].
Thus, it is necessary to define the effective prognosis
and treatment goals of these patients. MGMEL is key to
the regulation of cell proliferation. And yet, the role of
MGME1 in LGG is unknown. Therefore, we
comprehensively studied the relationships between
MGME1 expression, clinical characteristics, tumor
immunity, gene mutations, prognosis, biological
functions, and treatment responses of LGG patients.
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We used pan-cancer analysis of MGMEL1 for 33 cancers.
The results showed that higher expressions of MGME1
were interrelated with shorter survival durations of
patients with pan-LGG, higher ICPG expressions, and
higher TMB. To assess the prognostic role of MGMEL in
LGG, we conducted survival analysis for the TCGA
cohort and found that the prognosis of the high-MGME1
subgroup was worse than that of the low-MGME1
subgroup. The upregulation of MGMEL expression was
associated with worse OS. ROC curves and AUC values
were exploited to confirm the accuracy of MGMEL
expression for predicting the OS of LGG patients. The
connection between MGMEL expression and clinico-
pathological characteristics of patients with LGG further
confirmed that there were significant differences between
the clinical factors. In addition, MGMEL1 was an
independent prognostic biomarker of LGG, which was
confirmed by Cox regression analysis. Analogous results
were for the CGGA and GSE16011 datasets. Thus,
MGMEL1L could be a forceful prognostic biomarker of
LGG patients.
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Figure 9. The underlying biological mechanisms of MGMEL1 in LGG.

wWww.aging-us.com

3701

AGING



We analyzed the upregulation of DEGs in the TCGA
and CGGA cohorts using KEGG and GO-BP
enrichment analyses. The increase in MGME1
expression was observed in the PI3K-Akt signal
pathway, MAPK signaling pathway, B cell receptor
signal pathway, NF kappaB signal pathway, leukocyte
transcutaneous migration, cell cycle and T cell receptor
signal pathway. The high MGMEL expression was
majorly related to DNA replication, the cell cycle, and
P53 signaling pathway, which was confirmed by GSVA
analysis.

On the basis of the results of GO-BP, KEGG, and
GSVA analyses, we exploited the ssGSEA,
ESTIMATE, and CIBERSORT algorithms to inspect
the differences in the immune-related features of the
two subgroups in the CGGA and TCGA cohorts and
determine the compositions of tumor microenvironment
and tumor-infiltrating immune cells. These results
manifested that the expression of MGMEL is closely
correlated to immune infiltration in LGG. The
activation of specific immune cells in the tumor
microenvironment (TME) has become the new strategy
of immunotherapy for the treatment of tumors [15-17].
As a new immunotherapeutic drug, immune-checkpoint
blockade has demonstrated good efficacy for the
treatment of different types of tumors [18-20]. Hence,
we investigated the relationship between MGME1 and
ICPG expressions in patients with LGG. We found that
the expressions of some common ICPGs, including
PD1, PD-L1, LAG3, CD28, CD80, and CD86, and the
expression of MGMEL based on the CGGA and TCGA
datasets showed a positive correlation. In addition,
somatic mutation and CNA analyses showed that the
TMB and CNA loads of the high-MGME1 expression
subgroup were higher than those of the low-MGME1
expression subgroup. In summary, MGME1 may play
an important part in immunotherapy for patients with
LGG. The underlying molecular mechanisms of
MGMEL expression in LGG are shown in Figure 9.

At present, TMZ-targeted chemotherapy is the most
frequently used treatment for LGG patients [21].
Nevertheless, its effectiveness is limited. Therefore, it is
necessary to excavate novel chemotherapy drugs that
may be exploited to treat LGG. The chemotherapy
sensitivity analysis showed that the high-MGMEL
subtype was more responsive than the low-MGMEL
subtype to chemotherapy, such as TGX221, ZSTK474,
AS605240, A-443654, TAK-715, NG-25, bortezomib,
and etoposide. MGME1 may be a latent predictor of
chemosensitivity in patients with LGG. Based on the
above results, we conducted in vitro experiments to
confirm that MGMEL was elevated and vital for cell
proliferation and cell cycle in LGG. Importantly, we
detected that the proliferation ability of the LGG cells

was impaired after knockdown the MGMEL
Nevertheless, there are still some limitations in the
study. The underlying roles of MGMEL1 in LGG should
be inspected by performing in vivo and in vitro
experiments in the future research. Additionally, further
research should be adopted to examine whether MGME1
is an effective therapeutic target for LGG patients.

CONCLUSION

This research ascertained that MGME1 was a forceful
prognostic biomarker and tightly connected with cell
proliferation and cell cycle of LGG. Therefore,
MGMEL may an effective therapeutic target for LGG
patients.

METHODS
Data acquiring and processing

We carried out a pan-cancer analysis of gene expression
data, survival data, and clinicopathological information
collected from public databases. We obtained data on
the expression of MGMEL, related clinical information,
and the TMB of 33 tumor types from TCGA database.
MGME1 expression data of normal tissues were
obtained from Genotypic-Tissue Expression (GTEX).

We used three independent LGG datasets, including
TCGA, CGGA (CGGA_325), and GSE16011. The gene
expression data, survival data, and clinical pathological
information were gathered from CGGA
(http://www.cgga.org.cn/), TCGA (https://portal.gdc.
cancer.gov/), and Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) websites. RNA-seq
expression data, in FPKM format, were converted to
TPM values. To facilitate comparison, we converted the
transformed TPM values for the RNA-seq data and the
robust multichip average analysis processing values of
GSE16011 by log2. We also obtained genome variation
data of the LGG samples from the TCGA dataset.

Samples inclusion criteria

Patients with LGG who conformed to the following
standards were contained in the present study: (1)
WHO grade 11 and Il gliomas; (2) availability of gene
expression information; and (3) overall survival (OS)
of >30 days. Of the LGG samples used in this study,
477 (Supplementary Table 5), 170 (Supplementary
Table 6), and 102 (Supplementary Table 7) were
obtained from CGGA, TCGA, and GEO databases,
respectively. We added the data of patients with LGG
with OS of <30 days to the pan-cancer analysis of
MGMEL1 to ensure the uniformity of survival data for
the 33 cancer types.
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Predictive value of MGMEL1 and related verification

The LGG samples were split into the low- and high-
MGMEL subtypes on the basis of the median MGME1
expression in the three datasets. We used Kaplan-Meier
analysis to identify the prognosis of LGG in patients
with the low- and high-MGMEL subtypes. We used the
survival status ratio, receiver operating characteristics
(ROC), and area under curve (AUC) values. Cox
regression analysis was applied to determine the value
of MGMEL1 expression as an independent biomarker for
LGG in the three cohorts.

Functional enrichment analysis

Using a false-discovery rate (FDR) of <0.05 and
[log2FC| of >0.5, we employed the R package, “limma,”
to examine the differentially expressed genes (DEGS) in
the two subgroups [22]. Based on the DEGs, we
exploited the R package, “clusterProfiler,” to perform
Gene Ontology biological process (GO-BP) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses [23]. We executed Gene set
variation analysis (GSVA) to evaluate the molecular
pathways with significant enrichment in the low- and
high-MGMEL1 subgroups [24]. According to the
standards of |log2 FC |>0.1, p < 0.05, and FDR < 0.05,
the most abundant molecular pathways between the two
subgroups were determined by using KEGG analysis
(c2.cp.kegg.v7.2.symbols) genesets.

Immunological features of LGGs

Immunological signatures, the abundance of immune
cells and stromal cells, and the level of expression of
ICPGs are immunological features. First, we obtained
immune-related signatures from previous studies [25,
26] and exploited the ssGSEA algorithm to distinguish
the differential enrichment of 29 immune-related
features of the low- and high-MGMEL1 subtypes. In the
light of the expression profiles of the patients with
LGG, the ESTIMATE algorithm was applied to assess
the enrichment of stromal and immune cells and tumor
purity [27, 28]. Next, we measured four types of
scores, including tumor purity, estimated score
(representing non-tumor complex), stromal score
(representing the richness of stromal cells), and
immune score (representing the richness of immune
cells).

Thereafter, the level of infiltration of TIICs was
determined using the CIBERSORT algorithm in line
with the gene expression data of patients with LGGs
[29]. We also selected 25 ICPGs with potential
therapeutic value based on previous studies [30] and
studied their association with MGME1 expression.

Genomic mutation analysis

Using the RCircos tool, we identified and visualized
significant deletions and amplifications in the entire
genomes of the low and high MGMEL expression
subgroups [31]. The types and frequencies of gene
mutations in the low- and high-MGME1 subgroups
were explained and visualized using Maftools and
GenVisR [32, 33]. Currently, the newly developed
biomarker TMB for predicting immunotherapeutic
response reflects the total number of non-synonymous
mutations. First, the combination between MGME1
expression and TMB level in 33 tumor types was
explored using the R package “fmsb.” At the same time,
the binding between MGMEL1 expression and TMB was
assessed using the “ggplot2” R package in an
independent LGG TCGA cohort.

Therapeutic responses of MGMEL

We investigated the difference between the responses of
the low- and high-MGMEL subtypes to several chemo-
therapeutic drugs using the “pRRophetic” R package [34];
the chemotherapy drugs included PISK/AKT inhibitors
(TGX221, ZSTK474, AS605240, and A-443654), MAPK
inhibitors (TAK-715 and NG-25), and proteasome
inhibitors (bortezomib and Etoposide).

Cell culture and transfection

We obtained normal human astrocyte (NHA) cell line
from the Culture Collection of the Chinese Academy of
Sciences (Shanghai, China), and SW-1088, SW-1783,
BT142 human LGG cell lines from the American Typical
Culture Collection (ATCC). Dulbecco’s modified
Eagle’s/F12 (ATCC) medium was used to culture the
NHA and BT142 cell lines. Leibovitz’s L-15 medium
(ATCC), which contained 10% fetal bovine serum
(Gibco), was used to culture the SW-1088 and SW-1783
cell lines. The above cell lines were cultured with 37°C
and 5% CO2. We obtained a lentivirus expressing
MGME1 shRNA from Obio Technology (Shanghai,
China), where the target sequence of MGME1 shRNA
was 5-GCTTAATTGTGGTGGCCTACA-3'. According
to the protocol, lentivirus shRNA and negative control
(NC) vectors were transfected into SW1088 cell line. The
multiplicities of infection (MOIs) were 10 in SW1088
cells. Additionally, the transfection efficiency was
improved by polybrene, and the positive cells were
filtered by puromycin.

Western blot analysis and quantitative real-time
PCR

The Ethics Committee of the Second Affiliated Hospital
of Nanchang University had authorized the use of
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human tissue in this research. We utilized a
radioimmunoprecipitation assay buffer (Solarbio, China)
containing a mixture of protease inhibitors to extract cell
and human tissue lysates. We exploited 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis to
separate the pyrolysis product, which was shifted to the
polyvinylidene  fluoride (PVDF) membrane and
incubated with primary antibodies, including MGME1
(1:2000, 67468-1-1g, Proteintech, China) and beta-tubulin
(1:2000, 10068-1-AP, Proteintech, China). Subsequently,
the PVDF membranes were further incubated with
related secondary antibodies. Finally, we incubated the
membranes with an enhanced chemiluminescence (ECL)
substrate (Thermo Fisher Scientific, USA) and observed
the protein bands on the membranes through the
GV6000M imaging system (GelView6000pro). We
employed the Simple P total RNA extraction kit (Biolux,
China) to isolate the RNA from the cells and HiScript I11-
RT SuperMix (Vazyme, China) to reverse transcribe it to
complementary DNA. We used the 244€T method to
process the result. The primer sequences of these genes
were as below: forward MGMEl primer, 5'-
TGTGGCTTAATTGTGGTGGC-3'; reverse MGMEI
primer, 5-AGTCGAAGAAGCCACTTGGT-3"; beta-
tubulin ~ forward  primer, 5-ACGCGGTTCTGT
CTATCCAC-3’; and beta-tubulin  reverse, 5'-
GAGGTGGTTATGCCGCTCAT-3'.

CCK-8 assay

The transfected SW-1088 cells were sowed in 96-well
plates at 2 x 10° per well and cultured for 4 days. Cell
multiplication was checked by Cell Counting Kit 8
assay (Glpbio, USA, GK10001) on the basis of the
protocol.

Colony formation assay

The 2x10° cells/well were plated in 6-well plates and
cultured for 2 weeks. The cells were then stained with
0.1% crystal violet solution, and the number of colonies
was recorded by ImageJ.

EdU assay

The transfected SW-1088 cells (2 x 10%) were sowed in
24-well plates and incubated for 72 hours. Next, we
cultured the cells with EdU reagent for 2 h. The cells
were fixed by 4% paraformaldehyde and 0.5% Triton
X-100, and then stained by the Hoechst staining. ImageJ
was used to calculate the EAU inclusion rate.

Cell cycle analysis

The transfected SW-1088 cells were immobilized with
70% ethanol at 4°C overnight and stained with RNase A

containing propidium iodide (Suzhou, China). The cell
cycle distribution was surveyed by implementing flow
cytometer.

Statistical analysis

Kaplan-Meier analysis using a two-sided logarithmic
rank test was utilized to distinguish the prognosis of the
high-MGMEL subset from that of the low-MGME1
subset. The AUC values and ROC curves were applied to
verify the exactitude of the prognostic prediction on the
basis of MGMEL expression. Cox regression analysis
was applied to estimate the independent prognostic
significance of MGMEI. Student’s t-test was employed
to contrast the immune-related factors associated with the
two subtypes, such as 29 immune-related characteristics,
TIIC, 25 ICPGs, TMB, and CNA loads. We conducted
Pearson’s or Spearman’s correlation test to determine the
relevance between the distributed variables. Wilcoxon’s
signed-rank test was employed to inspect the discrepancy
in sensitivity between the two subtypes of anticancer
drugs. We used R version 4.1.0, GraphPad Prism 8
(GraphPad Software, Inc., USA), and SPSS Statistics to
perform the statistical analyses. The results were
supposed to be significant for p-values of < 0.05.

Availability of data and materials

The data analyzed in this research can be found in
the TCGA (https://portal.gdc.cancer.qgov/), CGGA
(http://www.cgga.org.cn/), and GEO (http://www.ncbi.
nlm.nih.gov/geo/) websites.
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Supplementary Figure 1. Kaplan-Meier analysis of MGME1 in pan-cancer. (A-D) Correlation between MGME1 expression and OS
of PAAD (A), SARC (B), UCEC (C), and UVM (D). (E-H) Correlation between MGME1 expression and disease special survival of LGG (E), SARC

(F), UCEC (G), and UVM (H).
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Supplementary Figure 2. Clinical correlation analysis of MGMEL1 in CGGA. (A) Association between MGME1 expression and clinical
characteristics of LGG in CGGA. (B) Variance analysis of MGME1 expression and various clinical features (including age, gender, grade, and
1p/19q, IDH, and MGMT statuses) in the CGGA dataset. (C) Prognostic analysis of high-MGME1 and low-MGME1 subtypes in the CGGA
dataset. (D) Distribution of the risk score and OS of the high-MGME1 and low-MGME1 subgroups in the CGGA dataset. (E) Survival analysis
of the two subgroups. (F) ROC curves representing the predictive role of the risk score in CGGA. (G, H) Univariate and multivariate Cox

analyses of MGMET1 expression and clinicopathological features in CGGA. *P < 0.05, **P < 0.01, ***P < 0.001.
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Supplementary Figure 3. Clinical correlation analysis of MGME1 in the GSE16011 dataset. (A) Association between MGME1
expression and clinical characteristics of LGG in the GSE16011 dataset. (B) Variance analysis of MGME1 expression and different clinical
features (including age, gender, grade, and 1p/19q, IDH, and MGMT statuses) in the GSE16011 dataset. (C) Prognostic analysis of high-
MGME1L and low-MGME1 subtypes in the GSE16011 dataset. (D) Distribution of risk score and OS of high-MGME1 and low-MGME1
subgroups in the GSE16011 dataset. (E) Survival of the two subgroups. (F) ROC curves representing the predictive role of the risk score in
GSE16011. (G, H) Univariate and multivariate Cox regression analyses of MGME1 expression and clinicopathological characteristics in

GSE16011. P < 0.05, **P < 0.01, *"P < 0.001.
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Supplementary Figure 4. Biological functions of MGME1 in LGG in CGGA. (A) DEGs in the low-MGME1 and high-MGME1
expression subgroups. (B, C) The GO-BP (B) and KEGG (C) analyses of MGME1 in patients with LGG patients in the CGGA dataset. (D) GSVA
of the CGGA data.
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Supplementary Figure 5. Different TME and immunological characteristics of the low-MGME1 and high-MGME1 subtypes
in CGGA. (A, B) Associations between MGME1 expression and 29 immune-associated signatures, ESTIMATE scores, immune scores,
stromal scores, and tumor purity. (C) Comparisons of infiltration of 22 types of immune cells in the two subgroups. (D) Lollipop plots
show the relationships between MGME1 expression and TIICs. (E, F) Co-expression analysis of MGME1 and 25 ICPGs. P < 0.05, **P < 0.01,
***P < 0.001.
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Supplementary Tables
Please browse Full Text version to see the data of Supplementary Tables 1-4.

Supplementary Table 1. Down-regulated DEGs in TCGA dataset.

Supplementary Table 2. Up-regulated DEGs in TCGA dataset.

Supplementary Table 3. Down-regulated DEGs in CGGA dataset.

Supplementary Table 4. Up-regulated DEGs in CGGA dataset.

Supplementary Table 5. Clinical features of LGG patients from TCGA.

Clinical features Total (477) %
Age Age <45 287 60.17%
Age >45 190 39.83 %
Gender Female 216 45.28%
Male 261 54.72%
Grade WHO I 231 48.43%
WHO l1I 246 51.57%
Non-codel 321 67.30%
1p/19 Codel 156 32.70%
Mutant 389 81.55%
IDH Wildtype 85 17.82%
Unknow 3 0.63%
Unmethylated 82 17.19%
MGMT
Methylated 395 82.81%
Supplementary Table 6. Clinical features of LGG patients from CGGA.
Clinical features Total (170) %
Age Age <45 129 75.88%
Age >45 41 24.12%
Gender Female 65 38.24%
Male 105 61.76%
Grade WHO I 97 57.06%
WHO I 73 42.94%
Non-codel 113 66.47%
1p/19q Codel 55 32.35%
Unknow 2 1.18%
Mutant 125 73.53%
IDH Wildtype 44 25.88%
Unknow 1 0.59%
Unmethylated 70 41.18%
MGMT Methylated 84 49.41%
Unknow 16 9.41%
WWw.aging-us.com 3713 AGING



Supplementary Table 7. Clinical features of LGG patients from GSE16011.

Clinical features Total (102) %
Age <45 57 55.88%
Age

Age >45 45 44.12%
Gender Female 35 34.31%
Male 67 65.69%
Grade WHO Il 22 21.57%
WHO Il 80 78.43%
Non-codel 35 34.31%
1p/19q Codel 40 39.22%

Unknow 27 26.47
Mutant 44 43.14%
IDH Wildtype 37 36.27%
Unknow 21 20.59%
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