
www.aging-us.com 3807 AGING 

INTRODUCTION 
 

Rheumatoid Arthritis (RA) is a common autoimmune 

illness that affects the synovial membrane of joints, 

causing persistent inflammation, joint deterioration, 

and function loss [1]. As the disease advances, joint 

tissue is continually eroded, leading to irreversible 

joint degeneration [2]. While the treatment techniques 
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ABSTRACT 
 

Rheumatoid arthritis (RA) causes irreversible joint damage, but the pathogenesis is unknown. Therefore, it is 
crucial to identify diagnostic biomarkers of RA metabolism-related genes (MRGs). This study obtained 
transcriptome data from healthy individuals (HC) and RA patients from the GEO database. Weighted gene 
correlation network analysis (WGCNA), the least absolute shrinkage and selection operator (LASSO), and 
random forest (RF) algorithms were adopted to identify the diagnostic feature biomarker for RA. In addition, 
biomarkers were verified by qRT-PCR and Western blot analysis. We established a mouse model of collagen-
induced arthritis (CIA), which was confirmed by HE staining and bone structure micro-CT analysis, and then 
further verified the biomarkers by immunofluorescence. In vitro NMR analysis was used to analyze and identify 
possible metabolites. The correlation of diagnostic feature biomarkers and immune cells was performed using 
the Spearman-rank correlation algorithm. In this study, a total of 434 DE-MRGs were identified. GO and KEGG 
enrichment analysis indicated that the DE-MRGs were significantly enriched in small molecules, catabolic 
process, purine metabolism, carbon metabolism, and inositol phosphate metabolism. AKR1C3, MCEE, POLE4, 
and PFKM were identified through WGCNA, LASSO, and RF algorithms. The nomogram result should have a 
significant diagnostic capacity of four biomarkers in RA. Immune infiltration landscape analysis revealed a 
significant difference in immune cells between HC and RA groups. Our findings suggest that AKR1C3, MCEE, 
POLE4, and PFKM were identified as potential diagnostic feature biomarkers associated with RA’s immune cell 
infiltrations, providing a new perspective for future research and clinical management of RA. 
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for RA have improved significantly, comprehending 

the characteristic diagnostic biomarkers is crucial for 

the clinical management of RA. 

 

Recent studies have reported the role of abnormal 

metabolism programming in the development of 

various diseases, including diabetes, hypertension, 

fatty liver, and cancer [3–6]. Abnormal metabolism 

programming also plays a significant role in RA. 

Multiple studies have suggested that disturbances in 

the metabolism of glucose, glutamine, and lipids may 

contribute to the development of RA [7]. Qiu et al. 

identified abnormal metabolism of glucose, amino 

acids, lactate, and citric acid in the urine of RA 

patients through metabolomics analysis. He suggested 

that increased glycolysis, disturbances in the citric acid 

cycle, oxidative stress, and proteolytic metabolism 

may be the key characteristics of RA patients [8]. 

However, the specific metabolic mechanisms that 

contribute to the clinical management of RA have not 

yet been fully elucidated. 

 

Immunodeficiency is another critical characteristic of  

RA [9]. Generally, the synovium is infiltrated by B cells,  

T cells, and macrophages, leading to the over-proliferation 

of fibroblast-like synoviocytes (FLS) and the degradation 

of cartilage and bone [10]. In the pathogenesis of  

RA, genetic, epigenetic, and environmental factors 

predispose the host to autoimmunity and, eventually, 

joint inflammation. Studies have shown that immune 

cells contributing to joint inflammation include 

macrophages, dendritic cells, mast cells, neutrophils, 

and T and B lymphocytes. These immune cells play a 

crucial role in the early stages of the disease [11]. 

However, recent studies have reported that metabolism 

could regulate the function of immune cells. T cell 

differentiation and functionality are highly dependent 

on metabolic adaptation, with significantly different 

metabolic programming in different functional states 

[12]. Therefore, exploring the relationship between 

metabolism and immunity appears to be essential for 

the future of RA treatment. 

 

Currently, there is considerable attention towards 

identifying disease-specific biomarkers and utilizing 

bioinformatics and genome sequencing technologies 

[13]. Several bioinformatic techniques were used in 

this work to evaluate the involvement of metabolism-

related genes (MRGs) in the development of RA.  

As a consequence, four MRGs (AKR1C3, MCEE, 

POLE4, and PFKM) were discovered and validated  

in vitro and in vivo as diagnostic feature biomarkers 

for RA. Moreover, the correlation between these 
diagnostic feature markers and the immune infiltration 

landscape of the healthy control (HC) and RA group 

was evaluated. 

MATERIALS AND METHODS 
 

Dataset download from GEO database 

 

In this study, we obtained transcriptomic data for  

both rheumatoid arthritis (RA) and normal samples 

from the GSE93272 dataset in the GEO database. The 

data was generated using the [HG-U133_Plus_2] 

Affymetrix Human Genome U133 Plus 2.0 Array 

(GPL570). From the GSE93272 dataset, we extracted 

transcriptomic data for a total of 43 normal and  

232 RA samples. A perl script was used to collate  

and annotate the transcriptomic data for each  

sample. Additionally, we extracted clinical information 

for each sample from the matrix file using a perl  

script. 

 

MRGs identification and WGCNA analysis 

 

Based on the MSigDB database, we extracted 854 

differentially expressed MRGs for further analysis  

using a Perl script and the reference gene set file 

“C2.cp.kegg.v7.5.1.symbols.gmt.” We applied the 

“limma” R package with a false discovery rate (FDR) 

threshold of < 0.05 to identify significant MRGs. To 

identify MRGs associated with rheumatoid arthritis 

(RA), we developed a WGCNA model using the 

“WGCNA” script. Initially, we performed cluster 

analysis on each sample to remove outliers and 

constructed an unscaled network based on the optimal 

soft threshold. Next, we used dynamic tree cutting and 

merging of gene modules and calculated the 

correlation between each gene module and clinical 

features using the Pearson algorithm. Finally, we 

selected the most significantly correlated gene module 

based on the module-trait correlation heatmap for 

further investigation. 

 

Machine learning and biomarker screening 

 

To identify potential biomarkers for rheumatoid 

arthritis (RA), we performed modeling analyses on  

the MRGs using two different machine learning 

algorithms. First, we used the “glmnet” R script  

to select MRGs based on the optimal coefficients  

and lambda values. Additionally, we used the 

“randomForest” R script to calculate the importance of 

each MRG, with a threshold set at greater than 1. We 

used the “venn” script to identify the intersection of 

the MRGs selected by WGCNA, RF, and LASSO as 

potential biomarkers for RA. Based on the expression 

of these biomarkers, we constructed a nomogram 

model using the “rms” script to evaluate their 

diagnostic effectiveness. Finally, we evaluated the 

AUC values of the biomarkers and nomogram using 

the “pROC” script. 
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Functional enrichment and immune infiltration 

landscape analysis 

 

In this study, we explored the potential biological 

functions of differentially expressed MRGs in HC  

and RA groups using the “clusterProfiler” script. 

Additionally, we used the Metascape database to explore 

the biological functions of key gene modules identified 

through WGCNA. Using the single sample Gene Set 

Enrichment Analysis (ssGSEA) method and 23 immune 

cell markers, we assessed the immune infiltration 

characteristics of HC and RA samples. Using the 

“GSVA” script, we estimated the percentages of these 

23 immune cells for each sample based on their 

transcriptomic data. We generated a PCA plot using the 

“ggplot2” script to visually demonstrate dissimilarities in 

immunological cell infiltration patterns between the two 

subject cohorts. The correlation between the 23 immune 

cell types was calculated using the Pearson algorithm. 

 

Quantitative real-time PCR analysis (qRT- PCR) 

 

We use qRT- PCR to validate diagnostic biomarkers. 

RNA was extracted from RA patients and healthy 

controls using TRIzol reagent (Cat# 15596018, Thermo), 

and then reverse transcribed into cDNA using the 

PrimeScript™ RT reagent Kit with gDNA Eraser 

(Perfect Real Time) (Cat# RR047A, Takara). The 

reverse transcribed cDNA was then subjected to real-

time fluorescence quantitative PCR detection using the 

SYBR Premix Ex Taq II kit (Cat# RR820B, Takara). We 

used GAPDH as an internal control, and the gene primer 

sequences used in this experiment were listed in Table 1. 

Amplification reaction was performed using PCR 

instrument, and the final results were obtained using the 

2(-ΔΔCt) method to analyze the RNA expression level 

of the corresponding samples in this experiment. 

 

Western blot analysis 

 

We use Western blot analysis to validate diagnostic 

biomarkers. Tissue extracts from RA patients and control 

groups were lysed using radioimmunoprecipitation 

(RIPA) buffer (high) (Cat#R0010, Solarbio). Then,  

we determined the protein concentration using the  

BCA Protein Assay Kit (Cat#PC0020, Solarbio) 

according to the instructions provided in the kit. The 

required protein samples were separated using 10%  

or 15% Sodium Dodecyl Sulfate-Polyacrylamide Gel 

Electrophoresis (SDS-PAGE) and transferred onto 

0.22μm Polyvinylidene Fluoride (PVDF) membranes 

(Cat#ISEQ00010, Millipore). After blocking with 5% 

skimmed milk powder at room temperature for 1 hour, 
the membrane was incubated overnight in the desired 

detection solution (Table 2) at 4° C. On the second day, 

the incubated membrane was removed and incubated in a 

secondary antibody solution labeled with horseradish 

peroxidase (HRP) (Elabscience) for 1 hour. Then, 

chemical luminescence was performed using the Super 

Excellent Chemiluminescent Substrate (ECL) Detection 

Kit (Cat#E-IR-R308, Elabscience), and the membrane 

was exposed in an imaging device (Odyssey® XF). The 

resulting image was then analyzed. 

 

Animals 

 

A total of 40 male Balb/c mice (6-8 weeks old) were 

utilized in this investigation. Mice were allowed to eat 

and drink ad libitum and housed in an environmentally 

controlled room. The experimental animals were taken 

from the Shandong Province’s Qingdao University 

Experimental Animal Center.  

 

Clinical specimens 

 

Between August 2021 and October 2022, we collected 8 

meniscus tissue samples from human RA patients at 

Qingdao University Affiliated Hospital who met the 

clinical and radiographic diagnostic criteria for RA. 

Eight additional meniscus tissue samples were collected 

from young patients requiring surgical repair of 

meniscus tears, who served as a control group and had 

no history of RA. 

 

Experimental grouping 
 

Forty male Balb/c mice aged 6-8 weeks were used in 

this study and randomly divided into two groups: the 

Sham group and the Collagen-induced arthritis (CIA) 

group. The groups were defined as follows: The CIA 

group is widely used as an animal model since it shares 

many pathological and immune features with human 

rheumatoid arthritis (RA) [14]. The CIA model in 

DBA1/J mice has been extensively employed in RA 

research [15, 16]. In our study, we established the CIA 

mouse model following the protocol described by David 

et al. [17]. On day 0, we injected 2 mg/mL bovine type 

II collagen combined with an equivalent amount of 

complete Freund’s adjuvant (CFA) (total 100μl) into the 

mice’s tail vein. To boost the immunological response, 

we injected 2 mg/mL of bovine type II collagen mixed 

with an equivalent amount of incomplete Freund’s 

adjuvant (IFA) into the tail vein on day 21. In contrast, 

the Sham group mice were injected with 100 μl of 

saline on day 0 and day 21, and the other procedures 

were the same as those in the CIA group. We monitored 

the progression of arthritis in the mice daily. 

 

HE staining 
 

To confirm the success of mouse modeling, we utilized 

hematoxylin-eosin (HE) staining. After euthanizing the 
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Table 1. The primers used for qPCR detection. 

Gene name Forward Reverse 

AKR1C3 TAATGAGGAGCAGGTTGGACT CAACTCTGGTCGATGAAAAGTGG 

MCEE ACATCACAGCCCTTGGATCA AGGGACCGCTTCACTTACCT 

POLE4 GCCATCTTCATTCTGGCACG CCAAGTCTCTCCTCTGAAGGG 

PFKM CCACTGTGAGGATTGGCCTT CAGTCCAGCCCCCAACATAG 

GAPDH CATGTTCGTCATGGGTGTGAA GGCATGGACTGTGGTCATGAG 

 

Table 2. Primary antibodies and IgG controls used in this study. 

Antibody* Host Supplier/catalog no. Dilution 

AKR1C3 Rabbit polyclonal Abcam/ab209899 
1:1000(Wb) 

1:100(IHC) 

MCEE Mouse monoclonal Abcam/ab236397 1:2000(Wb) 

MCEE Rabbit polyclonal Biorbyt/orb27886 1:100(IHC) 

POLE4 Rabbit polyclonal Solarbio/K006102P 1:1000(Wb) 

POLE4 Rabbit polyclonal Biorbyt/orb674262 1:300 

PFKM Rabbit polyclonal Abcam/ab154804 
1:1000(Wb) 

1:100(IHC) 

GAPDH Mouse monoclonal Proteintech/60004-1-Ig 1:50000(Wb) 

IgG control Mouse Elabscience/E-AB-1001 1:2000(Wb) 

IgG control Rabbit Elabscience/E-AB-1003 1:5000(Wb) 

IgG control Rabbit Elabscience/E-AB-1010 1:100(IHC) 

 

mice, their hind limbs were dissected and fixed in 10% 

neutral-buffered formalin for 2 days. Following this, the 

specimens were decalcified, embedded in paraffin, and 

sectioned. The paraffin blocks were then deparaffinized 

in xylene, gradually dehydrated in ethanol, and stained 

with hematoxylin-eosin. The sections were differentiated 

and counterstained with eosin. Following the staining 

process, the sections were dehydrated in gradient ethanol 

and mounted with neutral resin. The specimens were 

then observed under a light microscope to confirm the 

successful modeling of mice. 

 

Micro-CT validation analysis of bone morphology 

and structure 

 

Micro-CT is a commonly used imaging technique for the 

visualization and analysis of bone and joint structures in 

small animals such as mice. It uses X-rays to create 

high-resolution 3D images of the internal structure of an 

object. In this study, micro-CT was used to verify the 

success of the modeling of mice by examining the knee 

joints of the hind limbs. The Quantum GX2 microCT 

imaging system from PerkinElmer was used to acquire 

CT image sets for 4 minutes, using specific beam 
parameters and an X-ray filter to optimize image quality. 

The resulting images were then analyzed to assess 

changes in bone and joint structures between the sham 

and CIA groups. 

Immunofluorescence validation experiment 
 

Immunofluorescence was utilized to validate diagnostic 

biomarkers in this study. Mouse joint sections were 

deparaffinized and treated with 10 mM citrate buffer 

(Elabscience, China). The sections were then blocked 

with 5% BSA (Solarbio, China) for 1 hour before 

incubation with primary antibody solution (diluted 

according to the antibody datasheet) overnight at 4° C. 

The next day, the incubated sections were retrieved and 

subjected to a 1-hour incubation with a fluorescence-

labeled secondary antibody solution (provided by 

Elabscience), which corresponded to the specific anti-

bodies used in the experiment as listed in Table 2. The 

sections were washed three times with 1×TBST solution 

for 10 minutes after each incubation. DAPI (blue) was 

used for nuclear counterstaining with a fluorescence dye, 

and an anti-fluorescence quencher was added to seal the 

cover glass. The samples were observed and imaged 

using a confocal microscope (NIKON, Japan). 

 

Measurement and analysis of 2D TOCSY spectra by 

NMR of human meniscus ex vivo tissue 
 

We utilized NMR to perform a metabolite analysis on  

the RA and HC groups. The human knee joint tissue  

was first ground and homogenized in a mixture of 

dichloromethane and methanol (V dichloromethane:  
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V methanol = 3:1) and then subjected to high-speed and 

low-temperature homogenization (4° C, 15000g). Bruker 

AVANCE 400MHz nuclear magnetic resonance (NMR) 

(Bruker® Corporation, Germany) was used to obtain the 

data, with the following parameters: Pulse Sequence: 

mlevphpp, Probe: Z163739_0119 (PI HR-400-S1-

BBF/H/D-5.0-Z SP), Number of Scans: 4, Receiver Gain: 

21.0MHz, Relaxation Delay: 1.8976ms, Acquisition 

Time: 0.3543ms, Spectrometer Frequency: 400.15MHz, 

Solvent: D2O, SN> 340mm 1x 90° pulse <10, linear 

<0.6pm 5pm 9 (rotation). The data was then processed 

using Mestrenova 14.0.0 (Mestrelab Research® 

Corporation, Spain), which included spectral baseline 

correction, Fourier transformation, F1 and F2 phase 

correction, signal suppression processing, and window 

and zero function settings. The lactate (Lac) peak was 

calibrated, and after peak labeling, TOCSY 2D spectra 

were created to infer and compare potential compound 

types with changes in cartilage metabolite compound 

types between the RA group and the normal group. 

 

Statistical analysis 

 

We performed statistical and data visualization analyses 

using Perl scripts, R software version 4.1.0, and 

GraphPad Prism version 8.0.1. The potential correlation 

between biomarkers and immune infiltration was 

evaluated using Spearman’s rank correlation algorithm. 

T-test analysis was used to evaluate the statistical 

differences between two groups, and a p-value < 0.05 

was regarded statistically significant. 

 

Data availability statement 

 

All data and clinical information involved in this paper 

were obtained from a public database, approved from 

the Ethics committee and written informed consent 

from patients were not required. 

 

RESULTS 
 

Differential expression of metabolism-related genes 

(DE-MRGs) selection and functional enrichment 

analyses 
 

The workflow of this research is depicted in Figure 1.  

A cut-off value of p(FDR) < 0.05 was set, and the 

“limma” script was used to calculate differentially 

expressed MRGs between 43 HC and 232 RA samples. 

As shown in Figure 2A, 2B, a total of 434 MRGs were 

 

 
 

Figure 1. The workflow of the analysis process. 
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identified as DE-MRGs, comprising 206 upregulated 

genes and 228 downregulated genes. The PCA results 

indicated that MRG expression could accurately 

distinguish between HC and RA samples, demonstrating 

significant differences in MRGs between the two groups 

(Figure 2C). The GO analysis revealed that the DE-

MRGs were associated with ribose phosphate metabolic 

processes, phospholipid metabolic processes, and small 

molecule catabolic processes, while the KEGG results 

showed that DE-MRGs were closely related to metabolic 

pathways such as purine metabolism, carbon metabolism, 

and inositol phosphate metabolism (Figure 2D, 2E). 

 

Development of weighted gene co-expression network 

analysis (WGCNA) 
 

To investigate the critical DE-MRGs in the development 

of RA, a gene co-expression network was constructed  

by WGCNA. The power of β = 6 was set as the soft-

threshold parameter to construct a scale-free network 

 

 
 

Figure 2. Identification of DE-MRGs and functional enrichment analyses. (A) Volcano diagram shows the DE-MRGs with the 

threshold setting at |Fold change| ≥ 1 and FDR < 0.05. Red dots represent upregulated differential genes, gray dots represent no significant 
difference, and blue dots represent down-regulated genes. (B) The expression of top 30 upregulated and down-regulated differential genes 
in HC and RA groups. (C) Principal component analysis shows a significant separation between HC and RA groups based on the MRGs. The 
top 10 enrichment results of (D) Gene Ontology (GO) and (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway based 
on DE-MRGs. 
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with a scale-free R2 value greater than 0.85. The module 

eigengenes and clinical characteristics correlation 

coefficient were then computed (Figure 3A). The module 

trait relationships results revealed a significant correlation 

between multiple module eigengenes and clinical 

characteristics (Figure 3B). Module blue was observed to 

be positively correlated with RA so that was selected for 

subsequent analysis (R2 = -0.47, p = 1e-16). The results 

of functional enrichment analysis revealed that the  

genes in module blue were primarily involved in the 

organophosphate biosynthetic process, monocarboxylic 

acid metabolic process, small molecule catabolic process 

and biological oxidations, indicating a potential impact of 

DE-MRGs on molecular mechanism in the development 

of RA (Figure 3C, 3D). 

 

Identification of diagnostic feature biomarkers 

 

Several machine learning algorithms were employed to 

identify biomarkers with diagnostic potential. The least 

absolute shrinkage and selection operator (LASSO) 

algorithm identified 56 variables as diagnostic feature 

biomarkers for RA, as illustrated in Figure 4A, 4B. 

Additionally, the random forest (RF) algorithm identified 

14 diagnostic biomarkers, as shown in Figure 4C. 

Through the application of WGCNA, LASSO, and RF 

algorithms, four diagnostic biomarkers were identified, 

including aldo-ketoreductase family 1 member C3 

(AKR1C3), methylmalonyl-CoA epimerase (MCEE), 

and DNA polymerase 4 (POLE4), which can be observed 

in Figure 4D. 

 

Evaluation of diagnostic biomarkers effectiveness 

 

We subsequently investigated the expression and 

diagnostic effectiveness of the four previously identified 

diagnostic feature biomarkers for RA. AKR1C3, which 

has been reported to act as a regulator for hormone 

activity and prostaglandin F (PGF) synthase associated 

with promoting the release of inflammatory factors, was 

found to have a higher expression in the RA group in 

comparison with HC group (Figure 5A). This observation 

suggests that inflammation levels may be higher in  

the RA group. Furthermore, MCEE and POLE4 were 

 

 
 

Figure 3. Construct weighted gene co-expression network analysis based on the DE-MRGs. (A) Analysis of the scale-free network 
for various soft-thresholding powers (β). (B) Heatmap shows the correlation of module eigengenes and clinical characteristics. (C, D) 
Functional enrichment analysis of genes in module blue. 
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upregulated significantly in RA patients compared to 

that in the HC group, while PFKM was downregulated 

in the RA group (Figure 5B–5D). A nomogram model 

was developed to validate the impact of the four feature 

biomarkers on diagnostic effectiveness (Figure 5E). The 

ROC curve analysis showed that the AUC values of 

AKR1C3, MCEE, POLE4, and PFKM were 84.38%, 

84.93%, 88.54%, and 78.84%, respectively. The AUC 

value of the nomogram score was 92.8%, indicating its 

promising diagnostic effectiveness (Figure 5F–5J). 

Additionally, the expressions of the feature biomarkers 

were validated in clinical tissues, which demonstrated 

that patients with RA had a higher expression of 

AKR1C3, MCEE, and POLE4 and a lower expression 

of PFKM (Figures 6A–6D, 7A–7E). Our results showed 

that four diagnostic signature biomarkers have high 

diagnostic value for RA. 

Building CIA mouse model and validating diagnostic 

biomarkers 

 

To verify the expression of the diagnostic biomarkers 

AKR1C3, MCEE, POLE4, and PFKM in RA, we 

developed a CIA mouse model. We obtained and stained 

knee joint sections of two successfully modeled groups 

of mice, and found that in comparison with the Sham 

group mice (Figure 8A), the histological analysis of the 

knee joint sections of CIA mice (Figure 8B) showed a 

significant up-regulation in the level of inflammation 

and immune cell infiltration, with crushed cartilage 

boundary. Using bone structure micro-CT, we scanned 

and detected the knee joints of both groups of mice. 

Sham group mice showed a smooth bone surface  

and relatively intact joint structure (Figure 8C, 8E, 8G), 

while CIA group mice showed bone and cartilage 

 

 
 

Figure 4. Identification of diagnostic feature biomarkers via multiple machine learning algorithms. (A, B) The least absolute 

shrinkage and selection operator (LASSO) algorithm shows the optimal coefficient based on the DE-MRGs. (C) The random forest (RF) 
algorithm shows the diagnostic feature biomarkers based on the DE-MRGs. (D) Venn diagrams show 4 diagnostic feature biomarkers using 
WGCNA, LASSO, and RF algorithms. 
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erosion, irregular bone surface structure, and severe 

osteoporosis (Figure 8D, 8F, 8H). These results confirm 

the successful modeling of RA in CIA mice. 

Furthermore, immunofluorescence results of the knee 

joints of the two groups of mice showed that AKR1C3, 

MCEE, and POLE4 were highly expressed in the CIA 

group mice compared to the Sham group, while PFKM 

was expressed at a lower level (Figure 9A–9D). This 

result is similar to what we obtained from clinical tissues. 

These results further demonstrate the high value of these 

four diagnostic biomarkers in the research of RA 

diagnosis and treatment. 

 

Human meniscus ex vivo tissue NMR 2D TOCSY 

spectra 

 

The TOCSY spectra obtained from the rheumatoid 

arthritis group revealed a greater number of dispersed 

peaks with a hybridization of Carb and C-H compound 

peaks, which are associated with cartilage collagen 

metabolism. Additionally, there was a decrease in the 

molecular weight of the sugar peaks that are related to 

proteoglycan metabolism. The density of the Phosphatidyl 

peak group, which is associated with cell membrane and 

phospholipid metabolism, also increased with a more 

dispersed compound distribution. The accumulation of 

lipids and acidic substances was more pronounced, and 

the diversity of phosphoric acid metabolites increased. 

Furthermore, the variety of intermediate carbon 

metabolism substances increased, indicating a higher 

diversity of carbon metabolism. Overall, the complexity 

of the compounds was greater, and the peak distribution 

was of significant difference from that observed in 

normal cartilage tissue (Figure 9E, 9F). 

 

Immune infiltration landscape analysis 

 

Concerning RA is a characterized by a series of immune 

and inflammatory changes in its pathogenesis, we aimed 

to systematically investigate the differences in the 

immune infiltration landscape between HC and RA 

groups. Using ssGSEA algorithm, the study calculated 23 

types of immune cells with the observation that the RA 

group showed a higher immune status than the HC 

 

 
 

Figure 5. ROC curve analysis and the expression of the diagnostic feature biomarkers. The violin diagram shows the expression 

of (A) AKR1C3, (B) MCEE, (C) POLE4, and (D) PFKM. (E) A nomogram model to validate the impact of the four feature biomarkers on 
diagnostic effectiveness. ROC curve analysis of (F) MCEE, (G) AKR1C3, (H) POLE4 and (I) PFKM. (J) The AUC value of the nomogram score 
was 92.8%. *P < 0.05; **P < 0.01; ***P < 0.001; **** P < 0.0001. 
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group (Figure 10A). Principal component analysis (PCA) 

observed distinct clusters based on the component of 23 

immune cells (Figure 10B). A significant correlation in 

most immune cells was revealed by the correlation 

analysis (Figure 10C). Specifically, the activity of B cells 

was positively correlated with immature B cells (r = 0.83, 

p < 0.001) but correlated with activated dendritic cells 

and natural killer cells negatively (r = -0.50, p < 0.001,  

r = -0.54, p < 0.001, respectively). CD4+ T cells were 

negatively correlated with plasmacytoid dendritic cells  

(r = -0.63, p < 0.001) and monocytes (r = -0.60, p < 0.001) 

but correlated with CD8+ T cells positively (r = 0.72,  

p < 0.001). Moreover, macrophages were observed  

to be positively correlated with eosinophils (r = 0.64,  

p < 0.001), mast cells (r = 0.62, p < 0.001), and 

neutrophils (r = 0.69, p < 0.001), while CD8+ T cells 

were inversely correlated with plasmacytoid dendritic 

cells (r = -0.67, p < 0.001) and monocytes (r = -0.68,  

p < 0.001). The quantitative results indicated that the 

proportion of CD4+ T cells, CD8+ T + cells, activated 

dendritic cells, CD56 bright natural killer cells, 

eosinophils, MDSC, macrophages, gamma delta T cells, 

mast cells, neutrophils, regulatory T cells and type 17/12  

 

 
 

Figure 6. Validation of 4 diagnostic feature biomarkers in 
clinical tissues via qRT-PCR. The expression of (A) AKR1C3, (B) 
MCEE, (C) PFKM and (D) POLE4. Statistical significance: *P < 0.05; 
**P < 0.01; ***P < 0.001. ns: no significance. 

T helper cells were elevated remarkably in the RA group 

in comparison with the HC group. In addition, RA group 

had the lower proportions of monocyte, plasmacytoid 

dendritic cell, natural killer T cell and T follicular helper 

cell (Figure 10D). These results provide a clue to the role 

of the abnormal immune microenvironment in the 

regulation of RA development. 

 

Consensus clustering analysis 

 

Based on the four diagnostic biomarkers, consensus 

cluster analysis was subsequently performed in order to  

 

 
 

Figure 7. (A) Validation of 4 diagnostic feature biomarkers in 

clinical tissues via western blot analysis. The expression of  
(B) AKR1C3, (C) MCEE, (D) POLE4 and (E) PFKM. Statistical 
significance: *P < 0.05; **P < 0.01; ***P < 0.001. ns: no 
significance. 
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classify RA samples into different molecular subtypes. 

The heatmap showed an optimal classification of RA 

samples at K = 2, with the number of 118 and 114 

samples in Cluster A and B respectively (Figure 11A–

11C). The expression of the four diagnostic biomarkers 

demonstrated that RA patients in Cluster A exhibited 

lower expression of AKR1C3, POLE4, and MCEE than 

those in Cluster B (Figure 11D). The result of PCA 

score plot displayed distinct clusters for RA patients in 

23-type immune cells (Figure 11E). The ssGSEA result 

indicated that patients in Cluster B had relatively high 

proportions of the most of the 23-type immune cells 

(Figure 11F). Our results show that these four 

diagnostic biomarkers can accurately cluster RA 

samples into distinct molecular subtypes that are 

significantly associated with immunoinfiltrating 

landscapes. 

 

Correlation analyses between diagnostic feature 

biomarkers and immune infiltration landscape 

 

Prior investigations have demonstrated robust associations 

between metabolic regulation and the function of the 

immune microenvironment. In light of this, our aim was 

to examine the relationship between the selected 

biomarkers and the level of immune infiltration 

landscape (Figure 12). Our correlation analysis revealed 

significant associations between four feature biomarkers 

and the level of immune cells. Specifically, AKR1C3 

was correlated with CD8+ T cells and gamma delta T 

cells positively (r = 0.59, p < 0.001, r = 0.51, p < 0.001, 

respectively), while inversely correlated with the level  

of plasmacytoid dendritic cells (r = -0.4, p < 0.001; 

Figure 12A). MCEE was correlated positively with 

CD8+ T cells, CD4+ T cells and gamma delta T cells  

(r = 0.8, p < 0.001, r = 0.54, p < 0.001, r = 0.67, p < 0.001, 

respectively), but correlated with plasmacytoid dendritic 

cells and monocytes the opposite way (r = -0.43,  

p < 0.001, r = -0.46, p < 0.001, respectively; Figure 12B). 

PFKM had a negative correlation with macrophages  

(r = -0.41, p < 0.001; Figure 12C). Notably, POLE4 was 

positively correlated with gamma delta T cells, CD8+ T 

cells and CD4+ T cells (r = 0.73, p < 0.001, r = 0.72,  

p < 0.001, r = 0.41, p < 0.001, respectively), while 

inversely correlated with plasmacytoid dendritic cells  

(r = -0.46, p < 0.001; Figure 12D). Our findings indicate 

the correlation between four diagnostic biomarkers and 

immune infiltration landscape, which provides a potential 

molecular mechanism of immune microenvironment 

regulation in RA. 
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Figure 8. HE staining of mouse joints and micro-CT imaging of mouse joints. (A) HE staining of joints in the Sham group mice. (B) HE 
staining of joints in the CIA group mice. (C–H) Micro-CT imaging of joints in the Sham and CIA group mice. 

DISCUSSION 
 

RA leads to irreversible damage of the synovial lining 

of joints and significantly affects the life quality [18]. 

Over the past few decades, despite advances in 

therapeutic strategies, the prevalence of RA has 

increased [19]. Thus, it is crucial to understand the 

disease pathogenesis and develop effective treatment 

strategies. Recent studies have highlighted the role of 

abnormal metabolic programming and metabolism-

mediated immunometabolism, involving glucose, 

energy, and lipid metabolism, in the development  

of RA [20–22]. Dynamic metabolic regulation affects 

the immune status of RA by altering the immune 

 

 
 

Figure 9. Immunofluorescence staining of AKR1C3, POLE4, MCEE, and PFKM in mouse knee joints and NMR 2D Tocsy spectra 
of human meniscus tissue. (A) Immunofluorescence staining of AKR1C3 in both groups of mice. (B) Immunofluorescence staining of 
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POLE4 in both groups of mice. (C) Immunofluorescence staining of MCEE in both groups of mice. (D) Immunofluorescence staining of PFKM in 
both groups of mice. (E) NMR 2D Tocsy spectrum of meniscus tissue from RA patients. (F) NMR 2D Tocsy spectrum of normal meniscus tissue. 
microenvironment [23]. Despite this, the contribution of 

MRGs to the onset and development of RA has yet to 

be determined. Aims of this study were to investigate 

the relationship between MRGs and immune infiltrates 

and to identify novel biomarkers for the diagnosis and 

treatment of RA. Four diagnostic feature biomarkers for 

RA were identified and validated through multiple 

machine-learning algorithms and in vitro experiments. 

The immune microenvironments significantly differed 

in terms of the expression of these four diagnostic 

feature biomarkers. 

 

In this study, differential expressions of MRGs between 

the HC and RA groups were employed by multiple 

bioinformatics methods. GO enrichment analysis 

demonstrated that the DE-MRGs were significantly 

enriched in the biological process of small molecule 

catabolic processes, phospholipid metabolic processes, 

and ribose phosphate metabolic processes. The KEGG 

signaling pathway results suggested that purine 

metabolism, carbon metabolism, and inositol phosphate 

metabolism may mediate the contribution of DE-MRGs 

to the pathogenesis of RA. Purine is a key molecule in 

intracellular and extracellular signaling in nucleic acids, 

and its metabolism is associated with various diseases, 

including diabetes, cardiovascular diseases, and cancer 

[24–26]. The folate cofactor regulates carbon 

metabolism and is linked to several physiological 

processes, including purine and thymidine biosynthesis, 

redox defense and amino acid homeostasis [27, 28]. 

Carbon metabolism has been reported to affect the 

process of inflammation and is associated with an 

increased tumorigenesis risk [29]. Abnormal inositol 

phosphate metabolism, which is involved in energy 

metabolism and metabolic disorders, has been 

associated with multiple diseases [30]. In conclusion, 

our findings suggest several potential roles of MRGs in 

the development of RA. 

 

 
 

Figure 10. Immune infiltration analysis. (A) Heatmap shows the fraction of 23 types of immune cells in HC and RA groups based on the 

ssGSEA algorithm. (B) Principal component analysis (PCA) reveals a significant difference based on the 23 immune cells. (C) Correlation 
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analysis of 23 immune cells. (D) The quantitative results of 23-type immune cells. Statistical significance: *P < 0.05; **P < 0.01; ***P < 0.001. 
ns: no significance. 
Based on three machine learning algorithms, AKR1C3, 

MCEE, POLE4, and PFKM were identified as four 

diagnostic feature biomarkers. The ROC results 

demonstrated significant diagnostic value of these  

four biomarkers for RA. Furthermore, the results of 

clinical tissue and mouse model validation showed 

significant differences in the expression of these four 

diagnostic biomarkers in HC and RA tissues. The 

TOCSY two-dimensional spectra of metabolites 

revealed that the types of carbon compounds were 

significantly higher in RA patients compared to the 

normal group. Moreover, the study found that the types 

of phosphates and fatty acid substances were 

significantly increased in RA patients, indicating that 

RA patients had higher activity in purine metabolism, 

hormone level regulation, and energy metabolism 

related to carbon metabolism. These findings are 

consistent with the metabolic characteristics of the  

four diagnostic feature biomarkers. Aldo-ketoreductase 

family 1 member C3 (AKR1C3) is a member of 

aldoketone reductase superfamily [31]. As an NADP(H) 

oxidoreductase, AKR1C3 is a potential therapeutic 

target for various malignant tumors and endocrine 

diseases [32]. AKR1C3 catalyzes androgen, estrogen, 

progesterone and prostaglandin metabolism [33]. Sex 

hormones influence pathogenesis process by regulating 

immune cell activity and the sensitivity to immune-

mediated damage, including the development of RA 

[34]. Men with RA tend to have lower serum androgen 

levels, and the incidence of RA increases as androgen 

production declines with age [35, 36]. The up-

regulation of AKR1C3 we found in RA could be 

explained by regulating sex hormone-related pathways. 

 

The role of MCEE in RA has not been thoroughly 

studied. MCEE metabolizes propionyl-coA into 

succinyl-CoA and methylmalonyl-CoA mutase (MUT) 

in the propionic acid catabolic pathway, which then 
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Figure 11. Consensus clustering analysis of RA samples based on 4 diagnostic feature biomarkers. (A) The consensus clustering 
heatmap shows the optimal K classification = 2-9. (B) Consensus CDF. (C) Delta area. (D) Expression of 4 diagnostic feature biomarkers in 
Cluster A and Cluster B. (E) PCA score plot. (F) The proportion of 23-types immune cells of patients with RA in Cluster A and B. 
enters the citric acid cycle [37]. Propyl coA is a 

common degradation product of branched amino acids 

and odd-chain fatty acids. Its accumulation inhibits n-

acetyl glutamate synthase, an enzyme essential for 

maintaining the urea cycle [38]. Furthermore, the 

relationship between the inflammatory state and urea 

cycle activity has been investigated [38, 39], suggesting 

a potential mechanism for MCEE to participate in 

validating reactions in RA. 

 

We observed a significant increase in POLE4 in the RA 

group. However, there are few reports about POLE4. As 

an important component of the lead polymerase Polε, 

POLE4 is closely associated with chromatin integrity 

during DNA replication [40]. Moreover, POLE4-

deficient mice have been reported to have severe 

developmental abnormalities, T/B lymphocytopenia, 

and lymphoma formation [41]. Abnormal self-activation 

of T/B lymphocytes is an important part of RA 

development, and its treatment has been widely used in 

clinical practice [42]. The relationship between elevated 

POLE4 in RA and lymphocyte function requires further 

investigation. 

 

Apart from the well-established immunological 

associations, the majority of the RA biomarkers selected 

in this study showed a positive correlation with γδ  

T cells. As a non-conventional T cell population, γδ  
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Figure 12. Correlation analysis of diagnostic feature biomarkers and immune infiltration cells. The lollipop diagram illustrates the 
correlation of 23 immune cells and (A) AKR1C3, (B) MCEE, (C) PFKM, and (D) POLE4. The dot represents the absolute value of the correlation 
coefficient, and the p -values are annotated with different colors. p < 0.05 is considered statistically significant. 
T cells mediate recognition of non-peptide molecules 

directly, thereby playing a unique role in supporting 

immune progress [43]. Although the alteration of γδ  

T cell levels is not consistently reported in the 

peripheral blood of RA patients [44], some studies 

indicated that γδ T cells in the synovium of RA exhibit 

an activated phenotype with decreased CD16 

expression and increased HLA-DR expression [45]. 

Moreover, the selective amplification of γδ T cells in 

synovial lymphocytes suggests a specific recognition 

by specific antigens in the synovium [46]. 

Functionally, γδ T cells was reported to exhibit antigen 

presentation, contribute to antibody production and 

predominantly express a Th1-like cytokine profile in 

RA patients [47]. In addition, γδ T cells have the 

potential to secrete multiple cytokines, including 

TNFα, and mediate effective cytotoxicity via type I 

and type II cytokines. Thus, γδ T cells may have the 

potential for immunomodulatory and even tissue 

metabolism regulation, which has recently become a 

focus of research [48]. The highly expressed γδ T cells 

in RA suggests their important role and may provide 

new insights into its pathogenesis. 

 

Although our study has demonstrated a correlation 

between biomarkers and immune infiltration, it is 

important to acknowledge its limitations. Further 

experimental validation is needed to establish a causal 

relationship between the biomarkers and immune 

infiltration. In addition, confirmatory tests performed 

lack validation of large sample sizes of RA patients, so 

the specific role of these biomarkers in the development 

of RA remains to be further explored. Therefore, further 

research is needed to verify our findings and to better 

understand RA pathogenesis. 

 

CONCLUSIONS 

 
In conclusion, our study utilizing a machine learning 

algorithm has identified AKR1C3, MCEE, POLE4, and 

PFKM as RA diagnostic feature biomarkers associating 

with immune infiltration. These findings provide a new 

perspective for RA development. 
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