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INTRODUCTION 
 

Sepsis, a potentially fatal host reaction to infection that 

causes organ failure, is one of the primary diseases that 

poses a substantial threat to the health of people 

worldwide [1]. According to an epidemiological 

assessment conducted in 2020, sepsis has a global 

incidence and mortality rate of approximately 6.775% 
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ABSTRACT 
 

Objective: Apoptosis and autophagy are significant factors of sepsis induced myocardial injury (SIMI). XBJ 
improves SIMI by PI3K/AKT/mTOR pathway. Present study is devised to explore the protective mechanism of XBJ 
in continuous treatment of SIMI caused by CLP. 
Methods: Rat survival was first recorded within 7 days. Rats were randomly assigned to three groups: Sham group, 
CLP group, and XBJ group. The animals in each group were divided into 12 h group, 1 d, 2 d, 3 d and 5 d according to 
the administration time of 12 hours, 1 day, 2 days, 3 days or 5 days, respectively. Echocardiography, myocardial 
injury markers and H&E staining were used to detect cardiac function and injury. IL-1β, IL-6 and TNF-α in serum 
were measured using ELISA kits. Cardiomyocyte apoptosis was assayed by TUNEL staining. Apoptosis and 
autophagy related proteins regulated by the PI3K/AKT/mTOR signaling pathway were tested using western blot.  
Results: XBJ increased the survival rate in CLP-induced septic Rat. First of all, the results of echocardiography, H&E 
staining and myocardial injury markers (cTnI, CK, and LDH levels) showed that XBJ could effectively improve the 
myocardial injury caused by CLP with the increase of treatment time. Moreover, XBJ significantly decreased the 
levels of serum inflammatory cytokines IL-1β, IL-6 and TNF-α in SIMI rats. Meanwhile, XBJ downregulated the 
expression of apoptosis-related proteins Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cytochrome C and Cleaved-
PARP, while upregulated the protein levels of Bcl-2 in SIMI rats. And, XBJ upregulated the expression of autophagy 
related protein Beclin-1 and LC3-II/LC3-I ratio in SIMI rats, whereas downregulated the expression of P62. Finally, 
XBJ administration downregulated the phosphorylation levels of proteins PI3K, AKT and mTOR in SIMI rats. 
Conclusions: Our results showed that XBJ has a good protective effect on SIMI after continuous treatment, and it 
was speculated that it might be through inhibiting apoptosis and promoting autophagy via, at least partially, 
activating PI3K/AKT/mTOR pathway in the early stage of sepsis, as well as promoting apoptosis and inhibiting 
autophagy via suppressing PI3K/AKT/mTOR pathway in the late stage of sepsis. 
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and 1.481%, respectively [2]. A significant sign of 

disease progression in hospitalized septic patients is 

sepsis-induced multiorgan dysfunction, which has a 

pooled hospital incidence of 9.3% [3] and an in-hospital 

mortality greater than 10% [1]. It has drawn more 

attention in recent years in the field of Intensive Care 

Unit (ICU) management among the numerous secondary 

organ dysfunctions associated with sepsis, and 

myocardial injury is one of the most frequent 

complications and a significant cause of death in septic 

patients [4]. Additionally, myocardial injury, which has 

incidence of between 10 and 70% [4] and the fatality 

rate of 70–90% [1], predominates in the pathophysiology 

of sepsis. Although there have been significant 

improvements in organ function support, stabilization of 

microcirculation, and anti-infective therapy in recent 

years [5, 6], there are still no satisfactory medications or 

therapies for sepsis. As a result, finding new cures to 

treat SIMI is challenging but essential for managing 

sepsis patients. 

The ingredients in XBJ, a Chinese patent medicine 

approved for the treatment of sepsis and multi-organ 

dysfunction in China in 2004, include Carthamus 

tinctorius L. (Carthami Flos, hong hua), Paeonia 

lactiflora Pall. (Paeoniae Radix Rubra, chi shao), 

Ligusticum chuanxiong Hort. (Chuanxiong Rhizoma, 
chuan xiong), Salvia miltiorrhiza Bge. (Salviae 

Miltiorrhizae Radix Et Rhizoma, dan shen) and Angelica 

sinensis (Oliv.) Diels (Angelicae Sinensis Radix, dang 
gui) (Figure 1A) [7]. XBJ acts in both the early and late 

stages of sepsis by anti-inflammatory, anti-coagulation, 

immune regulation, vascular endothelial protection, anti-

oxidative stress and other mechanisms [8]. A key 

response protein target coverage of 90.16% was found in 

the target association pattern of the phytoconstituents of 

XBJ with the causative genes of sepsis, demonstrating 

the dominancy of XBJ in the treatment of sepsis [9]. 

However, the underlying therapeutic mechanisms of XBJ 

on sepsis are still unknown, the specific mechanisms of 

XBJ in SIMI need to be further investigated. 

 

 
 

Figure 1. (A) The 5 essential drug components of XBJ: Paeoniae Radix Rubra, Chuanxiong Rhizuma, Angelicae Sinensis Radix, Salviae 

Militiorrhizae Radix et Rhizuma, and Carthami Flos. (B) Graphical Abstract: a guideline of the entire procedure for developing a rat sepsis 
model and therapeutic administration. (C) The survival rate of XBJ for SIMI was evaluated by the Kaplan-Meier method followed by the log 
rank test within 7 days. 
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Sepsis triggers autophagy in multiple organs including 

the heart [10–12]. More and more studies concentrating 

on autophagy had shown that the activation of autophagy 

can improve SIMI [13, 14]. While, some studies  

have proposed a novel view that the inhibiting of 

autophagy protects cardiomyocytes from LPS-induced 

oxidative stress [15, 16], which is in conflict with the 

previous assertion. What’s more, autophagy triggered 

inflammatory responses and apoptosis in infected cells 

[17]. Inflammatory imbalance represents the most critical 

basis of sepsis pathogenesis and occurs throughout the 

whole process of sepsis [18]. Inflammation has been 

center-staged in the field of sepsis research in the past. It 

is now clear that sepsis is a multifaceted host response to 

pathogens, involving the early activation of both pro- and 

anti-inflammatory responses, along with major changes 

in nonimmunologic pathways [1]. Prior research has 

suggested that the onset of sepsis was intimately 

connected to immune paralysis brought on by 

lymphocyte apoptosis [19]. What’s even more intriguing 

is that the notion that the majority of sepsis deaths are 

actually caused by a severely compromised immune 

response as a result of the widespread apoptosis of 

immune effector cells is deemed to be more 

‘fashionable’ than before [20]. Nevertheless, as the 

research project of apoptosis in the pathophysiology of 

sepsis progressed, apoptosis of non-immune cells such 

as hepatocytes [21], renal cells [22], vascular 

endothelial cells [23], and cardiomyocytes [13, 14, 24] 

was also finally discovered. As a consequence, the 

theory of anti-apoptotic mechanisms underlies a 

quantity of therapeutic concepts used to treat infectious 

diseases and inflammatory responses, especially SIMI. 

 
The cell proliferation, autophagy, apoptosis, 

angiogenesis, epithelial-to-mesenchymal transition,  

and chemoresistance are all regulated by the PI3K/ 

AKT/mTOR signaling pathway [25]. According to prior 

study, blocking the PI3K/AKT/mTOR signaling 

pathway had a protective effect against SIMI; apoptosis 

that is regulated by PI3K/AKT/mTOR signaling 

pathway has also been demonstrated to have a 

significant role in the pathophysiology of SIMI [26]. 

The study has shown that the PI3K/AKT/mTOR 

signaling pathway plays an important role in regulating 

apoptosis and autophagy [27]. Thus, PI3K/AKT/mTOR 

signaling pathway-regulated apoptosis and autophagy 

may provide a novel approach to examining XBJ’s 

action mechanism in the treatment of SIMI. 

 
In this study, a septic rat model was created using CLP, 

the rats were then given XBJ intraperitoneally, and a 

series of laboratory tests was conducted. The aim here  

is to find out how XBJ regulates autophagy and 

apoptosis mediated by PI3K/AKT/mTOR signaling 

pathway to enhance SIMI. 

RESULTS 
 

XBJ increases the survival rate in CLP-induced 

sepsis rat model 

 

We conducted a survival test in a rat model of sepsis to 

determine if XBJ has a protective function in CLP-

induced sepsis. As shown in Figure 1C, after CLP 

induction, the survival rate of rats in CLP group began 

to decline, reaching 80% on 2d, 60% on 3d, 50% on 5d, 

40% on 6d and 30% on 7d; whereas, the survival rate of 

rats in XBJ group started to decrease to 90% on 3d, 

80% on 4d, 70% on 6d and 50% on 7d. The rat survival 

rate in the CLP group was noticeably lower than those 

in the Sham group (p < 0.05), and the administration of 

10ml/kg XBJ significantly improves the survival of 

CLP rat (p < 0.05). Our results illustrated that rats 

exposed to CLP do not develop fatal sepsis within 48 

hours and XBJ protected rat from lethal infection with 

CLP. As a result, this might offer a reasonable starting 

point for sepsis treatment. 

 

XBJ attenuates the myocardial dysfunction in CLP-

induced sepsis rat model 

 

Rats in the CLP group had dilated hearts, as seen on the 

echocardiographic images, as opposed to rats in the 

Sham and XBJ group (Figure 2A). According to 

Echocardiographic findings, up to 12 hours after CLP 

induction, the decline in cardiac function in septic rats 

was not statistically significant (p > 0.05) in both the 

LVEF and LVFS in the CLP group; while there was a 

significant decrease, which started 1d after CLP (p < 

0.05). In septic rats, XBJ significantly enhanced LVEF 

at 2d, 3d, 5d, and LVFS at 3d, 5d (p <0.05); however, 

XBJ’s effect on LVEF at 12h, 1d, and LVFS at 12d, 1d, 

2d was not statistically significant (p > 0.05, Figure 2B, 

2C). Overall, the levels of LVEF, and LVFS dropped in 

the CLP group while the levels of LVEF, and LVFS 

increased in the XBJ group in a time-dependent way. 

 

To probe the effect of XBJ on sepsis-induced 

myocardial injury, CLP-induced rats’ myocardial 

tissues were detected by H&E staining. As shown in the 

Figure 2D, H&E staining revealed that as the septic 

rats’ exposure to CLP was prolonged, the extent of 

damage to their heart tissue grew progressively more 

severe. Moreover, the CLP group had noticeable 

inflammatory cell infiltration compared to the Sham 

group, interstitial edema, abnormal myocardial cell 

structure, local necrosis, and indistinct myocardial fiber 

texture. However, the administration of XBJ obviously 

ameliorated the foregoing disorder. 

 

These results demonstrated that CLP led to myocardial 

dysfunction in a time-dependent manner, as well as XBJ 
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improved the myocardial dysfunction in CLP-induced 

septic rat. 

 

XBJ improves the myocardial markers and 

inflammation in CLP-induced sepsis rat model 

 

We also measured three myocardial injury markers in 

serum, cTnI, CK, and LDH, using a fully automated 

biochemical analyzer to visualize myocardial injury in 

rats. Overall, the cTnI, CK, and LDH levels in the 

serum were significantly higher in the CLP group than 

in the Sham group (p < 0.05), whereas they were 

markedly lower in the XBJ group than in the CLP group 

(p < 0.05), with the exception of CK and LDH levels at 

12h (p > 0.05, Figure 3A–3C). As a whole, the levels of 

cTnI, CK, and LDH dropped in the XBJ group while the 

 

 
 

Figure 2. Effects of XBJ on sepsis-mediated myocardial dysfunction at 12h, 1d, 2d, 3d and 5d after CLP. (A) Representative 

echocardiographic images. (B, C) Quantification of LVEF, LVFS via echocardiography. (D) Histological analysis of heart via H&E staining (200×). 
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levels of cTnI, CK, and LDH increased in the CLP 

group in a time-dependent way.  

 

The inflammatory factors the IL-1β, IL-6 and TNF-α 

levels in the serum were detected by ELISIA. As 

depicted in Figure 3D–3F, serum inflammatory factors 

IL-1β, IL-6 and TNF-α levels were significantly higher 

in the CLP group than in the Sham group (p < 0.05), 

whereas they were markedly lower in the XBJ group 

than in the CLP group (p < 0.05), with the exception of 

IL-1β at 1d and IL-6 levels at 12h (p > 0.05). These 

results showed as the septic rats’ exposure to CLP was 

prolonged, the expression level of myocardial 

inflammatory factors increased in a time-dependent 

manner, indicating that the degree of myocardial 

inflammation was gradually aggravated. Additionally, 

the treatment of XBJ greatly improved the myocardial 

inflammation in a time-dependent manner.  

 

XBJ ameliorates the cellular apoptosis of heart tissue 

in CLP-induced sepsis rat model 

 

We measured the expression of the proteins Bax, Bcl-2, 

Cleaved-Caspase 3, Cleaved-Caspase 9, Cytochrome C, 

and Cleaved-PARP by western blot and the apoptotic 

state by TUNEL staining in the myocardium of different 

groups over the course of five time points (12h, 1d, 2d, 

3d and 5d) to explore the effect of XBJ on 

cardiomyocyte apoptosis during sepsis. We used 

TUNEL staining (Figure 4A) to observe that the CLP 

 

 
 

Figure 3. Effects of XBJ on myocardial markers and serum inflammatory factors at 12h, 1d, 2d, 3d and 5d after CLP. The levels 
of serum myocardial markers cTnI (A), CK (B), and LDH (C) were detected by automated biochemical analyzer. The levels of serum 
inflammatory factors IL-1β (D), IL-6 (E) and TNF-α (F) were detected by ELISA.  
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group’s cardiomyocyte apoptosis was clearly apparent 

when compared to the myocardial structure of the Sham 

group at the same point of time. Similarly, as the septic 

rats’ exposure to CLP was prolonged, the extent of their 

cardiomyocyte apoptosis grew progressively more 

severe.  

As shown in Figure 4B, the expression of the  

proteins Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, 

Cytochrome C, and Cleaved-PARP were significantly 

increased, whereas the expression of Bcl-2 was 

significantly decreased in the myocardium of rat with 

sepsis as compared with the Sham group at the same 

 

 
 

Figure 4. Effects of XBJ on sepsis-mediated cardiomyocyte apoptosis at 12h, 1d, 2d, 3d and 5d after CLP. (A) Representative 
images show apoptosis of heart tissue was detected by TUNEL staining. (B) Representative images and relative intensity of western blot for 
Bax, Bcl-2, Caspase 3, Cleaved-Caspase 3, Cleaved-Caspase 9, Cytochrome C and Cleaved-PARP.  
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point of time. Interestingly, treatment with XBJ 

significantly reversed the foresaid changes. These 

results indicated that XBJ alleviated SIMI by promoting 

apoptosis in the early stage of sepsis, and inhibiting 

apoptosis in the late stage of sepsis. 

 

XBJ enhances the autophagy of heart tissue in CLP-

induced sepsis rat model 

 

Autophagosome development is marked by the protein 

LC3, and the ratio of LC3 II to LC3 I indicates how many 

autophagosomes are active (positive correlation). Beclin-1 

and LC3-II play the vital role to the promotion of 

autophagy. On the contrary, P62 is regarded as a negative 

regulator of autophagic activity. To explore the effect of 

XBJ on cardiomyocyte autophagy during sepsis, we 

measured LC3-II/LC3-I ratio and the expression of the 

proteins Beclin-1 and P62 by western blot in the 

myocardium of different groups over the course of five 

time points (12h, 1d, 2d, 3d and 5d). As shown in Figure 

5, the expression of the protein Beclin-1 (except for 12h) 

and LC3-II/LC3-I ratio (except for 12h) were significantly 

decreased, whereas the expression of P62 was 

significantly increased in the CLP group as compared 

with the Sham group at the same point of time. However, 

treatment with XBJ significantly augmented the 

expression level of the protein Beclin-1 (except for 12h) 

and LC3-II/LC3-I ratio (except for 12h), as well as 

reduced the expression of P62 (except for 12h) in the 

myocardium as compared with the CLP group. These 

results revealed that XBJ alleviated SIMI by inhibiting 

autophagy in the early stage of sepsis, and enhancing 

autophagy in the late stage of sepsis. 

XBJ inhibits the PI3K/AKT/mTOR signaling 

pathway of heart tissue in CLP-induced sepsis rat 

model 

 

By measuring the levels of PI3K, AKT, and mTOR in 

cardiac tissues, the molecular mechanism involving 

the therapeutic function of XBJ through the regulation 

of apoptosis and autophagy was further studied. As 

shown in Figure 6A, the expression of the proteins p-

AKT, p-PI3K, and p-mTOR were considerably 

decreased in the myocardium of the CLP-treated rats 

at 12h compared to the Sham group, while XBJ 

dramatically increased these proteins’ levels in CLP-

treated rats at this time. Interestingly, the expression 

of the proteins p-AKT, p-PI3K and p-mTOR were 

significantly upregulated in the myocardium of rat 

with sepsis as compared with the Sham group at the 

same point of time (1d, 2d, 3d and 5d). But, treatment 

with XBJ significantly downregulated the expression 

level of the proteins p-AKT, p-PI3K and p-mTOR in 

the myocardium as compared with the CLP group (1d, 

2d, 3d and 5d).  

 

The results of the immunofluorescence assay also 

demonstrated that the expression of the proteins p-AKT 

(Figure 6B) and p-PI3K (Figure 6C) were upregulated 

in the CLP group at the same time as compared to the 

Sham group, whereas it was downregulated in the XBJ 

group as compared to the CLP group at the same time. 

These findings suggested that XBJ can safeguard the 

myocardium in septic rats by activating the PI3K/AKT 

/mTOR signaling pathway in the early stages of  

sepsis and inhibiting it in the latter stages. 

 

 
 

Figure 5. Effects of XBJ on sepsis-mediated cardiomyocyte autophagy at 12h, 1d, 2d, 3d and 5d after CLP. Representative 

images and relative intensity of western blot for Beclin-1, LC3-II/LC3-I and P62.  
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DISCUSSION 
 

In the present study, we imitated the septic conditions 

of human using the rat model of CLP and confirmed 

that XBJ treatment alleviates myocardial injury in rat 

sepsis models. The mechanism by which XBJ relieves 

SIMI is to decrease the release of pro-inflammatory 

cytokines, attenuate cardiomyocyte apoptosis, and 

enhance autophagy. XBJ exerted these above effects 

by inhibiting the phosphorylation of the PI3K/AKT/ 

mTOR pathway. In Figure 7, the precise mechanism is 

displayed. 

 

 
 

Figure 6. Effects of XBJ on the PI3K/AKT/mTOR signaling pathway of heart tissue in rat at 12h, 1d, 2d, 3d and 5d after CLP. 
(A) Representative images and relative intensity of western blot for AKT, p-AKT, PI3K, p-PI3K, mTOR and p-mTOR. (B) Representative images 
of immunofluorescence for p-AKT. (C) Representative images of immunofluorescence for p-PI3K. 
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Early evidence has demonstrated that XBJ administration 

improved survival rates and protected against 

myocardial injury in mice models of sepsis [28]. Our 

results revealed that the 7 days’ mortality of septic rats 

given XBJ treatment compared favorably to CLP, which 

is consistent with the previous experiment [29]. In 

addition, in our study, LVEF and LVFS values were not 

observed statistically after 12 hour of CLP induction  

in rats, indicating that cardiac function may not be 

unimpaired, which may be the result of the 

compensatory state of the heart in the early stage of 

sepsis, while it was significantly reduced after 1 day 

(Figure 2A–2C); H&E staining (Figure 2D) showed that 

the degree of cardiac tissue damage induced by CLP 

was serious; the serum levels of myocardial injury 

markers cTnI, CK, and LDH (Figure 3A–3C) were 

significantly increased in CLP-induced rats. The results 

showed the rat model of sepsis was successfully 

established using CLP. Meanwhile, a study showed that 

XBJ attenuated the myocardial dysfunction/injury and 

systemic inflammatory response of the CLP-induced 

septic rat [30]. Another study found that XBJ drastically 

enhanced cardiac function in septic mice in 24h  

after CLP [30]. In our study, the outcomes of 

echocardiography, H&E staining and the serum levels 

of myocardial injury markers showed that XBJ 

improved significantly cardiac dysfunction in septic rats 

after CLP.  

What’s more, sepsis induces systemic inflammation 

[31]. It is known from the current literature [32, 33]  

that two pathophysiological processes—exogenous 

pathogen-associated molecular patterns (PAMPs) and 

endogenous damage-associated molecular patterns 

(DAMPs)—are closely related to the development of 

sepsis. During sepsis, the pathogen-associated 

molecular patterns trigger systemic inflammatory 

responses, leading to an excess production of 

proinflammatory cytokines that are responsible for 

coagulopathy, such as interleukin IL-1β, IL-6, and 

tumor necrosis factor-α (TNF-α) [34]. Studies have 

shown inflammation in multiple organs in experimental 

sepsis induced by LPS or CLP, including the heart, the 

kidney, the liver, and the lung [35–38]. Researchers 

have also consistently observed elevated circulating 

levels of proinflammatory cytokines such as IL-1β, IL-

6, and TNF-α in septic patients [39]. It has been 

reported that pretreatment with XBJ reduces the serum 

levels of TNF-α and IL-6 in a dose-dependent manner 

[40]. In addition, it has been also reported that XBJ 

effectively reduced circulating IL-1β, IL-6, and TNF-α 

in CLP rats within 12 h after sepsis [41]. In our  

study, the plasma levels of proinflammatory cytokines 

IL-1β, IL-6 and TNF-α were markedly elevated in CLP 

group rats at 12 hours to 5 days, also demonstrating 

once again the successful establishment of a CLP-

induced sepsis model. However, treatment with XBJ  

 

 
 

Figure 7. Diagram of the molecular mechanism by which XBJ protects SIMI. 
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significantly reduced these inflammatory factor levels 

(Figure 3D–3F), suggesting that XBJ administration 

alleviates sepsis-induced systemic inflammation in CLP 

rats. 

 

Apoptosis that is caused by an excessive inflammatory 

response plays an essential role in SIMI as well as the 

pathophysiological process that leads to sepsis [42]. 

Apoptosis is a tightly regulated form of cell death that is 

vital in both embryo implantation and development and 

turnover of tissues during maturation [43]. During 

sepsis-induced immunosuppression, apoptosis plays  

a pivotal role in tissues/organs [44]. Numerous 

fundamental investigations have shown that lowering 

cardiomyocyte apoptosis can protect against cardiac 

dysfunction in sepsis [45, 46]. Additionally, the key 

biological functional modules including cell apoptosis 

of XBJ for treating sepsis were identified [30]. By 

examining the levels of apoptosis-related gene 

expression in sepsis patients, Weber SU et al. revealed 

that apoptosis was sparked in the early stages of the 

condition [47]. In our result, TUNEL staining (Figure 

4A) proved that XBJ dramatically reduced cardio-

myocyte apoptosis in the myocardium as likened to the 

CLP group. Previous studies have found that CLP 

induced the over-expression of Bax, Cleaved-Caspase 3, 

Cleaved-Caspase 9 and Cytochrome C and the low-

expression of Bcl-2 in rat heart tissue [14, 48, 49]. Our 

current findings indicate that the myocardium in sepsis 

rat does not express more pro-apoptotic genes in 

response to stimulation during the first 12 hours of CLP 

exposure. The explanation for this may be that when 

rats were first exposed to CLP, Bax was unable to 

trigger the opening of mitochondrial outer membrane 

permeability and was unable to stimulate a variety of 

pro-apoptotic proteins, which lead to anti-apoptotic 

proteins predominated in the body. Generally speaking, 

XBJ reduced the expression of pro-apoptotic proteins 

and increased the expression of anti-apoptotic proteins 

during the early 12h of CLP-induced sepsis, while these 

indexes were reversed during the late 1 day to 5 days 

(Figure 4B). These results showed that XBJ alleviated 

SIMI by promoting apoptosis in the early stage of 

sepsis, and inhibiting apoptosis in the late stage of 

sepsis. 

 

Autophagy is one of the mechanisms involved in the 

pathophysiology of SIMI, and a homeostasis process 

involving self-digestion for energy [50]. Autophagy 

contributes to the preventive function during infectious 

diseases [51]. Autophagosome formation and 

maturation are regulated by several core autophagy gene 

(ATG) proteins in a highly controlled manner. Beclin-1 
is a mammalian cell homolog of the yeast autophagy-

related gene ATG6, and mediates the initiation stage of 

autophagy [52]. A study showed that injection of a cell-

permeable Tat-Beclin-1 peptide to activate autophagy 

improved cardiac function, attenuated inflammation, 

and rescued the phenotypes caused by Beclin-1 

deficiency in LPS-challenged mice [35]. Microtubule-

associated protein LC3, another key protein in 

autophagy, is encoded by a mammalian ortholog of 

yeast Atg8 that is ubiquitous in mammalian tissues and 

cultured cells. It has two forms, LC3-I and LC3-II [53]. 

The autophagic vesicle membrane is where LC3-II is 

located after LC3-I is typically transformed to LC3-II 

during the development of an autophagosome [54]. P62 

functions in autophagy as a selective junction protein by 

modifying ubiquitinated proteins and delivering them to 

the proteasome for destruction [55]. However, whether 

autophagy is inhibited or activated throughout the 

pathophysiological process of sepsis is still a topic of 

debate. A study showed that the pathophysiological 

process of sepsis’ organ failure is mostly due to blocked 

autophagy [11]. Other studies showed increased 

autophagy in the early phases of sepsis followed by a 

decline near late-stage organ failure in the mouse CLP 

sepsis model [56, 57]. Several basic studies presenting 

various therapeutic methods have determined that SIMI 

can be improved by mediating autophagy [13, 58, 59]. 

Since autophagy is a dynamic and intricate process, it is 

challenging for us to record consistent and uniform 

autophagic changes over the course of numerous static 

time periods. Therefore, the dynamic time changes  

(1h, 1d, 2d, 3d and 5d) during sepsis were investigated 

in the present study to clarify the mechanism of SIMI. 

The results showed that compared with the CLP group, 

Beclin-1 expression was low, LC3-II/LC3-I ratio 

decreased, and P62 accumulation was evident at 12 h of 

XBJ intervention, and all data were reversed at 1 to 5 

days (Figure 5), demonstrated XBJ alleviated SIMI by 

inhibiting autophagy in the early stage of sepsis, and 

enhancing autophagy in the late stage of sepsis. 

 

We will further investigate XBJ’s impact on the 

PI3K/AKT/mTOR pathway after identifying its 

cardioprotective role of regulating apoptosis and auto-

phagy during sepsis. Regulation of PI3K/AKT/mTOR 

pathway is mediated in the mechanism of apoptosis and 

autophagy, which has been confirmed in animal 

experiments [60, 61]. According to a recent systemic 

pharmacological analysis, XBJ can affect sepsis by acting 

on alterations in a number of genes involved in the 

PI3K/AKT/mTOR signaling pathway [8, 9]. Previous 

research has found that when applied to sepsis, XBJ 

blocked the phosphorylation of the PI3K/AKT/mTOR 

signaling pathway [62]. However, there have been two 

divergent voices on the road to sepsis mitigation research. 

The first one is that the improvement of SIMI is through 
the activation of PI3K/AKT/mTOR signaling pathway 

[63, 64], which is in line with our findings at 12h  

that administration of XBJ therapy increased the 
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phosphorylation levels of PI3K, AKT and mTOR in 

CLP-induced sepsis, suggesting by activation of the 

PI3K/AKT/mTOR pathway. Study effectively inhibited 

hypoxia and reoxygenation-induced autophagy and 

apoptosis via, at least partially, activating the 

PI3K/AKT/mTOR pathways. The second one is that 

blocking the PI3K/AKT/mTOR signaling pathway had 

a protective effect against sepsis [26, 27], which is in 

line with our findings at 1d, 2d, 3d and 5d that 

administration of XBJ therapy suppressed p-PI3K, p-

AKT and p-mTOR, showing by inhibition of the 

PI3K/AKT/mTOR pathway. Meanwhile, the PI3K/AKT/ 

mTOR signaling pathway was blocked during sepsis, to 

trigger autophagy and block apoptosis [27]. Based on our 

results and previous literature we speculated that XBJ can 

safeguard the myocardium in septic rats by activating the 

PI3K/AKT /mTOR signaling pathway in the early stages 

of sepsis and inhibiting it in the latter stages. Therefore, 

we speculated that in CLP-induced septic rats, XBJ 

implementation may potentially result in inhibiting 

apoptosis and promoting autophagy via activating 

PI3K/AKT/mTOR pathway in the early stage of sepsis, as 

well as promoting apoptosis and inhibiting autophagy via, 

at least partially, suppressing PI3K/AKT/mTOR pathway 

in the late stage of sepsis. The specific mechanism of this 

regulation still needs to be proved by further studies. 

Figure 7 presents a diagram of the molecular mechanism 

by which XBJ protects SIMI. 

 

The innovative point of the present study is the fact that 

we utilized five time points to monitor the long-term 

changing regularity of SIMI and XBJ’s myocardial 

protective mechanisms in sepsis, which is more in 

accord with the dynamic and intricate features of sepsis. 

Although there are important discoveries revealed by 

these studies, there are also limitations. First, the precise 

molecular mechanism by which XBJ affects the 

PI3K/AKT/mTOR pathway in sepsis remains unknown. 

Second, we have to point out that we do not look into 

how changes to the PI3K/AKT/mTOR pathway XBJ 

work to affect cardiomyocyte apoptosis and autophagy 

during sepsis in further detail. 

 

CONCLUSIONS 
 

Here, we presented strong support for a putative 

mechanism through which XBJ defends against SIMI 

caused by CLP. It has been found that CLP induced 

myocardial injury and dysfunction at a time-dependent 

manner. Additionally, based on our results, the possible 

molecular mechanism of XBJ in the treatment of CLP-

induced SIMI speculated that XBJ’s cardioprotective 

advantages may be attributable to its ability to suppress 

apoptosis and promote autophagy via, at least partially, 

activating PI3K/AKT/mTOR pathway in the early stage 

of sepsis, as well as promoting apoptosis and inhibit 

autophagy via suppressing PI3K/AKT/mTOR pathway in 

the late stage of sepsis. 

 

MATERIALS AND METHODS 
 

Animal experiment 

 

All animal procedures were carried out in accordance with 

the regulations of the Animal Protection Committee of 

Ningxia Medical University, and all experimental 

procedures were approved by the Ethics Committee of the 

General Hospital of Ningxia Medical University. 6-8 

weeks male specific pathogen free Sprague-Dawley rats 

(220 ± 20 g), were purchased from and housed at the 

Ningxia Medical University laboratory animal center. 

Rats were raised in plastic cages with temperature and 

humidity-controlled room (22.8±2.0° C and 50%~60%, 

respectively) with a 12/12 hours light/dark cycle and 

allowed ad libitum access to food and water. 

 

Polymicrobial sepsis caused by CLP 

 

Polymicrobial sepsis was generated in rat by CLP surgery 

as previously described [65]. To put it simply, the rats 

were fixed on the operating table after anesthesia (4% 

phenobarbital (40 mg/kg i.p.)), the abdominal hair was 

removed for routine disinfection, the abdominal cavity 

was opened to expose the cecum, and the distal 50% was 

ligation. A “penetrating” operation with 22-gauge needle 

was then performed on the ligation of the cecum. 

Abdominal incision and intestinal manipulation with 

neither ligation nor puncture were performed in sham-

operated animals. All rats were subcutaneous injected 

with lactated Ringer’s solution (30 ml/kg) after injury  

for fluid resuscitation and housed alone. Postoperative 

pain was managed by antibiotic Imipenem/Cilastin (20 

mg/kg s.c.) and analgesia flurbiprofen axetil injection  

(5 mg/kg i.v.). 

 

Drug treatment and sample collection 

 

Rats were randomly divided into 3 groups: (1) Sham 

group; (2) CLP group; and (3) XBJ group. Three groups 

of rats after Sham or CLP were randomly divided into  

12 hours, 1 day, 2 days, 3 days and 5 days groups  

(n = 6/group). The animals in each group were treated 

with drugs for 12 hours, 1 day, 2 days, 3 days or 5 days, 

respectively. One hour after CLP, rats in XBJ group 

were treated with XBJ (10 ml/kg s.c.), while rats in 

sham or CLP group were treated with the same volume 

of normal saline. See Figure 1B for details. 

 

Animals under anesthesia were used for 
echocardiographic evaluation. Blood samples in 

heparinized tubes were collected from the heart, 

centrifuged at 3500 rpm/min for 10 min at room 
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temperature, and the supernatant serum was aspirated 

and stored at -80° C for the subsequent analyses. Then, 

the rats were euthanized by excessive anesthesia 

administration. The heart tissues were stored in 4% 

paraformaldehyde at 4° C for Hematoxylin and Eosin 

(H&E) staining, TdT mediated dUTP biotin nick-end 

labeling (TUNEL) staining and Immunofluorescence 

assay, and cryopreserved in liquid nitrogen for protein 

western blot. 

 

Survival curve  

 

Another thirty rats were also subjected to the CLP or 

sham procedure as mentioned above to investigate 

survival. After the CLP or sham surgery, the survival of 

the rat was observed every 12 h up to 7 days.  

 

Echocardiography 

 

Cardiac function was assessed using an Ultra High 

Resolution Small Animal Ultrasound Imaging System 

(Vevo®2100 Imaging System, Visualsonics, Toronto, 

Canada) with a 15-MHz transducer. After the induction 

of general anaesthesia with 4% pentobarbital (40 mg/kg 

i.p.), hearts were imaged in 2-D mode in the parasternal 

long-axis view prior to M-mode imaging positioned 

perpendicular to the interventricular septum and 

posterior left ventricular wall. Heart rate was measured 

over 3 consecutive cycles. The left ventricular ejection 

fraction (LVEF) and left ventricular fractional 

shortening (LVFS) parameters were calculated by the 

software of Vevo770TM imaging system. 

 

Biochemical detection 

 

The enzyme activity of cardiac troponin I (cTnI), 

creatine kinase (CK), lactate dehydrogenase (LDH) 

levels in serum was measured using a quick, 

convenient, and sensitive corresponding assay kit based 

on the protocol. Serum concentrations of these factors 

were detected by an Automatic Biochemical Analyzer 

(Bio Majesty JCA-BM6010, JEOL Ltd., Japan). 

 

Enzyme-linked immunosorbent assay (ELISA) 

 

Inflammatory cytokines, interleukin-1β (IL-1β), IL-6 

and tumor necrosis factor-α (TNF-α) in serum were 

measured using ELISA kits, according to the 

manufacturer’s instructions (BioSwamp, Wuhan, 

China). The concentrations of the cytokines were 

quantified by referring to standard curves. 

 

Histopathological (H&E) staining 

 

4 μm sections were stained using a H&E Staining  

Kit (Biotopped, Beijing, China), according to the 

manufacturer’s instructions. Morphological changes in 

myocardial tissues were observed by H&E under a light 

microscope. Morphological changes in myocardial 

tissues were observed at 200 × magnification under a 

light microscope (Leica, USA). Three hearts were 

analyzed per group. 

 

TUNEL staining 

 

Extensive DNA degradation is the signature of the late 

stage of apoptosis. Visualization of apoptotic 

cardiomyocytes was performed on left ventricular 

tissue cross sections (4 μm thick) using One-step 

TUNEL Apoptosis Detection Kit (Beyotime, Beijing, 

China) and according to the manufacturer’s procedure. 

TUNEL staining changes in myocardial tissues were 

observed with a fluorescence microscope (MF43-N, 

Mshot, China) to obtain representative fluorescence 

images. 

 

Immunofluorescence assay 

 

Immunofluorescence was used to assess the level of p-

AKT (Ser473) and p-PI3K (Tyr607) in heart tissue. 

Fixed heart tissues were removed with 0.5% Triton X-

100 for 20 min. Tissues were blocked with 5% BSA 

blocking solution for 60 min at room temperature, 

following by washing with PBS. The tissues were then 

incubated with p-AKT (Ser473) antibody (cat. 

AF0016,1:500) and p-PI3K (Tyr607) antibody (cat. 

AF3241, 1:500) overnight at 4° C and further stained 

with Goat anti-Rabbit lgG H&L (AlexaFluor®594) 

(cat. ZF-0516, 1:100) secondary antibody. Afterwards, 

heart tissue was stained with 4′, 6-diamidino-2-

phenylindole (DAPI, C0060, Solarbio, China) and 

observed with a fluorescence microscope (MF43-N, 

Mshot, China) to obtain representative fluorescence 

images. 

 

Western blot 

 

The heart tissues added to RIPA lysis buffer spiked 

with protease inhibitors and phosphorylated protease 

inhibitors (Servicebio, Wuhan, China) are crushed by 

adding magnetic beads in Fully automatic sample 

freezer grinder (JXFSTPRP-CL, Shanghai Jing Xin, 

China). The protein concentration was measured using 

a BCA protein assay kit (Omni-Easy, Shanghai, 

China). Equal amounts of protein (5 µg/µl, 10 µl per 

lane) were separated by 7.5-12.5% SDS-PAGE and 

were transferred onto PVDF membranes using Bio-

Rad western blot analysis apparatus (CAVOY, 

Beijing, China). The membranes were then blocked 
with 5% skim milk powder at room temperature for  

2 h and incubated at 4° C overnight with antibodies 

against PI3K (cat. AF6241, 1:1000), phosphorylated 
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(p)-PI3K (cat. AF3241, 1:1000), AKT (cat. AF6261, 

1:1000), p-AKT (cat. AF0016, 1:1000), mTOR (cat. 

AF6308, 1:1500), p-mTOR (cat. AF3308, 1:1500), 

Bax (cat. AF0120, 1:2000), Bcl-2 (cat. AF6139, 

1:2000), Cleaved-caspase 3 (cat. AF7022, 1:1000), 

Caspase 3 (cat. AF6311, 1:1000), Cleaved-caspase 9 

(cat. AF5240, 1:1000), Cleaved-PARP (cat. AF7023, 

1:1000), Cytochrome C (cat. AF0146, 1:1000), 

GAPDH (cat. T0004; 1:10,000), P62 (cat. Ab91526, 

1:1000), Beclin 1 (cat. Ab62557, 1:1000) or LC3-I/II 

(cat. Ab128025, 1:1000), followed by incubation at 

room temperature for 1h with goat anti-rabbit 

secondary antibodies (cat. S001; 1:10,000) or goat 

anti-mouse secondary antibodies (cat. AS014; 

1:10,000; Abclonal). GAPDH was used as the internal 

reference protein. Protein bands were detected with an 

enhanced chemiluminescence kit (KeyGen BioTECH, 

Jiangshu, China) using capturing light sources with an 

ultrasensitive multifunction imager (Amersham lmager 

680RGB) and were semi-quantified using ImageJ 

software (Rawak Software, Inc. Germany).  

 

Statistical analysis 

 

All values described in the text and figures are 

presented as mean ± standard deviation (SD). The 

Kaplan-Meier method was applied to assess survival 

followed by the log rank test. One-way analysis of 

variance (ANOVA) test was used to compare among 

multiple groups, followed by Tukey’s test after a 

homogeneity test for variance and Tamhane T2’s test 

after a heterogeneity test for variance. SPSS 24.0 

software was used to analyze the data. p < 0.05 in two-

tailed testing was considered statistically significant. In 

all the resulting graphs, # indicates p < 0.05 (vs. the 

Sham group) and * indicates p < 0.05 (vs. the CLP 

group). 
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