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ABSTRACT 
 

B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) is overexpressed in various cancer 
types. We found that Bmi-1 mRNA levels were elevated in nasopharyngeal carcinoma (NPC) cell lines. In 
immunohistochemical analyses, high Bmi-1 levels were observed in not only 5 of 38 non-cancerous nasopharyngeal 
squamous epithelial biopsies, but also in 66 of 98 NPC specimens (67.3%). High Bmi-1 levels were detected 
more frequently in T3-T4, N2-N3 and stage III-IV NPC biopsies than in T1-T2, N0-N1 and stage I-II NPC samples, 
indicating that Bmi-1 is upregulated in advanced NPC. In 5-8F and SUNE1 NPC cells, stable depletion of Bmi-1 
using lentiviral RNA interference greatly suppressed cell proliferation, induced G1-phase cell cycle arrest, 
reduced cell stemness and suppressed cell migration and invasion. Likewise, knocking down Bmi-1 inhibited 
NPC cell growth in nude mice. Both chromatin immunoprecipitation and Western blotting assays demonstrated 
that Hairy gene homolog (HRY) upregulated Bmi-1 by binding to its promoter, thereby increasing the stemness 
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INTRODUCTION 
 

Nasopharyngeal carcinoma (NPC) is a type of 

squamous cell carcinoma that originates in the mucosal 

epithelium of the nasopharynx [1–3]. NPC is prevalent 

in south China, especially Guangdong province, 

occurring in roughly 20 per 100,000 people annually 

[1–3]. Due to the deep location and vague symptoms of 

NPC, most patients exhibit relatively advanced disease 

during their initial diagnosis, including local invasion 

and early distant metastases, so the prognosis of NPC 

tends to be poor [1–3]. Thus, it is essential to determine 

the molecular pathways involved in the pathogenesis of 

NPC so that patients can be diagnosed early, receive an 

accurate prediction of their prognosis and be treated 

with novel therapeutic strategies. 

 

B-cell-specific Moloney murine leukemia virus 

integration site 1 (Bmi-1), a widely expressed nuclear 

protein and proto-oncogene, is a catalytic subunit of 

Polycomb repressive complex 1 [4–6]. Bmi-1 is 

required to maintain and promote the self-renewal of 

mouse adult stem cells such as hematopoietic, small 

intestinal, lung, prostate, neural, breast and dental pulp 

stem cells [4–8]. Bmi-1 suppresses the differentiation of 

adult stem cells and precursor cells, whereas knocking 

out Bmi-1 has been shown to induce the differentiation 

of these cells [4–8]. In addition, Bmi-1 promotes cell 

senescence, immortalization, transcription initiation 

and chromatin agglutination-related protein interactions 

[4–6]. 

 

Moderate Bmi-1 expression is necessary for 

development, whereas abnormally high Bmi-1 

expression has been linked with the oncogenesis, 

development and prognosis of various tumor types, 

including glioma, colorectal cancer, breast cancer and 

prostate cancer [4–6]. Bmi-1 is also needed for the 

maintenance and self-renewal of cancer stem-like 

cells/tumor-initiating cells in leukemia [9–11], 

colorectal cancer [12], liver cancer [13], glioma [14, 

15], breast cancer [16, 17], prostate cancer [18, 19], 

head and neck squamous cell carcinoma [20], and 

medulloblastoma [21]. Bmi-1 overexpression was 

shown to immortalize nasopharyngeal epithelial cells 

[22] and trigger their epithelial-mesenchymal transition 

(EMT) [23]. On the other hand, Bmi-1 silencing was 

reported to promote apoptosis in NPC cells, thereby 

sensitizing them to chemotherapeutic and radio-

therapeutic treatments [24–27]. Moreover, Bmi-1 

antibody as a potential marker of NPC may be rational, 

and could have diagnostic and prognostic value [28]. 

 

Hairy gene homolog (HRY) is the mammalian homolog 

of the Drosophila hairy gene [29], and is a member of 

the hairy and enhancer of split (HES1-7) gene family 

[30]. HRY is often used as a stem cell marker, and is 

necessary for the self-renewal of hematopoietic stem 

cells [31], small intestinal stem cells [32, 33], melanin 

stem cells [34] and pancreatic stem cells [35]. HRY is 

highly expressed in various tumor tissues [36, 37], and 

is required to maintain the stemness of cancer stem cells 

[38, 39]. Overexpression of miR-199b was found to 

downregulate HRY, thereby reducing the number of 

cancer stem cells in medulloblastoma [40]. On the 

other hand, tumor necrosis factor alpha was shown to 

increase the content of cancer stem cells in oral 

squamous cell carcinoma by activating Notch-Hes1 

[41]. Moreover, HRY was reported to promote tumor 

development/progression and maintain cancer stem cell 

stemness in colon cancer [42]. The Notch signaling 

pathway was found to enhance the therapeutic 

resistance of cancer stem cells in lung cancer and 

ovarian cancer [43, 44]. 
 

In the present study, we investigated the influence of 

Bmi-1 on the proliferation, stemness, motility and 

invasion of NPC cells, and explored the molecular 

pathways underlying these effects. 

 

RESULTS 
 

High Bmi-1 expression is common among clinical 

NPC tissue samples 

 

To assess the involvement of Bmi-1 in NPC progression, 

we used quantitative real-time PCR (qRT-PCR) to 

measure Bmi-1 mRNA levels in NPC cell lines. Bmi-1 

was markedly upregulated in all the NPC cell lines we 

tested (CNE1, CNE2, HK1, HK1-EBV, SUNE1, 

HONE1, HONE1-EBV, 5-8F, NPC43 and C17) relative 

to NP69 nasopharyngeal epithelial cells (Figure 1A). 
 

We then used immunohistochemical staining to 

examine Bmi-1 protein levels in archived paraffin-

embedded tissue samples from 98 NPC biopsies and 38 

non-cancerous nasopharyngeal biopsies. Low Bmi-1 

levels were observed in 33 of the 38 non-cancerous 

nasopharyngeal epithelial samples (86.8%) (Figure 1B, 

1C; Table 1). On the other hand, among the 98 NPC 

of NPC cells. Immunohistochemistry and quantitative real-time PCR analyses revealed that HRY expression 
correlated positively with Bmi-1 expression in a cohort of NPC biopsies. These findings suggested that HRY 
promotes NPC cell stemness by upregulating Bmi-1, and that silencing Bmi-1 can suppress NPC progression. 
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Table 1. Bmi-1 levels in 38 non-cancerous epithelial tissues and 98 NPC tissues. 

Tissue type n 
Bmi-1 expression 

χ2 P 
High (n, %) Low (n, %) 

Non-cancerous epithelial tissues 38 5 (13.2) 33 (86.8) 
32.226 <0.001 

NPC 98 66 (67.3) 32 (32.7) 

 

specimens, 32 (32.7%) exhibited low or non-detectable 

Bmi-1 expression, while 66 (67.3%) exhibited high 

Bmi-1 staining (Figure 1B, 1C; Table 1). Thus, high 

Bmi-1 expression was more common in NPC tissues 

than in non-cancerous nasopharyngeal tissues. 

 

Bmi-1 upregulation is associated with aggressive 

NPC phenotypes 

 

We then assessed the association of Bmi-1 levels with 

various clinicopathological traits in the 98 NPC patients 

(Table 2). Bmi-1 levels did not correlate with the age (P 

= 0.319) or sex (P = 0.221) of the NPC patients 

(Table 2). On the other hand, we did find positive 

correlations between Bmi-1 levels and the tumor size 

(‘T’; P = 0.030), lymph node invasion (‘N’; P < 0.001) 

and clinical stage (III-IV vs. I-II; P = 0.001) of NPC 

(Figure 2A, 2B; Table 2). Briefly, high Bmi-1 

expression was detected more often in T3-T4, N2-N3 

and stage III-IV NPC biopsies than in T1-T2, N0-N1 

and stage I-II samples, respectively (Figure 2A, 2B; 

Table 2), demonstrating that the gain of Bmi-1 

expression is an important feature of advanced NPC. In 

addition, overall survival was significantly shorter in 

patients with high Bmi-1 levels than in patients with 

low Bmi-1 levels (Figure 2C). 

 

Bmi-1 silencing suppresses NPC cell proliferation 

 

Given that Bmi-1 expression was significantly induced 

in NPC samples, we suspected that inhibiting Bmi-1 

expression might suppress NPC progression. Thus, we 

used RNA interference (RNAi) with short hairpin RNA 

(shRNA) to evaluate whether knocking down Bmi-1 

 

 
 

Figure 1. Bmi-1 was markedly upregulated in NPC clinical tissue specimens. (A) Bmi-1 levels were detected using qRT-PCR in the 

NPC cell lines shown. (B) Representative photographs from immunohistochemical analyses of Bmi-1 protein levels in NPC tissues and non-
cancerous nasopharyngeal epithelial tissues. (C) Bmi-1 levels were significantly greater in NPC tissues than in non-cancerous 

nasopharyngeal epithelial tissues (P < 0.001, 2 test). 
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would diminish NPC cell growth. Compared with the 

scrambled control vector (shSCR), the Bmi-1 shRNA 

(shBmi-1) successfully repressed Bmi-1 mRNA (Figure 

3A) and protein (Figure 3B) expression in 5-8F and 

SUNE1 cells. A Cell Counting Kit 8 (CCK8) assay 

revealed that silencing endogenous Bmi-1 inhibited the 

growth of 5-8F and SUNE1 cells (Figure 3C, 3D). 

Moreover, a colony formation assay indicated that 

shBmi-1 treatment notably reduced the number and size 

of colonies formed by 5-8F and SUNE1 cells (Figure 

3E, 3F). Cell cycle analyses demonstrated that Bmi-1 

knockdown induced cell cycle arrest at phase G1 

(Figure 3G, 3H). Thus, the loss of Bmi-1 suppressed the 

proliferation of NPC cells in vitro. 

 

Bmi-1 knockdown reduces the tumorigenicity of 

NPC cells in vivo 

 

We then examined the impact of Bmi-1 silencing on 

NPC cell growth in vivo by performing tumor xenograft 

experiments. Nude mice received subcutaneous 

injections of 5-8F cells expressing shSCR or shBmi-1. 

Tumors from mice injected with shSCR-expressing 

cells were notably larger in size (Figure 3I), volume 

(Figure 3J) and weight (Figure 3K) than those from 

mice injected with shBmi-1-expressing cells. These 

results demonstrated that Bmi-1 silencing suppressed 

the tumorigenicity of NPC cells in vivo. 

 

Knocking down Bmi-1 significantly reduces NPC cell 

stemness 

 

We next assessed stemness marker expression and 

tumor sphere formation to determine the effects of Bmi-

1 inhibition on NPC stem cell-like populations. RNAi- 

induced depletion of endogenous Bmi-1 downregulated 

the mRNA levels of stem cell markers such as octamer-

binding transcription factor 4 (Oct4), Nanog homeobox 

(Nanog), SRY-box transcription factor 2 (Sox2) and 

ATP binding cassette subfamily G member 2 (ABCG2) 

 

 
 

Figure 2. Bmi-1 upregulation was associated with malignant tumor progression in NPC patients. (A) Representative images of 

Bmi-1 levels in clinical tissue biopsies from NPC patients with differing tumor-node-metastasis (TNM) stages, clinical stages and histological 
types. Low Bmi-1 expression was detected in T1 (a), N0 (c), M0 (e), stage I (g) and differentiated nonkeratinizing carcinoma (DNKC) (i) NPC 
biopsies, while high Bmi-1 expression was observed in T3 (b), N3 (d), M1 (f), stage IV (h) and undifferentiated carcinoma (UDC) (j) tumors. 

(B) The number and percentage of samples with high and low Bmi-1 levels according to various clinicopathological traits (2 test). (C) 
Cumulative overall survival curves of 98 NPC patients with high or low Bmi-1 levels. A log-rank test was used to calculate the P value. 
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Table 2. Correlation of clinicopathological characteristics with Bmi-1 levels in NPC tissues. 

Characteristics Case no. 
Bmi-1 expression 

χ2 P 
High (n, %) Low (n, %) 

Sex 

Female 26 15 (57.7) 11 (42.3) 
1.500 0.221 

Male 72 51 (70.8) 21 (29.2) 

Age (years) 

<47 53 38 (71.7) 15 (28.3) 
0.994 0.319 

≥47 45 28 (62.2) 17 (37.8) 

Histological type 

DNKC 7 4 (57.1) 3 (42.9) 
0.357 0.550 

UDC 91 62 (68.1) 29 (31.9) 

T classification 

T1-T2 40 22 (55) 18 (45) 
4.685 0.030 

T3-T4 58 44 (75.9) 14 (24.1) 

Lymph node metastasis 

N0-N1 19 5 (26.3) 14 (73.7) 
18.044 <0.001 

N2-N3 79 61 (77.2) 18 (22.8) 

Distant metastasis 

No 94 62 (66) 32 (34) 
2.022 0.155 

Yes 4 4 (100) 0 (0) 

Clinical stage 

I-II 25 10 (40) 15 (60) 
11.414 0.001 

III-IV 73 56 (76.7) 17 (23.3) 

Abbreviations: DNKC: differentiated nonkeratinizing carcinoma; UDC: undifferentiated carcinoma; T: tumor size; N: lymph 
node metastasis. 
 

in NPC cells (Figure 4A). Sphere-forming assays 

revealed that silencing Bmi-1 diminished the number  

of spheres formed by NPC cells (Figure 4B, 4C). 

Furthermore, Western blotting indicated that pAKT 

levels were significantly reduced in shBmi-1-expressing 

NPC cells compared with shSCR-expressing NPC cells 

(Figure 4D). These findings illustrated that knocking 

down Bmi-1 reduced NPC cell stemness. 

 

Bmi-1 silencing inhibits the EMT, migration and 

invasion of NPC cells 

 

Our results above demonstrated that Bmi-1 upregulation 

correlated with lymph node invasion and metastasis in 

human NPC samples (Figure 2 and Table 2). 

Considering that the EMT facilitates the invasion and 

metastasis of a variety of cancer types [45], we 

evaluated epithelial and mesenchymal marker 

expression after silencing endogenous Bmi-1 in NPC 

cells. Bmi-1 knockdown markedly upregulated 

epithelial markers (E-cadherin and -catenin) and 

downregulated mesenchymal markers (vimentin, N-

cadherin, fibronectin, snail1 and snail2) at the mRNA 

level in 5-8F and SUNE1 cells (Figure 5A). 

Then, we evaluated the impact of Bmi-1 on NPC cell 

mobility and invasiveness. Wound healing assays 

demonstrated that Bmi-1 silencing inhibited both 5-8F 

and SUNE1 cell migration (Figure 5B, 5C). Moreover, 

Transwell migration assays and Boyden chamber 

invasion assays indicated that Bmi-1 knockdown 

suppressed 5-8F and SUNE1 cell migration and 

invasion (Figure 5D, 5E). These results suggested that 

Bmi-1 silencing suppressed NPC cell motility and 

invasiveness by triggering events characteristic of the 

EMT in vitro. 

 

HRY binds to the promoter of Bmi-1 to upregulate 

Bmi-1 expression 

 

Our previous study [46] and other studies [47–50] have 

indicated that HRY/Hes1 enhances cancer cell 

stemness. Bioinformatic analyses predicted Bmi-1 as a 

target of HRY. Therefore, we examined Bmi-1 

expression in HRY-expressing or shHRY-expressing 

NPC cells. Western blotting revealed that HRY 

overexpression increased Bmi-1 levels, while HRY 

silencing significantly downregulated Bmi-1 (Figure 

6A), suggesting that HRY enhances the expression of 
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Bmi-1 in NPC cells. Then, we conducted a chromatin 

immunoprecipitation (ChIP) assay to assess the binding 

between HRY and Bmi-1 in NPC cells. We found that 

HRY could bind to the Bmi-1 promoter region at 

specific regulatory sequences (Figure 6B), and 

quantitative ChIP assays confirmed these findings 

 

 
 

Figure 3. RNAi-induced knockdown of Bmi-1 inhibited the in vitro proliferation and in vivo tumorigenesis of NPC cells. (A) 

The relative mRNA levels of Bmi-1 in shBmi-1-expressing 5-8F and SUNE1 cells were determined via qRT-PCR. SCR: scrambled control 
shRNA. (B) The protein levels of Bmi-1 in shBmi-1-expressing 5-8F and SUNE1 cells were determined via Western blotting. (C, D) A CCK8 
assay was employed to assess the growth of shBmi-1-expressing 5-8F and SUNE1 cells. (E, F) A colony formation assay was used to examine 
the proliferation abilities of shBmi-1-expressing 5-8F and SUNE1 cells. (G, H) Propidium iodide staining and flow cytometry were used to 
detect the cell cycle distributions of shBmi-1-expressing 5-8F and SUNE1 cells (G), and the statistical results were calculated (H). (I–K) Bmi-1 
knockdown inhibited tumor growth from 5-8F cells in nude mice. A representative tumor picture is shown (I), along with a tumor volume 
growth curve (J) and the tumor weights (K). 
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(Figure 6C). These data suggested that HRY binds to the 

promoter of Bmi-1 to induce the transcription of this gene. 

 

HRY enhances the stemness of NPC cells by 

upregulating Bmi-1 

 

To understand whether the effects of Bmi-1 on NPC 

cell stemness depended on the upstream activity of 

HRY, we assessed the impact of gain and loss of HRY 

function. We performed side population (SP) cell 

detection and tumor sphere formation assays to evaluate 

the effects of exogenous HRY expression on stem cell-

like populations in NPC. HRY overexpression (gain of 

function) notably increased the proportion of SP cells 

among CNE2 cells (6.2%, vs. 2.0% in the control; 

Figure 6D). Similar to the effects of exogenous Bmi-1 

expression, HRY overexpression significantly increased 

the number of spheres formed by CNE2 cells 

(Figure 6E). 

 

Subsequently, we investigated whether shBmi-1 could 

reverse the increase in stemness induced by ectopic 

HRY expression in NPC cells. We observed that 

shBmi-1 treatment prevented HRY overexpression from 

elevating the proportion of SP cells (Figure 6D) and 

increasing the sphere number and diameter (Figure 6E). 

These findings suggested that HRY induces NPC cell 

stemness by upregulating Bmi-1. 

 

Association between HRY and Bmi-1 levels in NPC 

patients 

 

Our earlier results indicated that Bmi-1 was upregulated 

in tissues from NPC patients (Figure 1B, 1C; Table 1). 

Moreover, we previously reported that HRY expression 

was elevated in NPC specimens [51]. Thus, we assessed 

the correlation between Bmi-1 and HRY levels in NPC 

specimens using qRT-PCR and immunohistochemistry. 

We observed a significant positive association between 

Bmi-1 and HRY mRNA levels in NPC biopsies (two-

tailed Spearman’s correlation, r = 0.8273, P = 0.0005; 

Figure 7A). Likewise, we detected a correlation 

between Bmi-1 and HRY protein levels in NPC tissues 

(Figure 7B, 7C). Thus, HRY levels correlated positively 

with Bmi-1 levels at both the mRNA and protein levels 

in NPC specimens. 

 

 
 

Figure 4. RNAi-induced suppression of Bmi-1 reduced NPC cell stemness. (A) qRT-PCR analysis of various genes in shBmi-1-

expressing 5-8F and SUNE1 cells. (B, C) Depletion of endogenous Bmi-1 in 5-8F cells inhibited tumor sphere formation. (D) Western blotting 
results of cell extracts from shBmi-1-expressing 5-8F and SUNE1 cells. The loading control was GAPDH. 
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DISCUSSION 
 

NPC, a malignant cancer of the head and neck, is 

distinctly distributed among ethnic groups and localities 

worldwide [1–3]. More NPC patients die from distant 

metastases than from their primary tumors [1–3]. 

However, it is unclear which molecular pathways cause 

NPC to progress in malignancy. 

 

 
 

Figure 5. RNAi-induced knockdown of Bmi-1 suppressed the EMT, migration and invasion of NPC cells in vitro. (A) The mRNA 

levels of various genes in shBmi-1-expressing NPC cells were determined using qRT-PCR. (B, C) Wound healing assays were performed in 
shBmi-1-expressing 5-8F and SUNE1 cells. Migration activity was measured based on the distance from the scratch boundary lines to the 
cell-free space for 24 hours. (D, E) The motility and invasiveness of shBmi-1-expressing NPC cells were determined using Transwell 
migration and Boyden invasion assays, respectively. 
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Bmi-1 is considered to be oncogenic, as it contributes to 

the progression of various cancers and is upregulated in 

glioma, colorectal cancer, breast cancer and prostate 

cancer [4–6]. Here, we observed that Bmi-1 levels were 

significantly elevated in NPC cell lines and tissue 

specimens compared with their normal counterparts. 

More importantly, higher Bmi-1 expression tended to be 

detected in clinical stage III-IV, T3-T4 and N2-N3 

patient samples than in stage I-II, T1-T2 and N0-N1 

samples, respectively. We subsequently demonstrated 

that silencing Bmi-1 suppressed NPC cell proliferation, 

stemness, motility and invasion, which was consistent 

with these findings from the previously published 

studies [26, 52]. Thus, evidence from NPC cells, 

 

 
 

Figure 6. HRY increased the stemness of NPC cells by promoting Bmi-1 expression. (A) Western blotting was used to determine 

the protein levels of HRY and Bmi-1 in NPC cells transfected with different plasmids. (B) Schematic diagram of the Bmi-1 promoter, 
displaying possible HRY binding sites. ATG: start codon for translation. (C) ChIP assays were conducted with anti-HRY or IgG antibodies to 
determine HRY binding sites on the Bmi-1 promoter in CNE2 cells. (D) The proportions of SP cells among CNE2 cells transduced with 
different plasmids were analyzed using flow cytometry. (E) Tumor sphere formation in CNE2 cells transduced with different plasmids. 

 

 
 

Figure 7. HRY levels correlated positively with Bmi-1 levels in NPC tissues. (A) HRY and Bmi-1 mRNA levels correlated significantly 

and positively with one another in NPC samples (Spearman’s correlation analysis, r = 0.8273, P = 0.0005). (B) Relationship between HRY and 

Bmi-1 levels in immunohistochemical analysis of NPC tissues. (C) HRY levels correlated positively with Bmi-1 levels in NPC tissues (2 test). 
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tissues and functional experiments clearly illustrated 

that Bmi-1 is an oncogene contributing to the 

development of NPC. 

 

Bmi-1 maintains and/or promotes the self-renewal of 

cancer stem-like cells/tumor-initiating cells in a variety 

of tumors [9–21], and thus is an ideal target for 

treatments aimed at cancer stem-like cells. For example, 

Bmi-1 inhibition in colorectal cancer [12] and combined 

suppression of Bmi-1 and enhancer of zeste 2 Polycomb 

repressive complex 2 subunit (EZH2) expression in 

glioma [15] effectively eliminated cancer stem-like 

cells, thereby achieving an ideal anticancer efficacy. 

Various highly selective small molecules (e.g., PTC-

028, PTC-209 and PTC596) have been developed to 

inhibit Bmi-1 for basic and clinical tumor treatment, 

and the results have been encouraging [12, 53–59]. In 

this study, we observed that Bmi-1 silencing remarkably 

suppressed the stemness of NPC cells. 

 

We then demonstrated that Bmi-1 may be 

transcriptionally induced by HRY. Dramatic up-

regulation of HRY has been noted in various cancer 

types, including breast cancer [60], colon cancer [46, 

61, 62], glioma [63], head and neck squamous cell 

carcinoma [64], hepatocellular carcinoma [65], lung 

cancer [66], medulloblastoma [67], meningioma [68], 

NPC [51] and ovarian carcinoma [69]. Our previous 

study [46] and other studies [46–50, 70] have also 

indicated that HRY enhances cancer cell proliferation 

and stemness, further illustrating the oncogenic 

activity of HRY. The present study revealed that Bmi-

1 may promote the proliferation and stemness of NPC 

cells as a downstream target of HRY. HRY levels 

correlated positively with Bmi-1 levels in NPC tissues, 

and HRY induced Bmi-1 expression in NPC cells. 

Moreover, HRY was bound to the Bmi-1 promoter, 

suggesting that Bmi-1 is a bona fide transcriptional 

target of HRY. 

 

Subsequently, we investigated whether HRY increased 

the stemness of NPC cells in vitro by inducing Bmi-1. 

We observed that HRY overexpression increased NPC 

cell stemness in a manner similar to ectopic Bmi-1 

expression, whereas shBmi-1 treatment reversed the 

increased stemness in HRY-expressing CNE2 cells. 

These results demonstrated that HRY reinforces the 

stemness of NPC cells by upregulating its target gene, 

Bmi-1. 

 

Despite these findings, the mechanism(s) by which 

Bmi-1 silencing suppresses NPC progression remain 

unclear. A previous study revealed that Bmi-1 

transcriptionally repressed the tumor suppressor 
phosphatase and tensin homolog (PTEN), thereby 

activating the phosphoinositide 3-kinase (PI3K)/AKT 

pathway, inducing the EMT and promoting the invasion 

and metastasis of NPC cells [23]. The suppression of 

PTEN has been shown to activate the PI3K/AKT/ 

glycogen synthase kinase 3β pathway in various kinds 

of cancer cells, thus greatly promoting their 

proliferation and stemness [71–77]. These data suggest 

that Bmi-1 may enhance the proliferation and stemness 

of NPC cells by inducing PTEN/PI3K/AKT signaling, 

although further investigation is needed to confirm 

this. 

 

In conclusion, our study revealed that Bmi-1 

downregulation suppressed tumor progression during 

the pathogenesis of NPC. Thus, Bmi-1 could be a useful 

treatment target in advanced NPC patients. However, 

studies combining ChIP-seq and RNA-seq assays are 

needed to identify the downstream target genes 

responsible for the tumor-promoting effects of this 

transcription factor, and these results should be verified 

in subsequent validation and functional studies. 

 

MATERIALS AND METHODS 
 

Cell lines and cell culture 

 

The human NPC (5-8F, C17, CNE1, CNE2, HK1, HK1-

EBV, HONE1, HONE1-EBV, NPC43 and SUNE1) and 

immortalized nasopharyngeal epithelial (NP69) cells 

were kind gifts from Prof. Qiao Tao (Chinese 

University of Hong Kong, Hong Kong, China), Prof. 

GSW Tsao (University of Hong Kong), Prof. Yixin 

Zeng (Sun Yat-sen University, Guangzhou, China) and 

Prof. Musheng Zeng (Sun Yat-sen University). The 

cells were maintained at 37°C in a humidified incubator 

containing 5% CO2. RPMI 1640 medium supplemented 

with 10% fetal bovine serum was used to culture the 

NPC cells, while keratinocyte/serum-free medium 

(Invitrogen) was used for the NP69 cells. 

 

Clinical specimens 

 

Tissue punches were generated from formalin-fixed, 

paraffin-embedded tumor specimens obtained from 

patients diagnosed with primary NPC at the Department 

of Pathology, Sun Yat-Sen University Cancer Center 

and at the Department of Pathology, the Second 

Affiliated Hospital of Guilin Medical University in 

Guilin, China. The tissue microarray was produced 

using non-cancerous nasopharyngeal epithelial tissue 

punches and NPC tissue punches. Histopathological 

information was collected from pathology reports, and 

survival data were collected in raw form from the 

patients’ attending physicians. Tissue and clinical data 

were retrieved according to the regulations of the Sun 

Yat-Sen University Cancer Center institutional review 

board and of the Second Affiliated Hospital of Guilin 
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Medical University institutional review board, and 

data safety laws concerning ethical standards and 

patient confidentiality. The application of the tissue 

microarray was approved by the Medical Ethics 

Committee of Sun Yat-Sen University Cancer Center 

and the Second Affiliated Hospital of Guilin Medical 

University. 

 

Immunohistochemistry 

 

Tissue microarray blocks were cut into 4-µm sections, 

and then were deparaffinized and rehydrated. Antigen 

retrieval was performed by treating the sections with 

high pressure for 3 minutes in sodium citrate buffer. 

Subsequently, 3% H2O2 was used to block the sections 

for 10 minutes, and an overnight incubation was 

performed with a primary antibody against Bmi-1 

(Proteintech, cat. no. 66161-1-Ig) at 4°C. A goat  

anti-rabbit secondary antibody was then used to stain 

the slides for 20 minutes at 37°C. Lastly, diamino-

benzidine staining and hematoxylin counterstaining 

were performed. The intensity of the staining was 

graded as 0 (negative), 1 (weak), 2 (moderate) or 3 

(strong), with scores of 0 or 1 being defined as low, 

and scores of 2 or 3 being considered high. Two 

pathologists who were blinded to the patients’ 

clinicopathological data independently evaluated the 

results of the histopathological and immuno-

histochemical studies. 

 

RNA isolation and qRT-PCR 

 

RNA isolation, reverse transcription and qRT-PCR 

were conducted as reported previously [78–85]. The 

qRT-PCR primers are detailed in Supplementary 

Table 1. Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) was employed as an endogenous control. 

Internal controls were used to normalize all samples, 

and relative quantification (2−ΔΔCt) was used to calculate 

fold-changes. 

 

Plasmids, lentivirus production and lentiviral 

transduction for stable cell lines 

 

The oligonucleotide used to knock down human Bmi-1 

was GTTCACAAGACCAGACCAC (‘shBmi-1’). The 

lentiviral shRNA construct for human Bmi-1 was 

obtained according to the pLenti-U6-GFP-Puro vector 

protocol. For lentivirus production, 293T cells were co-

transfected with lentiviral packaging plasmids (psPAX2 

and pMD2G; Addgene) and the lentiviral vectors, as 

reported previously [78–85]. Then, 5-8F and SUNE1 

cells were infected with the lentiviruses. The pWPXL-
HRY plasmid was supplied by Addgene (Addgene 

plasmid 36983). Prof. Ryoichiro Kageyama (Kyoto 

University, Kyoto, Japan) kindly provided the pCSII 

vectors containing the scrambled and HRY-knockdown 

sequences. 

 

Western blotting 

 

Proteins were lysed, electrophoretically separated on 

sodium dodecyl sulfate polyacrylamide gels, and 

transferred to polyvinylidene difluoride membranes. 

Primary antibodies against Bmi-1 (Proteintech, cat. 

no. 66161-1-Ig; mouse, 1:1000 dilution), HRY 

(Abcam, cat. no. ab71559; mouse, 1:2000 dilution), 

GAPDH (Proteintech, cat. no. 10494-1-AP; rabbit, 

1:5000 dilution) or β-actin (Proteintech, cat. no. 

81115-1-RR; rabbit, 1:5000 dilution) were used to 

probe the membranes. Then, the membranes were 

incubated with horseradish peroxidase-labeled 

secondary antibodies. Enhanced chemiluminescence 

was used to detect the hybridization signals. The 

loading control was either GAPDH or β-actin. 

Supplementary Table 2 lists the antibodies used in 

the present study. 

 

CCK8 and colony formation assays 

 

The CCK8 assay (cat. no. CK04, Dojindo, Japan) and 

colony formation assay were conducted as reported 

previously [78–85]. 

 

Cell cycle analysis 

 

The cell cycle analysis was conducted as reported 

previously [78, 81]. 

 

Tumor xenografted mice 

 

Three- to four-week-old male BALB/c nude mice were 

obtained from the Experimental Animal Center of 

Southern Medical University and provided with 

autoclaved drinking water and laboratory rodent chow. 

The left dorsal thigh of each mouse (n = 6) was injected 

subcutaneously with 2.5 × 106 shSCR- or shBmi-1-

expressing 5-8F cells. Daily monitoring was performed, 

and a caliper slide rule was used to measure the tumor 

volume. The tumor volume was determined as 1/2 

(width2 × length). The mice were euthanized on the 27th 

day after transplantation. These experiments were 

performed with strict adherence to the Guide for the 

Care and Use of Laboratory Animals of Southern 

Medical University. The Committee on the Ethics of 

Animal Experiments of Southern Medical University 

approved the animal protocol. 

 

Wound healing assay 

 

The wound healing assay was conducted as reported 

previously [81]. 
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Transwell migration and Boyden invasion assays 

 

The Transwell migration and Boyden invasion assays 

were conducted as reported previously [51, 79, 81, 82, 

85–87]. 

 

ChIP 

 

In CNE2 cells, HRY binding sites on the Bmi-1 

promoter were identified using a ChIP assay in 

accordance with the manufacturer’s instructions. In 

brief, formaldehyde (1% final concentration) was used 

for cross-linking during a 10-minute incubation at room 

temperature, and a glycine solution was used to 

terminate the reaction. Then ice-cold phosphate-

buffered saline containing 0.1 mM phenyl-

methylsulfonyl fluoride was used to wash the cells. The 

cells were centrifuged at 1000 rpm for 5 minutes, and 1 

mL of ChIP sonication buffer was used to resuspend the 

cell pellet. Sonication was performed to shear the DNA, 

and a 3-minute centrifugation at 9,000 × g was used to 

pellet the cell debris. Equal aliquots of the chromatin 

supernatants were immunoprecipitated with an anti-

HRY (Abcam) or IgG (negative control) antibody 

overnight. The ChIP-qPCR primers are shown in 

Supplementary Table 3. 

 

Flow cytometry analysis of the percentages of SP 

cells 

 

Trypsin (0.25%) was used to digest the NPC cells, and 

then two washes with calcium/magnesium-free 

phosphate-buffered saline were performed. Ice-cold 

RPMI 1640 medium supplemented with 2% fetal 

bovine serum was used to resuspend the cells to a 

concentration of 1 × 106 cells/mL. The cells were placed 

an incubator containing 5% CO2 at 37°C for 90 minutes. 

Then, flow cytometry was used to evaluate the 

percentage of SP cells.  

 

Statistical analysis 

 

All data are shown as the mean ± standard deviation. 

SPSS 16.0 software was used for statistical analyses. The 

association of clinicopathological traits with Bmi-1 

expression was assessed using a 2 test. A log-rank test 

was used to analyze the cumulative overall survival. 

Spearman’s correlation analysis was performed to 

determine the correlation between Bmi-1 and HRY levels. 

A two-tailed Student’s t-test was used to compare two 

independent groups (*P < 0.05, **P < 0.01, #P < 0.001). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Supplementary Table 1. Primers for qRT-PCR analysis. 

Gene Forward primer (5′–3′) Reverse primer (5′–3′) 

GAPDH ACCCAGAAGACTGTGGATGG TCTAGACGGCAGGTCAGGTC 

Oct4 CTTGCTGCAGAAGTGGGTGGAGGAA CTGCAGTGTGGGTTTCGGGCA  

Sox2 GCCGAGTGGAAACTTTTGTCG GGCAGCGTGTACTTATCCTTCT 

ABCG2 AGCAGCTCTTCGGCTTGCAACA GTTCCAACCTTGGAGTCTGCCACT 

β-catenin AGGTCTGAGGAGCAGCTTCA ATTGTCCACGCTGGATTTTC 

E-cadherin TGCCCAGAAAATGAAAAAGG GTGTATGTGGCAATGCGTTC 

Fibronectin CAGTGGGAGACCTCGAGAAG TCCCTCGGAACATCAGAAAC 

N-cadherin ACAGTGGCCACCTACAAAGG CCGAGATGGGGTTGATAATG 

Vimentin GAGAACTTTGCCGTTGAAGC GCTTCCTGTAGGTGGCAATC 

Snail 1 CACTATGCCGCGCTCTTTC GCTGGAAGGTAAACTCTGGATTAGA 

Snail 2 ACTCCGAAGCCAAATGACAA CTCTCTCTGTGGGTGTGTGT 

 

 

Supplemental Table 2. List of antibodies and suppliers used in the study. 

Antibody Isotype Suppliers Cat. no Application 

GAPDH Rabbit IgG Proteintech 10494-1-AP WB 

Bmi-1 Mouse/IgG2b Proteintech 66161-1-Ig WB, IHC 

HRY Mouse abcam ab71559 WB, IHC 

β-actin Rabbit Proteintech 81115-1-RR WB 

p-AKT Rabbit Cell Signaling Technology 4060L WB, IHC, IP 

 

 

Supplementary Table 3. Primers used in ChIP assays. 

Gene Forward primer (5′–3′) Reverse primer (5′–3′) 

Bmi-1 AGGCGGCATGAGACGAGC GGGCGGAAAAGACAATGAAAG 

 

 


