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ABSTRACT 
 

Background: T cell plays a crucial role in the occurrence and progression of Skin cutaneous melanoma (SKCM). 
This research aims to identify the actions of T cell proliferation-related genes (TRGs) on the prognosis and 
immunotherapy response of tumor patients. 
Method: The clinical manifestation and gene expression data of SKCM patients were obtained from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. T cell proliferation-related molecular 
subtypes were identified utilizing consensus clustering. Subsequently, Cox and Lasso regression analysis was 
conducted to identify six prognostic genes, and a prognostic signature was constructed. A series of 
experiments, such as qRT-PCR, Western blotting and CCK8 assay, were then conducted to verify the reliability 
of the six genes. 
Results: In this study, a grading system was established to forecast survival time and responses to 
immunotherapy, providing an overview of the tumoral immune landscape. Meanwhile, we identified six 
prognostic signature genes. Notably, we also found that C1RL protein may inhibit the growth of melanoma cell 
lines. 
Conclusion: The scoring system depending on six prognostic genes showed great efficiency in predicting survival 
time. The system could help to forecast prognosis of SKCM patients, characterize SKCM immunological 
condition, assess patient immunotherapy response. 
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INTRODUCTION 
 

Skin cutaneous melanoma (SKCM) is a common type 

of skin cancer, and its incidence has increased rapidly in 

recent decades [1]. SKCM develops from the malignant 

transformation of melanocytes in the basal layer of the 

skin epidermis, and is highly invasive. It is the most 

deadly skin cancer worldwide, and the number of deaths 

caused by SKCM is still increasing year by year [2]. 

The main factors that induce melanoma are 

environmental factors, genetic factors and immune 

factors [3]. At present, surgery is the main treatment for 

SKCM, but the continuously improved surgical 

methods have not significantly improved the disease-

free survival (DFS) and overall survival (OS) of the 

disease [4]. Immunotherapy has been widely used in 

melanoma worldwide, and a large number of clinical 

trial results have highlighted the efficacy of 

immunotherapy for advanced metastatic melanoma. 

However, the drug resistance of patients and the toxicity 

of some immunotherapy drugs determine that the 

current treatment methods still have certain limitations 

[5–7]. Therefore, it is necessary to explore the factors 

affecting the prognosis of the disease and more effective 

treatment methods. 

 

T lymphocytes, especially their antigen-directed 

cytotoxicity, have become a central focus of the 

immune system in cancer prevention [8]. Immuno-

therapeutics are the fastest-growing drug class and have 

a major impact on cancer treatment and human health 

[9]. Adoptive T-cell (ATC) treatment, in which 

autologous or allogeneic T cells are introduced into 

patients, has had encouraging results in recent years. In 
vitro expansion of tumor-specific T cells is crucial for 

facilitating the development of engineered lymphocytes 

[10]. T cell activity is controlled by several negative 

regulators that act as ‘checkpoint molecules’ [11]. 

Immune checkpoint inhibitors (ICIs) are antibodies 

specifically targeting the immunomodulatory molecules 

cytotoxic T lymphocyte-associated protein 4 (anti-

CTLA-4) and programmed cell death protein 1 (anti-

PD-1) and have been authorized by some official 

regulatory agencies. These two inhibitors play a key 

part in the treatment of SKCM [12, 13]. Notably, 

melanoma is an ideal model to investigate various 

immunotherapies, including checkpoint inhibitors, 

anticancer vaccines, and engineered chimeric antigen 

receptor T cells [14–16]. TME is crucial for tumor 

formation and growth, and it could influence tumor 

response to immunotherapy [17]. TME contains 

immunological and inflammatory cells, extracellular 
matrix, and released cytokines [18]. Previous studies 

reported that the tumor mutation burden (TMB) could 

be utilized to forecast response to immunotherapy 

[19]. 

A recent study discovered a total of 33 genes called T 

cell proliferation-related genes (TRGs), which could 

drive T cell proliferation, promote proinflammatory 

cytokine secretion and increase the expression of 

activation markers [20]. However, the effects of these T 

cell proliferation-related genes (TRGs) on the prognosis 

and treatment responses of patients with SKCM remain 

unclear. 

 

In this study, the expression profiles of TRGs were 

evaluated comprehensively, providing an overview of 

tumoral immunological landscape. First, SKCM 

patients were stratified into two distinct T cell 

proliferation molecular subtypes based on the TRG 

expression. Then, these patients were split into 2 gene 

clusters according to differentially expressed genes 

(DEGs). A TRG_score model based on six prognostic 

signature genes was designed to forecast prognosis and 

response to immunotherapy. Moreover, qRT-PCR was 

utilized to measure the six signature genes expressions 

in two SKCM cell lines and one corresponding normal 

melanocyte line to identify the efficiency of these 

genes. 

 

RESULTS 
 

Genetic and transcriptional changes of TRGs in 

SKCM 

 

Figure 1 illustrates a map of the current work’s process. 

This study included all 33 TRGs for analysis. To 

explore the variation of TRGs in melanoma patients, we 

performed a comprehensive analysis of the somatic 

mutations in the 33 TRGs, which revealed 155 

(33.05%) somatic mutations among the 468 SKCM 

patients (Figure 2A). Of these, AHNAK had the highest 

mutation rate (14%), followed by ATF6B, while nine 

TRGs (IFNL2, CLIC1, RAN, GPN3, MRPL18, 

MRPL51, CXCL12, DBI and DUPD1) did not have any 

mutations. Next, the prevalence of CNV in TRGs was 

evaluated. Among them, there was a general increase in 

CNV in ATF6B, CLIC1, MS4A3 and AHNAK, while 

DCLRE1B, RAN, GPN3, MRPL18, IL12B, NFγB and 

BATF showed a decrease in CNV (Figure 2B). Figure 

2C illustrates the locations of the CNV alterations of the 

TRGs on their respective chromosomes. Our results 

illustrated multiple TRGs are mutated in SKCM 

patients. 
 

In addition, SKCM patients were compared with normal 

controls. The expression levels of mRNA were 

measured, and 29 significantly differentially expressed 

TRGs were identified between SKCM patients and 

controls (Figure 2D), which indicated that the 

expression of TRGs are different between patients and 

healthy controls. Meanwhile, the overall situation, 
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including TRG interactions, the connection between 

influential factors, and their significant prognostic 

values in SKCM patients are shown in the T cell 

proliferation network plot (Figure 2E). 

 

Identification of two TRG molecular clusters in 

SKCM 

 

To further understand the impact of TRGs on survival 

in SKCM patients, a consensus clustering algorithm 

based on 33 TRG expression levels was used to classify 

all SKCM patients into two TRG molecular clusters 

(Figure 3A). According to the study results, k = 2 was 

an effective option for cluster A patient’s classifications 

(n = 241) and cluster B (n = 227). Next, a PCA analysis 

was performed on the two TRG molecular subtype 

groups, revealing significant differences in the TRG 

expression conditions (Figure 3B). Based on the KM 

curves, patients with cluster B had a better survival time 

than patients with cluster A (p = 0.007; Figure 3C). The 

association between the clinical characteristics, TRG 

cluster, and TRG expression is shown in a heatmap 

(Figure 3D). The ssGSEA results revealed higher 

immune cell infiltration levels in molecular cluster B 

than in molecular cluster A (Figure 3E). GSVA 

demonstrated significant enrichment of important 

biological pathways in subtype B, including leukocyte 

transendothelial migration, complement-and-

coagulation-cascades, etc. (Figure 3F). Furthermore, our 

results showed higher PD1, PD-L1, and CTLA- 4 genes 

 

 
 

Figure 1. Flow diagram of the study. 
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in subtype B expression levels, (Figure 3G–3I) 

compared to subtype A. 

 

The above results indicate that the prognosis and some 

other clinical features of the two molecular clusters are 

different, and we could find DEGs between the two 

clusters for further study. 

 

Identification of two gene clusters based on DEGs in 

SKCM patients 

 

We identified 1249 DEGs based on the two distinct 

TRG molecular groups. A univariate Cox regression 

analyses of these 1249 DEGs identified 827 prognostic 

DEGs (p < 0.05) associated with overall survival (OS) 

for subsequent analyses. Subsequently, a consensus 

clustering algorithm was applied to split SKCM patients 

to two gene clusters (cluster A and cluster B) according 

to the prognostic DEGs. The relationship between 

clinical characteristics, TRG cluster, gene cluster, and 

DEGs are presented in Figure 4A. The differences in 

differentially expressed TRGs between the two distinct 

gene subtypes are shown in the boxplot (Figure 4B). 

Moreover, GO, and KEGG analyses were conducted, 

including significant cellular components (CC), 

biological processes (BP), molecular functions (MF), 

and pathways (Figure 4C). These prognostic DEGs are 

majorly correlated with the BP of leukocyte cell-cell 

adhesion, leukocyte migration and T-cell activation. 

The DEGs are associated with the CC of secretory 

granule membrane, collagen-having ECM, and external 

side of plasma membrane, which are also involved in 

the MF of growth factor binding, cytokine binding and 

ECM structural constituent. These DEGs participate in 

several pathways, including cell adhesion molecules, 

cytokine-cytokine receptor interaction and hemato-

poietic cell lineage. 

 

KM curves revealed better survival for patients with 

gene cluster B compared to cluster A (log-rank test, p < 

0.001; Figure 4D). Meanwhile, elevated expression of 

PD1, PD-L1 and CTLA-4 genes was shown in gene 

cluster B (Figure 4E–4G). 

 

Constructing and validating a TRG_score model 

 

With we have confirmed DEGs identified based on the 

two TRG molecular clusters are associated with 

patients’ survival, we could calculate risk scores based 

on these genes. LASSO and multivariate Cox regression 

 

 
 

Figure 2. Genetic and transcriptional analysis of TRGs in SKCM. (A) The incidence of somatic mutations among the 33 TRGs in SKCM 

patients. (B) Frequencies of CNV gain and loss among TRGs. (C) Locations of CNV in TRGs on 23 chromosomes. (D) Expression levels of 
differentially expressed TRGs between normal and tumor samples. (E) Network of the comprehensive landscape of TRGs interactions in 
melanoma. The lines connecting the genes represent their interactions. Blue and red represent positive and negative correlations. *p < 
0.05; **p < 0.01; ***p < 0.001. 
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analyses were done among all of prognostic DEGs to 

screen out six prognostic genes (SOD2, C1RL, 

HAPLN3, IFITM1, BGN and EGFR) that were used to 

construct the TRG_score model. The processes for the 

LASSO regression are shown in Figure 5A, 5B, and 

coefficient values of the multivariate Cox regression are 

displayed in Figure 5C and Supplementary Table 1. A 

TRG_score model was constructed utilizing regression 

analyses results as follows: 

Risk score = (−0.3217 × expression of SOD2) + 

(−0.2248 × expression of C1RL) + (−0.3732 × 

expression of HAPLN3) + (−0.2107 × expression of 

IFITM1) + (0.1884 × expression of BGN) + (0.4546 × 

expression of EGFR). 

 

A Sankey diagram was used to illustrate classification 

of SKCM patients in the two TRG molecular groups, 

two gene groups and two risk-score groups (two groups) 

 

 
 

Figure 3. TRG clusters in melanoma samples and clinical characteristics, tumor microenvironment between two clusters. (A) 

Two TRG clusters were identified using consensus clustering analysis. (B) PCA demonstrated a great difference between the two TRG clusters. 
(C) The K-M curve illustrated the difference in survival time between the two TRG molecular clusters (p = 0.007); (D) Heatmaps demonstrated 
the distinctions between TRG clusters in clinical features and TRGs expression in SKCM patients. (E) Different immune cell infiltration 
between the two molecular clusters. (F) GSVA showed the enriched pathways in TRG clusters, in which red and blue represent activated and 
inhibited pathways, respectively. (G–I) Expression of PD-1, PD-L1, and CTLA-4 in the two TRG clusters. **p < 0.01; ***p < 0.001. 
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according to their risk scores (Figure 5D). The risk 

scores for the two TRG groups (Figure 5E) and the two 

gene groups (Figure 5F) are depicted in their respective 

boxplots. Figure 5G illustrates differential expression of 

TRGs through two risk groups, and expression 

differences for 6 signature genes are shown in the 

heatmap (Figure 5H). Patients with SKCM with low-

risk scores had better overall survival (Figure 5I). 

Univariate (Figure 5J, p < 0.001) and multivariate 

(Figure 5K, p < 0.001) cox regression analyses were 

performed, revealing that age, gender, tumor staging, 

and risk score might serve as independent predictive 

variable. 

 

The accuracy of risk score for forecasting survival for 

SKCM patients was assessed using KM curves and area 

under curves (AUC). The survival analysis results for 

training cohort from TCGA showed that low-risk 

patients had more favorable outcomes (p < 0.001), with 

the 1-, 3-, and 5-year AUC values being 0.735, 0.694, 

and 0.722, respectively (Figure 6A). The results for two 

validation cohorts, GSE54467 (Figure 6B, p = 0.013, 1-

year AUC = 0.483, 3-year AUC = 0.623, 5-year AUC = 

0.725) and GSE65904 (Figure 6C, p < 0.001, 1-year 

AUC = 0.674, 3-year AUC = 0.670, 5-year AUC = 

0.683), revealed that a low risk score was associated 

with significantly prolonged survival than a high-risk 

score. These results illustrated that SKCM patients’ 

survival could be predicted using the risk score. 

Meanwhile, a nomogram was constructed by integrating 

risk score and clinical information, as age, gender and 

tumor stage, to predict 1-, 3- and 5-year survival time 

(Figure 6D). The calibration curve showed that 

nomogram model predicted survival well based on the 

closeness of anticipated and observed OS values 

(Figure 6E). 

 

Evaluation of TME, TMB and CSC index among 

high- and low-risk groups 

 

After identifying the high- and low- risk groups, we also 

performed some bioinformatics analysis to verify the 

accuracy of our risk scores. The correlation between 

risk scores and infiltrate immunological cells was 

shown in some scatter plots (Figure 7A) which 

demonstrated the risk score was negatively correlated 

with M1 macrophages, activated memory CD4 + T cells 

and CD8 + T cells. The association between the six 

prognostic genes and immune cell abundance is 

exhibited in Figure 7B. Significant associations were 

found between most immune cells and the six signature 

genes. Moreover, there was a strong correlation across a 

low-risk score and a high immunological score. 

(Figure 7C). 

 

 
 

Figure 4. Identification of gene clusters based on DEGs. (A) Heatmap demonstrated the relation between the two gene clusters and 

clinical conditions. (B) Expression levels of DEGs in the two gene clusters. (C) GO and KEGG analysis of DEGs. (D) The K-M curve showed 
higher survival in patients in cluster B. (p < 0.001). (E–G) Expression levels of PD-1, PD-L1, and CTLA-4 in the two gene clusters. *p < 0.05; 
**p < 0.01; ***p < 0.001. 
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In the analysis of mutation data of SKCM patients, the 

low-risk group had a greater TMB than high-risk group. 

(Figure 7D), suggesting that low-risk patients may gain 

from immunotherapies. The Spearman correlation 

analysis revealed that risk score was inversely 

correlated with TMB (p = 0.002; Figure 7E). 

 

Figure 7F showed no significant association among risk 

score and CSC index (R = 0.048, p = 0.31). 

 

Immune checkpoint genes expression and IPS 

between the high-risk group and low-risk group 

 

We further researched expression of immunological 

checkpoint genes and found higher expression levels in 

PD-1 (PDCD1), PD-L1 (CD274) and CTLA-4 in low-

risk group (Figure 8A; p < 0.05), illustrating that SKCM 

patients with low-risk score may benefit from ICI 

therapy. Meanwhile, the IPSs of two different risk 

groups were compared to explore the response of 

SKCM patients to the ICI blockade therapies. The IPSs 

of low-risk SKCM patients were significantly higher 

than in high-risk group (Figure 8B; p = 0.00022). 

Moreover, low-risk patients who received CTLA-4 and 

PD-1/PD-L1/PD-L2, PD-1/PD-L1/PD-L2 or CTLA-4 

blocker therapy had higher IPSs (Figure 8C–8E, p < 

0.001), indicating a better response to ICI therapy. We 

also validated efficacy of risk score at forecasting ICI 

responses in the iMvigor210 (urothelial cancer), 

PRJEB25780 (metastatic gastric cancer), PRJNB23709 

(melanoma), and GSE35640 (melanoma) cohorts. 

CR/PR Patients were more likely to have a lower risk 

score, whereas high-risk patients had greater SD/PD 

(Figure 8F–8I, p < 0.05). 

 

 
 

Figure 5. Construction of the prognostic model. (A, B) The LASSO regression analysis and partial likelihood deviance on the prognostic 

genes. (C) Forest plot of the multivariate cox regression analysis for the six signature genes. (D) Sankey diagram demonstrated the 
distribution of TRG subtypes, gene subtypes, risk groups and survival status in SKCM patients. (E, F) Differences in risk score between the 
two TRG clusters and two gene clusters. (G) Differences in expression levels of TRGs in the two risk groups. (H) Heatmap illustrating the 
expression of six signature genes in the two risk groups in the testing cohort. (I) Risk score and survival outcome of each sample. Forest 
plots of univariate (J) and multivariate (K) Cox regression analyses in SKCM patients. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Drug susceptibility analysis 

 

The susceptibility of tumors to some chemotherapy 

drugs was compared between 2 groups. The results 

revealed that high-risk SKCM patients had greater IC50 

values for cisplatin, doxorubicin, nilotinib and so on, 

suggesting that TRG is associated with drug 

susceptibility (Figure 9A–9L). 

Comparison of the expression levels of the six 

prognostic signature genes between SKCM cells and 

normal melanocytes 

 

In order to validate the reliability of six signature genes, 

we performed a series of in vitro experiments. Different 

expression levels of the six signature genes were 

identified between SKCM patients and normal control 

 

 
 

Figure 6. The efficiency of the risk score and comprehensive score in predicting patient survival. (A–C) K-M analysis and ROC 

curves showed the prognostic value in training and validation cohorts. (D) The nomogram showed the prognostic value of 
clinicopathological parameters and risk score. (E) The calibration plots indicate the accuracy and specificity of the nomogram. 
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samples and are depicted in a boxplot (Figure 10A). The 

relative expression levels of six signature genes were 

measured in SKCM cells and normal melanocytic nevi 

cells by qRT-PCR. Our findings in Figure 10C 

demonstrated significantly different expression levels of 

four signature genes (EGFR, BGN, C1RL and SOD2) in 

tumor cells compared to the corresponding normal 

melanocytes. Furthermore, the difference in protein 

expression of the four signature genes between SKCM 

and non-tumor tissues was explored using IHC 

(immune histochemistry) from the public HPA 

database. Our previous results were supported by 

differential expression levels of these four genes among 

normal skin and SKCM tissues (Figure 10D). 

 

 
 

Figure 7. Evaluation of TME in the high-risk and low-risk groups. (A) Relationship between risk score and a series of immune cell 

types. (B) Correlation between the abundance of immune cells and the six prognostic TRGs. (C) Correlation between risk score and TME 
scores. TMB (D, E) and CSC (F) in high- and low-risk groups. *p < 0.05; **p < 0.01; and ***p < 0.001. 
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Overexpression of C1RL inhibits cell proliferation 

and migration 

 

Patients with high C1RL expression have longer 

Overall Survival (OS) time tested by Kaplan-Meier 

(KM) test (Figure 10B). We further investigate the 

protein level of C1RL in melanoma cell lines. Results 

from the Western blot assay shown protein level of 

C1RL were decreased in A2058 and MV3 cells 

compared with melanocyte PIG1 cells. The protein band 

were analyzed using Image J, and GAPDH protein was 

used as an internal control (Figure 10E). To explore the 

biological function of C1RL in SKCM, we used the lipo 

3000 to add C1RL expression in MV3 cell lines. 

Western blot results presented that C1RL expression 

levels in overexpression cell lines was significantly rose 

compared to the control cells (Figure 10F). CCK8 assay 

presented that overexpression of C1RL inhibited cell 

proliferation (Figure 10G). Moreover, in vitro 

overexpression of C1RL suppressed the formation of 

clones (Figure 10H). Furthermore, MV3 cells migration 

capabilities were also impaired after C1RL 

Overexpression (Figure 10I). 
 

DISCUSSION 
 

SKCM, derived from melanocytes, is highly invasive, 

with early metastasis and poor prognosis [2]. 

Traditional surgical treatment and gradually emerging 

immunotherapy are the main treatment methods for 

melanoma, but they have certain limitations, and it is 

difficult to significantly improve the survival of 

patients. Melanoma can occur in all parts of the skin 

and mucosa, and metastasis is extremely fast, which 

brings great challenges to surgeons in surgery and 

postoperative reconstruction [4]. The mechanisms of 

 

 

 
Figure 8. Immune checkpoint genes expression, IPSs and immunotherapy benefits of patients in the two risk groups. (A) The 

differences in immune checkpoint gene expression between the high-risk and low-risk groups. (B–E) CR/PR patients had significantly lower 
risk scores than SD/PD patients in the iMvigor210 (F), PRJEB25780 (G), PRJNB23709 (H), and GSE35640 (I) cohorts. 
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proliferation, recurrence, metastasis and immune escape 

of malignant melanoma are very complex. Drug therapy 

often only works for one mechanism, and even 

combination therapy cannot completely block all 

pathogenic mechanisms of tumors [21]. Therefore, in 

this study, we explored the factors affecting the 

prognosis of the disease, aiming to find more potential 

treatments to improve the prognosis of melanoma 

patients based on these factors. We also established a 

prognostic model to forecast the prognosis of SKCM 

patients and assess patient immunotherapy response. 

 

T cells are critical in the immunotherapy of tumors. 

Several genetic engineering methods are used to 

increase the recognition of tumor cell antigens [22]. 

Clinicians usually use gene-engineered T cells to treat 

tumors to control the cell population [23]. However, 

most studies have only focused on the mechanisms by 

which T cells eliminate tumors or on a single type of 

immune-associated cell [24, 25], which does not clarify 

the combined function of several TRGs. This study 

assessed the overall changes in TRGs on levels of 

transcription and genetics in SKCM patients. All of 

SKCM patients from TCGA database were categorized 

into two molecular clusters based on 33 TRGs 

expressions and we found the expression of TRGs had 

an impact on SKCM patients’ survival. A significant 

difference in the TME characteristics was observed 

between two TRG molecular clusters, revealing a link 

between TRGs and TME. In addition to TME, virtually 

every subset of immune cells played a role in cancer 

biology [26]. At the same time, the results of a 

functional enrichment analysis performed in the two 

TRG clusters and their activity suggested that the 

transcriptome differences in TRGs were significantly 

correlated with immune-associated biological pathways. 

Moreover, SKCM patients were divided into two gene 

clusters according to the DEGs between two TRG 

molecular clusters and we found there is a significant 

difference in survival between two gene subtypes. 

According to these findings, DEGs based on the TRG 

clusters could be used to forecast SKCM patients’ 

clinical outcomes. Subsequently, a valid prognostic 

TRG_score model was constructed and showed its 

predictive power. The signature model included six 

genes, and biological experiments such as qRT-PCR 

were carried out to investigate the expression levels 

between tumor and non-tumor cells. Our results showed 

 

 
 

Figure 9. (A–L) Therapeutic drugs showed significant differences in IC50 between the high- and low-risk groups. 
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the different expression levels of four signature genes 

across tumor and non-tumor cells, which indicated the 

reliability of the signature genes. Patients with distinct 

risk scores had significantly different clinical features, 

mutations, prognosis, TME, TMB, immunological 

checkpoint genes expression, IPS and drug sensitivity. 

 

 
 

Figure 10. Prognostic TRGs gene expression levels in tumor and normal cells and functional analysis. (A) Different expressions 
of the six signature genes between the normal and tumor tissues (TCGA AND GTEx). (B) Confirmation of prognostic value of 6 TRGs for 
patients in TCGA by Kaplan–Meier analysis. (C) The relative RNA levels of EGFR, BGN, C1RL AND SOD2 in normal skin melanocyte and 
melanoma cell lines by q-PCR. (D) The IHC staining showed 4 signature genes expression at the protein level. (E) The protein level 
expression of C1RL genes based on melanocytes (PIG1) and melanoma cells lines (A2058 and MV3) by Western blot. (F) Western blot is 
used to assess the Overexpression efficiency of in MV3. CCK8 (G) and colony formation assay (H) are performed to assess effects of C1RL 
Overexpression on proliferation of MV3. (I) Transwell assay is utilized to evaluate the migration. 
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Additionally, we built a nomogram based on the 

TRG_score model by integrating the risk score with 

clinical characteristics. This model can be used to 

classify SKCM patients into two distinct risk groups, 

which may predict prognosis of SKCM patients and 

deliver novel approaches for immunotherapies. 

 

Although SKCM is generally considered a cancerous 

malignancy without many therapeutic options, 

innovative therapies targeting susceptible genes and 

immune checkpoints have greatly improved patients’ 

outcomes due to improved biologic understanding and 

unprecedented innovations [27]. Over the past few 

decades, ICI therapy has resulted in a significant 

increase in 5-year survival rate of about <5% to 30% for 

patients with melanoma [28–30]. ICIs target the 

dysfunctional immune system and induce CD8-positive 

T cells to kill tumor cells [31]. Current therapies have 

revolutionized the standard of care for SKCM patients, 

but low response rates and inevitable treatment 

resistance may prevent further improvement in treatment 

outcomes [12]. Perhaps our research can shed more light 

on the treatment of melanoma. In our research, we 

explored the expression of several major immunological 

checkpoint genes among the high- and low-risk group of 

patients. The findings revealed that the low-risk patients 

had elevated expression of immunological checkpoint 

genes and better survival, indicating that patients with 

low-risk scores may benefit from ICI therapy. Thus, we 

concluded that expression levels of immunological 

checkpoint genes could be used as an indicator to assess 

effect of immunotherapy in SKCM patients. 

Furthermore, high tumor mutation burden (TMB-H) is a 

major candidate biomarker in immune checkpoint 

inhibitor therapy to identify tumor patients that may 

benefit from therapy. The underlying assumption is that 

increasing the number of mutant proteins will generate 

antigenic peptides that may enhance immunogenicity 

[32–35]. This study showed low-risk patients exhibited a 

high TMB and a good prognosis. These results 

demonstrated accuracy of our prognostic model in 

assessing patient risk from another perspective. 

 

The TME is consisting of stromal fibroblasts, infiltrating 

immune cells, blood vessels, lymphatics, and a 

noncellular component, such as the extracellular matrix 

(ECM) [36]. The leading theory is that the immune 

system is majorly responsible for eliminating a large 

proportion of nascent tumor cells. However, cancer 

progression may be supported by immune and 

inflammatory cells infiltrating the tumor [37]. All 

immunological cell types can be shown in TME, as 

macrophages, naive and memory lymphocytes B cells, 
effector T helper (Th) cells and so on [38]. Several 

growth factors and cytokines are released by these 

immune and inflammatory cells, as well as enzymes that 

degrade the extracellular matrix, which could promote 

tumor development and growth [38]. All of these risk 

factors could influence the survival of melanoma patients 

[39]. In addition, the high-risk SKCM patients showed 

more infiltrating immune cells in TME and worse 

prognosis, further suggesting that immune cells located in 

TME could accelerate tumor progression and influence 

tumor prognosis. The results also validated the efficiency 

of our signature model in evaluating patient risk. 

 

At present, effective non-invasive treatment for 

melanoma is limited in clinical practice [40], so we 

performed a drug-sensitivity analysis. The results 

revealed that low-risk score group was more sensitive to 

a variety of chemotherapeutic drugs, such as cisplatin, 

doxorubicin, nilotinib and so on, which might open more 

options for the selection of therapeutic drugs for SKCM. 

Notably, the expression levels of six signature genes 

were evaluated in two SKCM cell lines and one normal 

melanocyte line, revealing different expression levels of 

SOD2, BGN, EGFR and C1RL between SKCM and 

normal cells. The results implied that the four genes 

might be new therapeutic targets for melanoma. 

Complement C1r subcomponent like (C1RL) has been 

found to be a prognostic marker in a variety of tumors 

[41, 42], but whether it plays a role in SKCM has not 

been elucidated. In our experiments in vitro, we found 

the melanoma cell lines of C1RL overexpression grew 

more slowly and reduced migratory capacity. The results 

implied that the four genes, especially C1RL, may have 

a significant function in melanoma and may be new 

therapeutic targets for melanoma. 

 

However, the limitations of the current study should be 

acknowledged. This was a retrospective study, and all 

analyses were performed on a public database. Thus, 

our findings need to be confirmed by more experiments 

in vivo or in vitro to improve our understanding of the 

mechanism of SKCM development and the role of 

TRGs. Moreover, some key clinical features, such as 

surgery and responses to chemotherapy, were not 

available in the databases, which may impact the 

accuracy of some clinical studies. 

 

MATERIALS AND METHODS 
 

Data collection 
 

The gene expression data (fragments per kilobase million, 

FPKM), genetic mutation information, and clinical 

manifestation data of SKCM patients were downloaded 

from The Cancer Genome Atlas (TCGA) database 

(Supplementary Table 2), while the information of normal 

control groups was obtained from the Genotype-Tissue 

Expression (GTEx) database. TCGA database values 

were converted to transcripts per kilobase million (TPM) 
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utilizing R studio software (version1.4.1106). The dataset 

from the TCGA database included 471 melanoma 

samples and 1 normal sample. Cases with incomplete 

clinical data were excluded, and the 468 remaining tumor 

samples were retained for subsequent analyses. The  

two SKCM datasets, GSE54467 and GSE65904 

(Supplementary Table 3), were obtained from a publicly 

available database, the Gene Expression Omnibus (GEO), 

and were used for verification. Additionally, four groups 

of immunotherapy-associated data (iMvigor210, 

PRJEB25780, PRJNB23709 and GSE35640) were 

obtained from the website http://research-pub. 

gene.com/IMvigor210CoreBiologies, TIDE website 

(http://tide.dfci.harvard.edu/) and GEO (Supplementary 

Table 4). These datasets included urothelial, metastatic 

gastric cancers and melanoma and compared the effects of 

immunotherapy with programmed cell death-1(PD-1), 

programmed cell death-1 ligand 1 (PD-L1) or cytotoxic 

T-lymphocyte-associated protein 4 (CTLA-4) blockade 

therapy, which were used to assess the efficiency of our 

prognostic model in forecasting immunotherapy 

outcomes. 

 

Genetic and transcriptional analysis of TRGs in 

SKCM 

 

Thirty-three TRGs were identified in a recent study. 

These gene names and their full details of expression 

condition were listed, and the somatic mutations were 

represented by generating a waterfall plot with the 

maftools R package. Transcriptional mutation data of 

the 33 TRGs (Supplementary Table 5) were retrieved 

from the TCGA database for analyzing the copy number 

variation (CNV) frequency and corresponding location 

information. Using the limma R package, the Wilcoxon 

signed-rank test was used to compare TRG expression 

between normal and tumor tissues. The p-value of 

survival analysis for TRGs was calculated using the 

Log-rank test, and the interactions among the TRGs 

were also explored using correlation analysis. 

 

Clustering analysis for TRG molecular subtypes 

 

ConsensusClusterPlus R package was utilized to split all 

SKCM patients into two TRG molecular clusters 

depending on TRGs expression. K-means algorithm was 

used to identify optimal subtype numbers. Then, the 

limma and ggplot R packages were employed to establish 

principal component analysis (PCA) in order to 

distinguish the two identified TRG molecular subtypes. 

 

Analysis of the clinical and biological features of the 

two TRG molecular clusters 

 

To observe the prognostic condition of the two TRG 

molecular clusters, a survival analysis was done using 

survival and survminer R packages. Kaplan-Meier (KM) 

curves were obtained to evaluate differences in survival 

time between the two subtypes. 

 

Patients’ age, sex, TNM stage and TRGs expression 

information were visualized by a heatmap generated by 

using the pheatmap R package. Then, the difference in 

immunological cell infiltration among two molecular 

groups was assessed by gene set variation analysis 

(GSVA) utilizing GSVA R. Moreover, single-sample 

gene set enrichment analysis (ssGSEA) was served to 

explore immune-related pathways in the different TRG 

clusters, and results were visualized with pheatmap 

packages. 

 

Based on the Wilcoxon signed-rank test, PD-1, PD-L1, 

and CTLA-4 levels in two different TRG clusters were 

compared and described using violin plots. 

 

DEGs analysis and enrichment analysis 

 

The DEGs across distinct TRG molecular clusters were 

detected utilizing limma R with a |log FC| >1 and an 

adjusted p-value < 0.05. To investigate prospective 

roles of DEGs, Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analyses 

were done. Furthermore, ConsensusClusterPlus R 

package was utilized to classify all SKCM patients into 

two gene clusters regarding DEGs expression, and 

survival analysis was performed to assess distinct 

survival among two gene subtypes. Additionally, 

expression conditions of three major immunological 

checkpoint genes, PD-1, PD-L1, and CTLA-4, were 

compared among two gene clusters. 

 

Construction and evaluation of the prognostic 

TRG_score model 

 

TRG risk score was obtained to evaluate risk of each 

cancer patient, and a prognostic TRG _score model was 

established. First, Lasso and multiple Cox regression 

analyses and cross-validation were performed on TRGs 

using the glmnet R package to find signature genes that 

predict the prognosis of SKCM patients. A prognostic 

TRG score model was developed based on these 

signature genes. 

 

TRG_score was assessed as follows: 
 

( )TRG_score Σ Expi coefi=   

 

Where Expi and Coefi indicate expression of each gene 

and risk coefficient, respectively. 
 

According to their risk assessments, patients were 

split into high- and low-risk groups. The relationships 

http://research-pub.gene.com/IMvigor210CoreBiologies
http://research-pub.gene.com/IMvigor210CoreBiologies
http://tide.dfci.harvard.edu/
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between risk score and TRG clusters, and gene 

clusters were analyzed. Furthermore, risk score 

univariate and multivariate Cox regression analysis 

and some clinical features to identify independent 

prognostic factors in SKCM patients. The efficiency 

of TRG _score model in forecasting SKCM patients’ 

survival was validated in two independent cohorts 

(GSE54467 and GSE65904) using the survival 

analysis and receiver operating characteristic (ROC) 

methods. A characteristic nomogram based on sex, 

age, tumor staging system, and risk score was then 

constructed to forecast 1-, 3- and 5-year survival for 

each SKCM patient. The calibration plots of 

nomogram were then developed by survival and rms 

R package. 

 

Immune status, TME, TMB and cancer stem cell 

(CSC) index differences between the high-risk group 

and low-risk group 

 

Common chemotherapy medications (paclitaxel, 

doxorubicin, bexarotene, bicalutamide, imatinib, and 

tiifarnib) were evaluated utilizing half-maximal 

inhibitory concentration (IC50) and R package 

“pRRophetic” utilizing info from Genomics of Drug 

Sensitivity for Cancer. 

 

Differences in immune checkpoint gene expression 

and immunological cell proportion score (IPS) 

between the high- and low-risk groups 

 

Wilcoxon signed-rank test was utilized to compare 

expression of immunological checkpoint genes 

among 2 groups. Different types of ICI treatments, as 

PD-1/PD-L1/PD-L2/CTLA-4, PD-1/PD-L1/PD-L2 

and CTLA4 blockers, were predicted by IPS in 

patients. Furthermore, complete response (CR)/partial 

response (PR) and stable disease (SD)/progressive 

disease (PD) values were calculated using the 

iMvigor210, PRJEB25780, PRJNB23709 and 

GSE35640 cohorts. 

 

Drug susceptibility analysis 

 

pRRophetic R assessed IC50 values of major 

chemotherapy agents to explore differences in their 

therapeutic effects among the two groups. 

 

The expression condition analyses of the six 

prognostic TRGs between normal and SKCM cells 

 

The transcriptional levels of the six prognostic TRGs of 

the SKCM and normal groups were compared. qRT-
PCR was performed on one normal melanocyte line 

(PIG1) and two SKCM cell lines (A2058, MV3) to 

compare the expression levels of the six prognostic 

signature genes. Furthermore, the expression conditions 

of the key TRGs between SKCM and normal groups 

were observed based on the Human Protein Atlas 

(HPA) database. 

 

Cell culture and in vitro validation via qRT-PCR and 

Western blotting 

 

The normal human skin melanocyte cell line (PIG1) and 

human melanoma cell lines MV3 and A2058 were 

bought from American Typical Culture Center (ATCC). 

All cell lines were cultured in DMEM (HyClone) with 

10% FBS (Lonsera) and 1% double antibody 

(streptomycin and penicillin) at a temperature of 37°C 

and 5% CO2. 

 

Gene expression levels were determined using qRT-

PCR. TRIzol kit (Carlsbad, CA, USA) was utilized to 

isolate RNA from A2058, MV3 and PIG1 cell lines, and 

the RNA concentration was determined by ultraviolet 

spectrophotometry. Then, PrimerScript RT Master 

reverse-transcribed RNAs into DNA (cDNA). The 

concentration of cDNA was measured utilizing SYBR 

Green PCR master mix and the LightCycler 96 System 

(Roche). The relative mRNA expression levels of 

EGFR, BGN, SOD2, C1RL, HAPLN3 and IFITM1 

were assessed by 2−ΔΔCt assay and normalized by 

36B4, which was used as the internal reference. T-tests 

were utilized to compare expression for various cell 

lines (Supplementary Table 6). 

 

Total proteins were extracted from tissues and cells 

using RIPA buffer (Beyotime, China) supplemented 

with protease inhibitor and phosphatase inhibitor. 

Western blotting was performed according to the 

protocol as described previously [43]. The primary 

antibodies used in the study were anti-GAPDH 

(Proteintech, China), anti-C1RL (Zenbio, China). 

 

Cell transfection 

 

For transfection of plasmids (PCDH-GFP+PURO-

3xFlag or C1RL PCDH-GFP+PURO-3xFlag, 

Youbao, Wuhan, China), cells were grown to 70% 

confluence and were transfected using Lipofectamine 

3000 (Invitrogen, Shanghai, China) based on the 

protocol of the manufacturer. After incubating for 72 

hours, cells were washed and used for subsequent 

experiments. 

 

Cell proliferation and migration assay 

 

MV3 cells (200000/well) were cultured in 6-well plates 
and transfected with PCDH-GFP+PURO-3xFlag or 

C1RL PCDH-GFP+PURO-3xFlag. 72 hours after 

transfection, 1500 cells were arranged into 96-well 
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plates. After culture for 0, 24, 48, or 72 h with PCDH-

GFP+PURO-3xFlag or C1RL PCDH-GFP+PURO-

3xFlag, cells were cultured with the CCK8 solution 

(C0038, Beyotime, Shanghai, China) for an additional 

1.5 h. An optical density (OD) value at 450 nm was 

used to evaluate cell viability. 

 

In order to examine the effects of C1RL expression 

on human melanoma cell proliferation, the above 

transfected MV3 cells (1500/well) transfected with 

PCDH-GFP+PURO-3xFlag or C1RL PCDH-

GFP+PURO-3xFlag were added to the 6-well plates. 

After ten days, the number of colonies were 

counted. 

 

Transwell chambers (Corning, NY, USA) were used for 

migration experiment. The above transfected MV3 

Cells (3 × 104) were suspended in 200 μl serum-free 

medium and positioned in the top chamber when a 

medium containing 10% fetal bovine serum was used in 

the bottom chambers. After incubation for 36 h, inner 

chambers were scrubbed and cells at the other side of 

the membrane were exposed 4% formaldehyde 

solution to fixing, staining with crystal violet and 

recorded under a microscope. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2–4. 

 

Supplementary Table 1. Coefficient values of 6 signature genes in the multivariate Cox analysis. 

Id Coef 

SOD2 −0.321664227 

C1RL −0.224770485 

HAPLN3 −0.373204795 

IFITM1 −0.210704663 

BGN 0.188468569 

EGFR 0.454558562 

 

 

Supplementary Table 2. Clinical information of 470 melanoma cancer patients (TCGA). 

 

Supplementary Table 3. Clinical information of validation cohorts (GSE65905; GSE54467). 

 

Supplementary Table 4. Clinical information of immunotherapy cohorts (iMvigor210; GSE35640; PRJEB25780; 
PRJEB23709). 

 

 

Supplementary Table 5. Summary of 33 recognized drivers of T cell proliferation-related genes. 

Gene Type 

IFNL2 drivers of T cell proliferation 

LTBR drivers of T cell proliferation 

IL1RN drivers of T cell proliferation 

CXCL12 drivers of T cell proliferation 

CRLF2 drivers of T cell proliferation 

IL12B drivers of T cell proliferation 

NFYB drivers of T cell proliferation 

BATF drivers of T cell proliferation 

FOSB drivers of T cell proliferation 

ATF6B drivers of T cell proliferation 

AHNAK drivers of T cell proliferation 

SLC10A7 drivers of T cell proliferation 

CALML3 drivers of T cell proliferation 

CLIC1 drivers of T cell proliferation 

RAN drivers of T cell proliferation 

CDK2 drivers of T cell proliferation 

MS4A3 drivers of T cell proliferation 

CDK1 drivers of T cell proliferation 

DBI drivers of T cell proliferation 

CYP27A1 drivers of T cell proliferation 

AKR1C4 drivers of T cell proliferation 
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DUPD1 drivers of T cell proliferation 

GPD1 drivers of T cell proliferation 

GPN3 drivers of T cell proliferation 

AHCY drivers of T cell proliferation 

ADA drivers of T cell proliferation 

ITM2A drivers of T cell proliferation 

HOMER1 drivers of T cell proliferation 

MRPL18 drivers of T cell proliferation 

MRPL51 drivers of T cell proliferation 

LIG3 drivers of T cell proliferation 

ZNF830 drivers of T cell proliferation 

DCLRE1B drivers of T cell proliferation 

 

 

Supplementary Table 6. The primer sequences for qRT-PCR. 

Gene Primer sequence 

SOD2 
F: 5′-GCTCCGGTTTTGGGGTATCTG-3′ 

R: 5′-GCGTTGATGTGAGGTTCCAG-3′ 

C1RL 
F: 5′-TACCCAGAGCCGTATGGCAA-3′ 

R: 5′-GAACCGACGAATGAGATTGTGA-3′ 

HAPLN3 
F: 5′-CCAGACAGGACTCCAGAAGATT-3′ 

R: 5′-GGGCAGTAGCGAAGCAGAAT-3′ 

IFITM1 
F: 5′-CCAAGGTCCACCGTGATTAAC-3′ 

R: 5′-ACCAGTTCAAGAAGAGGGTGTT-3′ 

BGN 
F: 5′-GGTGGTCTATCTGCACTCCAA-3′ 

R: 5′-GGCTGATGCCGTTGTAGTAGG-3′ 

EGFR 
F: 5′-AGGCACGAGTAACAAGCTCAC-3′ 

R: 5′-ATGAGGACATAACCAGCCACC-3′ 

36B4 
F: 5′-ATCCCTGACGCACCGCCGTGA-3′ 

R: 5′-TGCATCTGCTTGGAGCCCACGTT-3′ 

 

 


