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INTRODUCTION 
 

Society as a whole is experiencing increases in 

longevity. Indeed, the United Nations and World Health 

Organization estimates that the population greater than 

60 years old will double in the next 30 years and reach a 

total of 2.1 billion people in 2050 [1]. Aging is directly 

associated with the time-dependent progressive loss  

of physiological integrity, increased frailty, and 

susceptibility to diseases [2]. Moreover, one of the most 

pronounced changes in the elderly is the loss of 

mobility and physical capacity due to skeletal muscle 

function decline, a term known as sarcopenia. This 

disability is independent of ethnicity, age, morbidity, 

obesity, income, or health behaviors and translates into 

a loss of independence in the elderly [3]. It begins 

approximately at 30 years of age and results in between 

3-8% of muscle mass lost each year, with up to 40% of 

muscle mass loss after attaining 80 years of age [4]. 

Although quantifiable physical changes begin to manifest 

at advanced ages, recent studies have shown that changes 

at the cellular and molecular levels precede the 

symptomatology of sarcopenia [5–7]. As such, it would 

be advantageous to determine the early mechanistic 

underpinnings accompanying sarcopenia in the aged, 

with the prospect that maintenance of healthy skeletal 

muscle in the aged results in increasing healthspan along 

with the accompanying increase in lifespan. 
 

The causes of sarcopenia have been investigated 

extensively and several hypotheses have been 

presented, with the usual suspects including; oxidative 
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stress and inflammation, hormonal deficits, loss of 

neuromuscular junctions, mitochondrial dysfunction, 

and adiposity [8]. These studies have largely been 

inconclusive, making the mechanisms that cause 

sarcopenia still a matter of debate [9]. 

 

In the last decade, a new target has risen in prevalence, 

namely that immune cells may play crucial roles in an 

aging phenotype [10]. Historical evidence has 

highlighted that macrophage function in skeletal muscle 

is not confined to phagocytosis but also active 

participation in tissue repair and homeostasis [11]. 

Research has also highlighted that immunologic and 

metabolic pathways are intricately linked. Studies 

examining metabolic reprogramming of macrophages 

have proposed that the M1 phenotype rely mainly on 

glycolysis to obtain energy, while M2 macrophages 

obtain their energy by enhanced oxidative metabolism, 

triggering pro-inflammatory and anti-inflammatory 

properties respectively. Nevertheless, this classification 

is further nuanced as there may be metabolic differences 

between the same inflammatory program wherein M2 

macrophages can be further classified into 4 distinct 

subtypes (M2a, M2b, M2c, M2d), meaning that 

modifications in macrophage intrinsic metabolism can 

alter their interaction with surrounding tissues [12]. 

Injury and subsequent repair of organ systems mediated 

by macrophages must have an appropriate balance 

between the M1/M2 phenotype for homeostasis to be 

restored. 

 

Tissue-resident macrophage (TRM) populations are 

acquired early in development mostly from yolk sac or 

fetal liver erythromyeloid progenitor cells (EMPs) and 

canonically considered to be M2-like [13]. Embryonic-

derived TRMs have self-renewal capacity and persist 

into adulthood. In some diseases, TRMs are involved in 

pathogenesis by being replaced by infiltrating 

monocyte-derived cells [14]. For instance, in some 

cancers TRMs may act as a cause of malignant 

transformation by recruiting or altering other immune 

cells [15]. Recent evidence has demonstrated that TRMs 

in skeletal muscle are distinctive from those in other 

tissues as they are more heterogeneous and are 

composed of functionally diverse subsets correlating to 

their origins [16]. In this regard, Reidy et al. 

demonstrated impaired muscle regrowth in aged 

compared with young mice following disuse, which was 

characterized by divergent muscle macrophage 

polarization patterns and muscle-specific macrophage 

abundance [17]. However, the direct impact of skeletal 

muscle-resident macrophages on aging, and if there’s a 

causal link to skeletal muscle function, has not been 

determined. Our study identifies key changes in the 

transcriptomic profile of tissue resident macrophages in  

skeletal muscle and further, reveals that these changes 

begin in middle age, suggesting that changes in 

immunometabolism across the lifespan may be an 

identifiable therapeutic target for prevention of 

sarcopenia in the aged. 

 

RESULTS 
 

Immune senescence is one of the most apparent 

signatures in skeletal muscle aging 

 

Skeletal muscles are composed of various cell types, 

including myocytes, mesenchymal stem cells, 

endothelial cells, smooth muscle cells, muscle satellite 

cells, neuronal cells, and immune cells. To determine 

which cells in skeletal muscle are more susceptible to 

the aging process, we used Tabula Muris Senis, a single 

cell RNA sequence (scRNA-sequence) data from 1-, 3-, 

18-, 21-, 24-, and 30-month-old mice (Figure 1A) [18]. 

The data contained all cell types that limb muscle tissue 

should have, as described above. However, the number 

of skeletal muscle cells was strikingly low in the 

dataset, which may be due to loss in the process of 

preparing single cells. Although the detailed protocol 

includes a process of digestion and filtration sufficient 

to yield mononuclear cells, skeletal muscle cells are 

multinucleated in nature and were probably lost in this 

process [18, 19]. Therefore, the data is not suitable for 

analysis of skeletal muscle cells, but contains a large 

and representative number of other cell types and would 

be powerful for comprehensive analysis. To identify 

age-related changes, we first compared the proportions 

of each cell type in young (1 and 3 mo. old) and aged 

(≥18 mo.) mice, as one simple indicator (Figure 1B). 

The definition of aged mice was derived from 

previously published work [20, 21]. Aside from 

skeletal muscle (again, the marked increase in skeletal 

muscle ratio is only due to the change from 0% to 1%), 

most cell proportional changes were within a 50% 

increase or decrease. In aged mice, the ratios of B 

cells, Schwann cells, T cells, satellite cells, and 

smooth muscle cells decreased, while the ratio of 

macrophages increased (Figure 1C). Ratios of 

endothelial cells and mesenchymal stem cells did not 

alter significantly. If skeletal muscle cells are excluded 

from data interpretation for the reasons indicated 

above, the most significant changes would be seen in 

immune cells, namely B cells, T cells, and 

macrophages. Acquired immune system cells, 

represented by B and T cells, were abundant in young 

mice, whereas innate immune system cells, 

represented by macrophages, were enriched with age. 

These alterations in immune cells are known as 

immune senescence, which is associated with muscle 

dysfunction such as sarcopenia [22]. 
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Thus, by comparing the ratios of individual cell types 

between young and aged mice, we found that the most 

dramatic differences existed in the immune cells. These 

findings led us to hypothesize that even under healthy 

conditions, the skeletal muscles of aging mice have a 

pronounced immune senescence, promoting a decline in 

skeletal muscle function. 

 

Proinflammatory monocyte-derived macrophages 

play a central role in muscle aging 

 

In skeletal muscle, macrophages are known to play 

important roles in tissue homeostasis, repair, immunity, 

and pathophysiology [23, 24]. Alterations of macro-

phage profiles have been described in skeletal muscle of 

aged mice. Specifically, a study demonstrated that 

muscle regrowth in aged mice is impaired compared  

to young mice, and was characterized by macrophage 

polarization patterns and specific macrophage 

abundance [17]. Interaction between macrophages and 

muscle stem cell population was established by Wang et 

al. when they demonstrated that transplantation of 

young mice bone-marrow derived cells into aged mice 

prevented sarcopenia and age-related shifts in muscle 

fiber phenotype [10]. Thus, we hypothesized that the 

increase in certain macrophage population with aging is 

a contributor to functional decline in skeletal muscle. 

Macrophages phenotypes are highly diverse, with 

dynamic changes in response to the microenvironment. 

To examine the diverse phenotypic changes in 
 

 

Figure 1. Immune senescence is one of the most apparent signatures in skeletal muscle aging. (A) UMAP representation of 

single-cell expression in limb muscles of mice of different age groups. Left UMAP indicates each cellular annotation. Right UMAP shows the 
cellular compositions of each age group. (B) Pie charts shows the percentage of various cells in the limb muscles of young mice (1 and 3-
mo-old) and old mice (≥18-mo-old). Color coordination of cell types is consistent to left UMAP in (A). (C) Bar graph shows the % increase 
from 3-mo to 18-mo. B and T cells, Schwann cells, satellite cells and smooth muscle cells were reduced, while macrophages and 
mesenchymal stem cell increased. Note that the marked increase in skeletal muscle cells was due to a difference of 0% to 1%, and should 
be ignored from the data interpretation. Color coordination of cell types is consistent to left UMAP in (A). 
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macrophages with age, macrophage populations in the 

scRNA-seq data were sub-clustered and classified  

into nine clusters (Figure 2A and Supplementary 

Figure 1). Anti-inflammatory M2-type macrophage 

markers were enriched in subclusters 0 and 2 

(Supplementary Figure 2A), whereas proinflammatory 

M1-type macrophage markers were evenly distributed 

(Supplementary Figure 2B). Age-wise representation 

of M2/M1-type macrophage signature score indicated 

that M2-macrophages tend to decrease as aging 

(Supplementary Figure 2C). However, M1-

macrophage markers were consistent across the ages, 

suggesting that the typical classification of M1 and M2 

types are not enough to interpret the data 

(Supplementary Figure 2D). Instead of classifying 

macrophage subtypes into M1 and M2 types, other 

approach for categorizing them is whether they are 

tissue resident macrophages (TRMs) or are monocyte-

derived macrophages [16, 25]. This classification 

reflects their origins and functions. TRMs derived 

from erythromyeloid progenitors have a high capacity 

of self-renewal and so reside at the same location for a 

long time [25]. On the other hand, hematopoietic stem 

cells give rise to monocyte-derived macrophages. 

They are short-lived and are constantly replaced by 

circulating monocytes [25]. In some tissues, it has 

been observed that TRMs undergo apoptosis when 

inflammation occurs and monocyte-derived macro-

phages replace them [14]. A recent study revealed the 

core gene sets that represent either TRMs or 

monocyte-derived macrophages that are common 

across life time and in multiple organs including 

skeletal muscle [25]. In our analysis of tissue 

macrophages in skeletal muscles, when divided into 

young mice (1 and 3 mo. old), older mice (18 and 21 

mo. old), and oldest mice (24 and 30 mo. old), there is 

a clear trend of age- related decrease or increase in 

numerous subclusters. Subclusters 0 and 2 decreased 

with age, while subclusters 3 and 7 increased with age 

(Figure 2B, blue and red arrows). These age-related 

decreasing/increasing trends were surprisingly 

concordant with TRM/monocyte-derived macrophage 

enrichment (Figure 3A, 3B). Further, gene ontology 

(GO) analysis was performed on differentially 

expressed genes (DEGs) of subclusters 0, 2, 4, 5, 3, 

and 7, which showed most remarkable decrease or 

increase with aging (Figure 3C). Macrophages in 

subclusters 0 and 2 (c0 and c2) were significantly 

enriched in the phagocytic phenotype, typical of an 

M2-like population (Figure 3C, upper two). 

Macrophages in subclusters 4 and 5 (c4 and c5) 

seemed to be involved in the extracellular matrix 

 

 
 

Figure 2. Subclustering of macrophages shows clear trends of age-related decrease or increase. (A) UMAP representation of 

macrophage subclusters in three age groups. Young mice: 1 and 3 mo. old, Older mice: 18 and 21 mo. old, Oldest mice: 24 and 30 mo. old. 
(B) Bar graph shows the ratio of individual subcluster macrophages present in each age group. Blue/red arrows are indicated on subclusters 
that had age-associated decrease/increase. Yellow arrows are indicated on subclusters that showed middle-age-specific tendency. 
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(ECM) formation and angiogenesis (Figure 3C, middle 

two). On the other hand, macrophages in subclusters 3 

and 7 (c3 and c7), an oldest mice-specific population, 

were abundant in metabolic signatures such as 

glycolytic and oxidative stress-induced metabolic 

process (Figure 3C, lower two). 

Tissue macrophages in older mice may play an 

important role in ECM remodeling and may be 

involved in the onset of muscle aging 

 

In the previous section, we examined macrophages that 

decrease or increase with age, while several  

 

 
 

Figure 3. Clusters with clear trends of age-related decrease or increase reflect their origin signatures. (A, B) Feature plots and 
violin plots show signature scores of TRM or Monocyte-derived macrophage marker genes. Plots were generated using AddModuleScore 
function in R. Genes that were included as each signature score analysis are also indicated. Cell cluster of interest are indicated by *in the violin 
plot. (C) GO analysis of DEGs in young mice-specific (c0 and c2), Older mice-specific (c4 and c5), and Old mice-specific (c3 and c7) subclusters. 
GO terms included in c0 and c2 suggests young mice-specific macrophage populations are more phagocytic, anti-inflammatory macrophages. 
GO terms included in c4 and c5 suggests older mice-specific macrophage populations are involved in ECM synthesis and angiogenesis. GO 
terms included in c3 and c7 suggests old mice-specific macrophage populations are glycolytic, pro-inflammatory macrophages. 
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macrophage subclusters showed specific proportional 

characteristics in older animals (18 and 21 mo. old), 

namely subclusters 1, 4, 5, 6, and 8 (Figure 2B, yellow 

arrows). From a clinically translatable perspective, 

changes in the tissues of older animals are important to 

enable early intervention. In fact, sarcopenia, a 

multifactorial syndrome of age-related loss of skeletal 

muscle mass and function, has been reported to begin in 

humans in approximately their 30 s [5]. Therefore, we 

again performed GO analysis on the differentially 

expressed genes in subclusters 4 and 5, which showed a 

pronounced increase only in older mice (18 and 21 mo. 

old), to understand their significance. Both subclusters 

included terms that related to vascular development and 

angiogenesis (Figure 3C, middle two). On the other 

hand, subclusters 1, 6, and 8, were strikingly enriched 

with ribosomal genes and overall were downregulated 

in the older groups (Supplementary Figure 3). The 

results for subcluster 4 are of particular interest due to 

the abundance of terms related to ECM formation. It is 

widely known that ECM of skeletal muscle is involved 

in mechanical functions, muscle repair and regeneration 

[26]. Excess or altered formation of ECM in aged 

muscles is known to contribute to tissue fibrosis, 

resulting in increased mechanical stiffness and 

decreased physical activity [27, 28]. Although studies 

suggest that collagen increases with age [27], others 

showed a decrease of collagen fiber tortuosity rather 

than collagen content or fiber orientation in the ECM of 

aged muscle [28, 29]. Further, the study reported that 

the age-related alteration of ECM drive muscle stem 

cell differentiation toward a fibrogenic lineage [28]. Our 

in vivo study using gastrocnemius/soleus muscles 

confirmed that collagen accumulation increases linearly 

with age and was more evident in 18-mo-old animals 

(Figure 4A and 4B). Taken together, the scRNA-seq 

 

 
 

Figure 4. Macrophages in middle-aged skeletal muscle tissue are involved in ECM remodeling and contribute to the onset 
of skeletal muscle aging. (A) Gastrocnemius/soleus histologies with Masson Trichromic dye of 8 mo. old, 10-14 mo. old, and 18 mo. old 
mice. Both 10x and 40x magnification images are shown. (B) Bar graph shows the results of the quantification of collagen staining area in 
each age group. N = 3 Per group. 
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data and in vivo analysis suggested a correlation 

between ECM remodeling, particularly collagen 

accumulation, and regulation by a macrophage sub-

population. As such, future research is warranted to 

determine if macrophage subpopulations can alter ECM 

remodeling and potentially serve as an early sign of 

muscle aging. 
 

DISCUSSION 
 

The underlying mechanisms whereby aging is 

accompanied by sarcopenia continues to be an elusive 

target despite continued experimental interrogation, 

with increasingly concerning relevance as society faces 

a “global greying” phenomenon. Given the breadth of 

the cell populations within skeletal muscle itself, it is 

likely that the overall sarcopenic phenotype is driven by 

subtle and opposing alterations to multiple cell types 

throughout the organ itself. As such, sc-RNAseq 

analysis of whole muscle uniquely provides both a 

quantitative and transcriptomic cellular profile, 

providing a relevant systemic picture that can also 

provide insight into intracellular shifts that occur in an 

aging skeletal muscle. The present study focused on 

changes in the lifetime characteristics of tissue 

macrophages in skeletal muscle. Although a recent 

study has shown that skeletal muscle macrophages have 

age-associated subpopulations [30], what distinguishes 

our study from theirs is the diversity of ages covered 

and the fact that we found changes in macrophages in a 

completely unbiased manner, considering all cell types 

in skeletal muscle. 
 

In the data used (GEO #GSE132042) we clustered a 

young male mouse population (1 and 3 months of age) 

for comparison of cell populations against an aged 

population (18–30 months of age). The middle age time 

point was especially relevant as, even though sarcopenia 

at this age is modest, the adaptations could provide 

innovative therapeutic targets, with the assumption that 

the underlying pathology has not manifested into 

irreversible functional outcomes [31–33]. While only 

rough estimates, the representative comparison between 

human populations would be 3–20 years (childhood-

adolescence) and 56–80 (middle age-aged).  
 

Our first observation (Figure 1C) is that that there is a 

substantial decrease in the cells that directly contribute 

to adaptive immunity, namely B cell and T cells. This 

supports evidence that aging does result in a reduction 

of lymphoid cell lineages, which are well characterized 

to play crucial roles in skeletal muscle regeneration 

and also accompanied by decreases in satellite cells, 

which are also observed [33]. Further, the loss of 

Schwann cells indicates that the neuromuscular 

junction (NMJ) is likely already undergoing de-

generation and subsequent denervation [34]. 

Interestingly, smooth muscle cells also manifest a 

decrease with aging but are not accompanied by a 

similar decrease in endothelial cells. While 

speculative, this would suggest that the overall 

capillary rarefaction that occurs with aging and would 

directly impair perfusion/demand matching in skeletal 

muscle is driven by dysfunction to the upstream 

arteriolar tree or downstream venules [35, 36]. 

 

Importantly, the most substantial increase in a specific 

cell type is skeletal muscle macrophages, with aging 

resulting in almost a 60% increase in the overall 

population. To better evaluate the changes within the 

tissue-specific macrophage population across the 

lifespan, the macrophage data was subclustered 

(Figure 2A) into a young, older, and oldest groups. 

There were 9 identified subpopulations that emerged 

(Figure 2B). Remarkably, there are clear trends 

whereby the changes in the macrophage’s sub-

populations are balanced by an opposing cluster (i.e., 

two downward trends (blue arrows) are balanced by 

two upward trends (red arrows). When further 

analyzed, these populations have very distinctive 

markers that define them as either tissue-resident 

macrophages (TRMs) or monocyte-derived macro-

phage markers. Subclusters that decrease with aging 

are characterized by TRM molecular signatures and 

subclusters that increase with aging are defined by 

monocyte-derived markers. Differential gene analysis 

(Figure 3C) revealed that, compared with young mice, 

older mice have a substantial shift in metabolic 

programming. We see a significant shift in the 

macrophage subpopulations in the young (M2-like, 

phagocytic, anti-inflammatory subpopulation) 

compared the oldest (M1-like, glycolytic, pro-

inflammatory subtype). Age-related decrease in 

phagocytic macrophages has in fact been found to be 

one of the key features of immune senescence in many 

tissues [37–39]. First, based on the c0 and c2 

subclusters, we see pretty substantial decreases in the 

transcriptome that regulates phagocytosis, and this 

begins with the older group. This is a key 

characteristic of the M2 phenotype, also known to play 

key roles in ECM component production and 

angiogenesis. Interestingly, while M2-like macro-

phages dominate in among in skeletal muscle and 

increase with aging, it appears that the phagocytic 

ability substantially decreases [40–42]. It is worth 

noting that, although we broadly define our clusters as 

M1 versus M2-like, that M2 macrophages are known 

to have metabolic flexibility and have both oxidative 

and glycolytic pathways intact. This concept perhaps 

explains the higher monocyte-derived signature  

in subcluster c3 accompanied by DEGs emphasizing 
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oxidative phosphorylation. On the other hand, 

subcluster c7 has the highest monocyte-derived 

signature, along with DEGs that also show  

the glycolytic and inflammatory ROS that 

accompanies M1-like macrophages, and clearly shows 

an upward trend with aging, a trend lacking from 

subcluster c3. 

 

Finally, to examine potential interventional targets 

within the older group, we examined subclusters c4 and 

c5 as they both had characteristics that peaked during 

this time frame. There was significant upregulation of 

DEGs that emphasized both angiogenesis and 

extracellular matrix organization. This is conducive 

with other published data that suggests that TRM 

macrophages largely have an M2 phenotype. Further, it 

is well characterized that the oxidative M2 macrophage 

population (with an anabolic phenotype) supports and 

drives angiogenesis and tissue remodeling [43, 44]. 

However, regardless of the upregulation of the 

“regenerative macrophages” in the older group, there is 

still a significant deposition of collagen in the skeletal 

muscle itself, which we confirmed to be significant at 

18 months of age (Figure 4B), and likely driving an 

overall fibrogenic phenotype in muscle with aging. 

Given that the subclusters 1, 6, and 8 are all dominated 

by ribosomal subunits, but are downregulated with the 

older group, this may suggest an inappropriate 

remodeling phenomenon is occurring, laying the 

proverbial groundwork for aging-related dysfunction 

later in life. Thus, these macrophages are either 

dysfunctional or undergo switching in the process of 

aging. Again, this directly supports previous work that 

demonstrates macrophage subpopulations drive overall 

collagen deposition and scarring, specifically via 

osteopontin, a glycoprotein with multiple functions 

regarding macrophage switching and known to be 

upregulated with aging [45, 46]. 

 

These alterations in intrinsic immunometabolism 

associated with aging are thought to affect systemic 

metabolism and, consequently, muscle function. In 

summary, the corresponding examination of age-related 

changes in macrophage subclusters revealed a clear 

decrease in TRM-like signatures (anabolic, anti-

inflammatory) in combination with a clear increase in 

inflammatory (glycolytic, catabolic) signatures with 

aging. 

 

Ultimately, this data supports a key concept, namely 

that dynamic changes in macrophage subpopulations 

may be key contributors to the overall progression of 

sarcopenia with aging. Further, these macrophage 

subpopulations are altered before the presentation of 

overt dysfunction, suggesting that regulation of 

subpopulations may be possible in terms of preventing 

or rescuing the progression of sarcopenia. 

Importantly, this can be extrapolated by examining 

current therapeutics that are frequently prescribed 

within the aging population (ex; resistance versus 

aerobic exercise, NSAID medication, metformin) to 

determine if some of the underlying positive impact is 

an effect on macrophage subtypes. Further, diseases 

that appear to indirectly alter skeletal muscle function 

(obesity, hormonal imbalance, viral infection, 

smoking) may be examined to see if the underlying 

driver of skeletal muscle dysfunction is acceleration 

of immune function toward an aging-like macrophage 

subpopulation [47]. 

 

Limitations of the study: the study has several 

limitations, the first being that the pathways identified by 

gene sequencing (which can overlap) need to be 

directionally validated, likely involving a challenging 

experimental paradigm incorporating immuno-

metabolism, lineage tracing, and skeletal muscle 

function across the lifespan. Further, it should be noted 

that this experimental dataset is exclusive to the male 

sex. It is unlikely that females, especially considering 

reproductive capacity as a variable, would experience 

similar alterations to immunometabolism. Indeed, the 

definition of aging itself, along with the effectiveness of 

interventions, would likely be insufficient across sexes. 

Taken together, while significant questions remain, 

macrophage immunometabolism remains a promising 

target for both diagnostic and therapeutic interventions 

within skeletal muscle. 

 

MATERIALS AND METHODS 
 

scRNA-seq data analysis 

 

scRNA-seq data are found in Gene Expression Omnibus 

(GEO) accession number GSE132042. Normalized rds 

file of limb muscles were downloaded from figshare 

(https://figshare.com/articles/dataset/tms_gene_data_rv

1/12827615) and analyzed in R (v4.1). To convert the 

data into a format that can be analyzed by the Seurat 

package (v4.1), colData from sce (=single cell 

experiment) was entered as metadata. Data 

normalization was already done in the downloaded data. 

Cell annotations were applied according to the original 

data labeled “cell_ontology_class”. Cell counts of each 

cell type in each age group were used to calculate the 

percentage of that cell type presence. Uniform Manifold 

Approximation and Projection (UMAP) for a general 

non-linear dimension reduction was applied in all the 
figures because it is one of the most common 

visualization algorithms and it was also applied in the 

original study [18]. Signature genes of M1 and M2 

https://figshare.com/articles/dataset/tms_gene_data_rv1/12827615
https://figshare.com/articles/dataset/tms_gene_data_rv1/12827615
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macrophages were adapted from previous studies 

[48, 49], as well as TRMs and monocyte-derived 

macrophages [25]. The scores of selected signature gene 

expressions were projected on UMAP using 

AddModule function. 

 

Macrophage clusters (clusters 4, 17, and 18) were 

subset and subclustered by recalculating resolutions at 

0.3. Subclustered macrophages were classified into 

three age groups for further analysis: young (1 and 3 

months), older (18 and 21 months), and oldest (24 and 

30 months). Characteristics of the macrophage 

subclusters were compared using differentially 

expressed genes identified by the FindMarkers 

function. Marker genes for each subcluster were 

subjected to Gene Ontology (GO) analysis using 

Metascape (https://metascape.org/gp/index.html#/main/

step1). 

 

Mice 

 

Male C57BL/6J mice were housed in temperature-

controlled rooms (21°C), on a 12-h light/dark cycle. 

All animal procedures conformed to the National 

Institutes of Health Guide for the Care and Use of 

Laboratory Animals and were approved by the Animal 

Research Committee at the Jikei University School of 

Medicine (approval no. 2020063) and the INTA, 

University of Chile and the Pontifical Catholic 

University. 

 

Histological processing and collagen staining 

 

Serial cryosections (12 μm thick) from adult mice 

muscle were fixed using freshly prepared para-

formaldehyde (4%) for 30 min and washed in distilled 

water. We performed a Masson trichromic technique to 

stain collagen. Histological preparations were examined 

by bright-field microscope (Leica microsystems DM 

500 – camera ICC50W) and 5 images were obtained of 

each preparation. These ones were later analyzed with 

image J (NIH). 

 

Statistical analysis 

 

Data of n mice (n = 3) were expressed as mean ± SE and 

analyzed by one-way ANOVA. P value < 0.05 was 

considered statistically significant (IC 95%). All 

statistical analyses were performed using GraphPad 

Prism 5. 

 

Abbreviations 
 

TRM: Tissue-resident macrophage; EMP: erythro-

myeloid progenitor cell; scRNA-sequence: single cell 

RNA sequence; GO: gene ontology; DEG: differentially 

expressed gene; ECM: extracellular matrix; NMJ: 

neuromuscular junction; GEO: Gene Expression 

Omnibus. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Heatmap of unsupervised clustering analysis featuring the top 10 discriminative genes per cluster. 

Marker genes (defined by log2 fold change) of macrophage subcluster 0 to 8. 
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Supplementary Figure 2. Signature scores of M1/M2 type macrophages. (A, B) Feature plots and violin plots show signature 

scores of M2-type or M1-type macrophage marker genes. (C, D) Violin plots show age-wise signature scores of M2-type or M1-type 
macrophage marker genes. Plots were generated using AddModuleScore function in R. Genes that were included as each signature score 
analysis are also indicated. 
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Supplementary Figure 3. Genetic characteristics of macrophage subclusters specifically low in middle-aged skeletal muscle 
tissue. GO analysis of DEGs in subclusters 1, 6, and 8. The top 10 most significant GO terms are listed and the X-axis is shown as Log 

p-value (−log10 (P)). Biological terms associated with ribosomal subunits were found to be strikingly increased in all three subclusters. 

 

 


