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ABSTRACT 
 
Lymph node metastasis is a recognized prognostic factor in esophageal cancer. Adipokines, including visfatin, 
and the molecule vascular endothelial growth factor (VEGF)-C, are implicated in lymphangiogenesis, but 
whether any association exists between esophageal cancer, adipokines and VEGF-C is unknown. We examined 
the relevance of adipokines and VEGF-C in esophageal squamous cell carcinoma (ESCC) in the Gene Expression 
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. We found significantly higher levels of visfatin 
and VEGF-C expression in esophageal cancer tissue than in normal tissue. Immunohistochemistry (IHC) staining 
identified that higher levels of visfatin and VEGF-C expression were correlated with advanced stage ESCC. 
Visfatin treatment of ESCC cell lines upregulated VEGF-C expression and VEGF-C-dependent lymphangiogenesis 
in lymphatic endothelial cells. Visfatin induced increases in VEGF-C expression by activating the mitogen-
activated protein kinase kinases1/2-extracellular signal-regulated kinase (MEK1/2-ERK) and Nuclear Factor 
Kappa B (NF-κB) signaling cascades. Transfecting ESCC cells with MEK1/2-ERK and NF-κB inhibitors (PD98059, 
FR180204, PDTC, and TPCK) and siRNAs inhibited visfatin-induced increases in VEGF-C expression. It appears 
that visfatin and VEGF-C are promising therapeutic targets in the inhibition of lymphangiogenesis in esophageal 
cancer. 
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INTRODUCTION 
 
Esophageal cancer is a highly lethal malignancy that 
accounted for approximately 5.5% of all cancer deaths 
worldwide in 2020 [1]. Asian countries have higher 
incidence and mortality rates of esophageal cancer than 
other global regions [2]. Taiwan’s 2019 Cancer Registry 
Annual Report listed esophageal cancer as the ninth 
most common cause of cancer death nationwide; the 
leading histologic subtype was squamous cell carcinoma 
(SCC), accounting for 91.4% of all subtypes [3]. 
Lymphovascular invasion within the tumor and lymph 
node metastasis are indicators of poor prognosis [4, 5]. 
Even in superficial esophageal carcinoma, patients with 
lymphovascular invasion within the tumor have higher 
rates of lymph node metastasis (hazard ratio (HR) 5.72) 
and lower overall survival (HR 1.85) compared with 
patients without lymphovascular invasion [6]. Spreading 
of the tumor to adjacent tissues, regional lymph nodes or 
distant organs are all independent prognostic factors of 
survival and are included in the cancer staging categories 
for esophageal cancer of the 8th edition of the American 
Joint Committee on Cancer (AJCC) [7]. The lymphatic 
system actively participates in metastatic tumor 
invasion [8]. 
 
Obesity is a major health problem in Taiwan, which 
experienced steep increases in the rates of obesity and 
morbid obesity between 2013 and 2016 [9, 10]. Much 
evidence links obesity with an increase in risk of cancer 
metastasis, particularly renal, prostate, endometrial, 
breast, colorectal and esophageal cancers [11, 12]. 
Adipokines, bioactive substances secreted by adipocytes 
(fat cells), play important roles in inflammation, 
metabolic disease, cardiovascular disease, cancer 
progression and metastasis [13–15]. Adipokines may 
even induce the epithelial-to-mesenchymal transition 
(EMT) process in the tumor microenvironment [16]. 
The relationship between adipokines and 
lymphangiogenesis has been described in recent studies 
[17–19]. For example, the adipokine visfatin regulates 
tumor proliferation, angiogenesis, metastasis and drug 
resistance in several different types of cancers [20]. 
 
Visfatin is regarded as an extracellular nicotinamide 
phosphoribosyltransferase (eNAMPT) enzyme and a 
multifunctional adipokine that was first identified in 
visceral adipose tissue [21]. Upregulated serum levels 
of visfatin are found in patients with various types of 
cancers [22, 23]. Visfatin plays a pivotal role in cancer 
progression and drug resistance [20]. For instance, 
visfatin appears to lower doxorubicin sensitivity in 
small cell lung cancer (SCLC) A549 and H1793 cell 
lines by activating the Akt/ABCC1 signaling pathways 
[24]. Moreover, levels of visfatin protein and mRNA 
expression are significantly increased in doxorubicin-

resistant non-small cell lung cancer (NSCLC) cell lines 
[24]. Higher levels of visfatin expression correlate with 
poorer prognoses in breast, gastric, urothelial, and head 
and neck SCC [20, 25, 26]. This study examined the 
role of visfatin in ESCC. 
 
Several molecules have been implicated in 
lymphangiogenesis [27], including vascular endothelial 
growth factor (VEGF)-C [28]. High levels of VEGF-C 
expression correlate with advanced stage disease, deeply 
invasive tumors and lymph node metastasis [29]. Higher 
levels of VEGF-C expression are linked to lower 5-year 
survival rates in esophageal squamous cell carcinoma 
(ESCC) [30, 31]. Lymphangiogenic mediators are 
regulated by various signal transduction pathways in 
cancer, such as the MEK1/2-ERK and NF-κB pathways 
[32, 33]. In specific, the MEK1/2-ERK and NF-κB 
signaling cascades is crucial for, cell survival and 
resistance of chemotherapy and promoting tumor-induced 
angiogenesis [34]. Thus, examining the MEK1/2-ERK 
and NF-κB pathways is expected to improve our 
understanding as to how to reduce lymphangiogenesis 
cytokine expression in ESCC. This study investigated 
cellular and molecular mechanisms of visfatin and VEGF-
C in ESCC cells. Our findings reveal that visfatin 
upregulates VEGF-C expression in ESCC cells via the 
MEK1/2-ERK and NF-κB signaling cascades. 
 
RESULTS 
 
Higher levels of visfatin expression in ESCC versus 
normal tissue 
 
Visfatin stimulates the progression of cancers, including 
breast cancer [35], oral squamous cell carcinoma [36] 
and gastric cancer [37], but its role in ESCC is unknown. 
We therefore screened gene expression profiling records 
from the Gene Expression Omnibus (GEO) database for 
several adipocytokines, including adiponectin, resistin, 
nesfatin, omentin and leptin (Figure 1A). Significantly 
higher levels of visfatin expression were found in ESCC 
tissues than in normal tissue samples (Figure 1A, 1B). 
The results were similar in clinical samples downloaded 
from The Cancer Genome Atlas (TCGA) database 
(Figure 1C). The 4-year Kaplan-Meier overall survival 
rates were significantly shorter for the high visfatin 
expression group compared with the low visfatin 
expression group (Figure 1D). Tissue array data revealed 
higher levels of visfatin expression in more advanced 
ESCC samples than in lower-grade disease samples 
(Figure 1E). The quantification of these results showed 
significantly higher levels of visfatin expression in the 
higher-stage tumors (IIB and IVA) than in the lower-
stage tumors (IB and IIA) and normal tissue samples 
(Figure 1F), indicating a positive association between 
levels of visfatin expression and ESCC cancer 
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progression. Further experiments identified higher levels 
of positive peritumoral lymphatic vessel density (LVD) 
in N1 and N2 stage disease than in N0 tissue samples 
(Figure 1G and Supplementary Figure 1), indicating that 
visfatin is associated with lymphatic metastasis in ESCC 
progression. 

Higher levels of VEGF-C expression in ESCC tissue 
versus normal tissue 
 
Levels of lymphangiogenic factors, including VEGF-C, 
are higher in cancers that have metastasized [29]. As 
VEGF-C is known to regulate lymphangiogenesis in 

 

 
 
Figure 1. Clinicopathologic features of visfatin expression in human ESCC tissue samples. (A) The gene expression profiles of 
visfatin in ESCC tissue and normal tissue samples were analyzed in specimens from the GEO and TCGA databases. (B, C) Levels of visfatin 
were significantly increased in ESCC samples compared with normal tissue samples. (D) Kaplan‐Meier analysis of overall survival according 
to visfatin expression in patients with esophageal cancer. (E, F) The human ESCC tissue array specimens were subjected to IHC evaluations 
with visfatin antibody, and levels of positive staining were quantified by IHC scoring (N = 4 per group). Scale bar: 100 µm. (G) Positive 
peritumoral lymphatic vessel density in patients with N0, N1, or N2 ESCC tissue array samples (N = 4 per group). *P < 0.05 compared with 
normal tissue samples or N0 lymph node negative tissue array samples. 
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various types of cancer cells [38, 39], we therefore 
screened gene expression profiling records from the GEO 
database for several lymphangiogenic genes, including 
vascular endothelial growth factor-C (VEGF-C), VEGF-
B, ephrin type-B receptor-3 (EPHB3), angiomotin-like 

protein-2 (AMOTL2), angiomotin (AMOT) and prospero 
homeobox-1 (PROX1) (Figure 2A). Significantly higher 
levels of VEGF-C expression were found in ESCC 
tissues than normal tissue samples (Figure 2A, 2B). 
Similarly, TCGA database screening identified higher 

 

 
 
Figure 2. Clinicopathologic features of VEGF-C expression in human ESCC tissue. (A) The gene expression profiles of VEGF-C in 
ESCC tissue and normal tissue samples were analyzed in GEO and TCGA database records. (B, C) Levels of VEGF-C expression were 
significantly higher in ESCC samples compared with the normal tissue samples. (D) Kaplan‐Meier analysis of overall survival according to 
VEGF-C expression in patients with esophageal cancer. (E, F) The human ESCC tissue array specimens were subjected to IHC evaluations 
with VEGF-C antibody, and the positive staining was quantified by IHC scoring (N = 4 per group). Scale bar: 100 µm. (G) Positive peritumoral 
lymphatic vessel density in patients with N0, N1, or N2 ESCC tissue array samples (N = 4 per group). *P < 0.05 compared with normal tissue 
samples or N0 lymph node negative tissue array samples. 
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levels of VEGF-C expression in ESCC tissues than in 
normal tissue samples (Figure 2C). Four-year Kaplan-
Meier overall survival was shorter in the high VEGF-C 
expression group compared with the low VEGF-C 
expression group (Figure 2D). Tissue array results 
revealed higher levels of VEGF-C expression in 
patients with higher-grade ESCC than in those with 
lower-grade disease (Figure 2E); Figure 2F shows 
significantly higher levels of VEGF-C expression in the 
higher-stage tumors (IIB and IVA) than in the lower-
stage tumors (IB and IIA) and normal tissue samples. 
Further experiments identified higher levels of positive 
peritumoral LVD in N1 and N2 stage disease compared 
with N0 tissue samples (Figure 2G and Supplementary 
Figure 1), indicating that VEGF-C is associated with 
lymphatic metastasis in ESCC progression. A positive 
correlation was observed between levels of visfatin and 
VEGF-C staining intensity in human ESCC tissue 
samples (R = 0.9564, Supplementary Figure 2). 

Visfatin induces increases in VEGF-C expression in 
ESCC 
 
We first investigated the effects of different visfatin 
concentrations (1, 3, 10, or 30 ng/mL) upon the viability 
of the ESCC cell lines CE81T and KYSE-410 
(Supplementary Figure 3); only the highest concentration 
(30 ng/mL) was used in pathway screening analyses and 
the lymphatic endothelial cell (LEC) tube formation 
assay. Incubation of the cells with visfatin (1, 3, 10, or 30 
ng/mL) significantly increased levels of VEGF-C mRNA 
and protein expression in ESCC cells (Figure 3A–3D). 
 
Visfatin induces VEGF-C-dependent 
lymphangiogenesis 
 
We then examined whether visfatin plays a role in 
VEGF-C-regulated lymphangiogenesis. Conditioned 
medium (CM) from ESCC cells promoted tube formation 

 

 
 
Figure 3. Visfatin promotes increases in VEGF-C expression in ESCC cells. (A–D) ESCC cells were stimulated with visfatin for 24 h, 
before determining levels of VEGF-C mRNA and protein expression by qPCR (A), Western blot (B, C), and ELISA (D). *P < 0.05 compared with 
the control group. 
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activity in LECs (Figure 4A). VEGF-C monoclonal 
antibody (mAb), but not the immunoglobulin (Ig)G control, 
abolished visfatin-mediated effects (Figure 4A, 4B). 
 
Visfatin promotes higher levels of VEGF-C 
expression by activating MEK1/2 signaling 
 
MEK signaling is implicated in lymphangiogenesis and 
metastasis [40, 41]. We therefore incubated the ESCC 
cell lines with visfatin (30 ng/mL), to examine whether 
MEK signaling is involved in ESCC 
lymphangiogenesis. After 15 min of incubation, 

MEK1/2 phosphorylation levels were increased (Figure 
5A, 5B). Pretreating cells with a MEK inhibitor or small 
interfering RNA (siRNA) blocked visfatin-mediated 
increases in VEGF-C mRNA and protein expression 
(Figure 5C–5E). Similar results were observed when 
ESCCs were transfected with MEK siRNA (Figure 5F). 
 
Visfatin increases levels of VEGF-C-expression by 
activating ERK signaling 
 
We then incubated the ESCC cell lines with visfatin 
(30 ng/mL), to examine whether ERK signaling is 

 

 
 
Figure 4. Visfatin stimulates VEGF-C-dependent lymphangiogenesis in ESCC cells. (A, B) ESCC cells were stimulated with visfatin 
for 24 h, or preincubated with IgG control antibody or VEGF-C antibody (1 µg/mL) for 30 min, then incubated with visfatin (30 ng/mL) for 
24 h. CM was collected from each experiment and added to LECs, to examine tube formation activity. *P < 0.05 compared with the control 
group; #P < 0.05 compared with the visfatin-treated group. 
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involved in ESCC lymphangiogenesis. ERK 
phosphorylation levels were significantly increased 
from baseline in both cell lines after 15 and 30 min 
(Figure 6A, 6B). Pretreating cells with the ERK 
inhibitor or siRNA blocked visfatin-mediated increases 
in VEGF-C mRNA and protein expression (Figure 6C–
6E). Similar results were observed when ESCCs were 
transfected with ERK siRNA (Figure 6F). 
 
Visfatin induces VEGF-C expression by activating 
NF-κB signaling 
 
NF-κB is a well-known transcription factor in cancer 
progression and metastasis [42] and NF-κB activation 
regulates ESCC angiogenesis [43]. We therefore 
incubated the ESCC cell lines with visfatin (30 ng/mL), 
to examine whether NF-κB signaling is involved in 
ESCC lymphangiogenesis. The p65 phosphorylation 
levels were significantly increased from baseline in both 
cell lines after 60 min (Figure 7A, 7B). Pretreating cells 
with NF-κB inhibitors or siRNAs blocked visfatin-
mediated increases in VEGF-C mRNA and protein 

expression (Figure 7C–7E). Similar results were 
observed when ESCCs were transfected with p65 
siRNA (Figure 7F). In addition, stimulation of ESCCs 
with visfatin enhanced NF-κB luciferase activity, which 
was reversed by MEK and ERK inhibitors (Figure 7G). 
Thus, visfatin appears to upregulate VEGF-C by 
activating the MEK, ERK and NF-κB signaling 
cascades. 
 
DISCUSSION 
 
Esophageal cancer is a relatively common cancer 
worldwide and is well recognized for its metastatic 
potential and poor prognosis [44]. Around 90% of 
esophageal cancers in Asia are the ESCC subtype, 
which has a particularly poor prognosis and high 
mortality rate [2, 45]. The 5-year survival rate for 
people with esophageal cancer is quite low (~25%), 
despite significant advancements in diagnosis and 
therapy [46]. Improved treatment strategies and targets 
may help to reduce the high mortality rate in esophageal 
cancer [47]. 

 

 
 
Figure 5. Visfatin induced increases in VEGF-C expression and lymphangiogenesis by activating MEK1/2 signaling. (A, B) ESCC 
cells were treated with visfatin (30 ng/mL) for the indicated times and then MEK1/2 phosphorylation was examined by Western blot and 
quantified by ImageJ software. (C, D) ESCC cells were transfected or preincubated with the MEK1/2 inhibitor PD98059 or siRNAs for 24 h, 
before determining levels of VEGF-C expression by qPCR. (E) ESCC cells were transfected with MEK siRNA for 24 h, then stimulated with 
visfatin (30 ng/mL) for 24 h. Levels of VEGF-C expression were examined by Western blot. (F) ESCCs were transfected with a MEK siRNA and 
MEK expression was examined by Western blot. *P < 0.05 compared with the control group; #P < 0.05 compared with the visfatin-treated 
group. 
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Adipocytokines are implicated in the carcinogenesis, 
progression, recurrence, and metastasis of different 
cancers [48]. Patients with ESCC and EA presented 
lower adiponectin levels than controls. In brief, patients 
with EA had significantly lower adiponectin than those 
with ESCC [49], while lower resistin mRNA expression 
was identified in ESCC tissue and serum compared with 
normal esophageal tissues [50]. In addition, levels of 
serum nesfatin-1 were lowered in lung cancer patients 
than in healthy subjects [50], the same case were found 
in ometin-1 [51]. Moreover, the levels of leptin were 
significantly correlated with lymph node involvement 
and advanced tumor stage esophageal squamous cell 
carcinoma [52]. Visfatin in particular appears to have a 
vital role in cancer and inflammation [53, 54]. The 
visfatin-neurogenic locus notch homolog protein 1 
(Notch-1) pathway contributes to breast cancer 
development by activating NF-κB signaling [55], while 
high circulating visfatin levels reportedly significantly 
increase the risk of cancer [56]. Visfatin also appears to 
promote chondrosarcoma metastasis [57]. In addition, 

plasma visfatin levels are elevated in patients with type 
2 diabetes mellitus [58], while serum visfatin levels are 
elevated in the peripheral blood of patients with breast 
cancer [59]. In this study, we found increasingly higher 
levels of visfatin corresponding with higher disease 
stage in ESCC tissue compared with normal tissue. 
Thus, visfatin may serve as a new therapeutic target in 
the treatment of cancer metastasis. 
 
Lymphangiogenesis favors the development of cancer 
metastasis [60]. Increased levels of lymphangiogenic 
genes promote tumor relapse and poor prognosis, and 
thus serve as potential targets for preventing lymphatic 
metastasis [61]. This is supported by our study 
evidence, which identified that lymphangiogenic gene 
expression in ESCC clinical samples has clinical 
significance for survival. Other research has also 
reported that visfatin stimulates the production of 
human endothelial VEGF and matrix metalloproteinases 
(MMP-2 and MMP-9) in human umbilical vein 
endothelial cells [62]. In our study, visfatin significantly 

 

 
 
Figure 6. Visfatin induced increases in levels of VEGF-C expression and lymphangiogenesis by activating ERK signaling. (A, B) 
ESCC cells were treated with visfatin (30 ng/mL) for the indicated times and then ERK phosphorylation was examined by Western blot and 
quantified by ImageJ software. (C, D) ESCC cells were transfected or preincubated with the ERK inhibitor FR180204 or siRNAs for 24 h and 
then VEGF-C expression levels were measured by qPCR. (E) ESCC cells were transfected with ERK siRNA for 24 h, then stimulated with 
visfatin (30 ng/mL) for 24 h. Levels of VEGF-C expression were examined by Western blot. (F) ESCCs were transfected with a ERK siRNA and 
ERK expression was examined by Western blot. *P < 0.05 compared with the control group; #P < 0.05 compared with the visfatin-treated 
group. 
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and dose-dependently upregulated levels of VEGF-C 
gene expression and protein production in ESCC cells. 
Visfatin also dose-dependently promoted LEC tube 
formation. Interestingly, visfatin-mediated 
lymphangiogenesis was significantly inhibited by 
VEGF-C mAb treatment. Our findings offer novel 
insights into the effects of visfatin upon VEGF-C-
dependent lymphangiogenesis in ESCC. 
 
The mitogen-activated protein kinase (MAPK) 
signaling pathways play crucial roles in the survival of 
disseminated tumor cells and cancer drug resistance 
[63]. Several drugs have been developed that 
specifically target the MAPK signaling pathway 
network; these drugs help to overcome cancer cell drug 
resistance and sensitivity [41]. Previous studies have 
demonstrated that MAPK signaling pathways promote 
VEGF-A secretion and angiogenesis, as well as 
osteosarcoma metastasis [64]. Notably, MAPK 
signaling regulates angiogenic and lymphangiogenic 

cytokine production in head and neck SCC [32]. In this 
study, MEK1/2-ERK inhibitors and siRNAs reversed 
visfatin-induced stimulation of VEGF-C expression. 
 
NF-κB is a critical transcription factor in cancer [65] 
and cancer-associated disease [66]. Targeting NF-κB 
activity is a prominent strategy in the treatment of 
various cancers [67], including esophageal 
adenocarcinoma [68]. NF-κB activation is also 
associated with chemoresistance and the metastasis of 
esophageal cancer [69, 70]. The NF-κB signaling 
pathway is constitutively activated in ESCC cell lines 
and RNA interference targeting at p65 increases the 
sensitivity of ESCC cell lines to 5-fluorouracil 
chemotherapy [71]. In addition, higher levels of NF-κB 
protein expression in esophageal cancer tissue 
compared with adjacent normal esophageal mucosa 
[72]. Our findings indicate the involvement of p65 
phosphorylation in visfatin-induced production of 
VEGF-C. According to our evidence, visfatin-mediated 

 

 
 
Figure 7. Visfatin induced increases in VEGF-C expression and lymphangiogenesis by activating NF-κB signaling. (A, B) ESCC 
cells were treated with visfatin (30 ng/mL) for the indicated times and then p65 phosphorylation was examined by Western blot and 
quantified by ImageJ software. (C, D) ESCC cells were transfected or preincubated with NF-κB inhibitors (PDTC and TPCK) or siRNAs for 24 
h and then VEGF-C expression levels were measured by qPCR. (E) ESCC cells were transfected with p65 siRNA for 24 h, then stimulated 
with visfatin (30 ng/mL) for 24 h. Levels of VEGF-C expression were examined by Western blot. (F) ESCCs were transfected with a p65 
siRNA and p65 expression was examined by Western blot. (G) ESCCs were treated with MEK and ERK inhibitors then stimulated with 
visfatin, and NF-κB luciferase activity was examined. *P < 0.05 compared with the control group; #P < 0.05 compared with the visfatin-
treated group. 
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production of VEGF-C is critical in ESCC progression 
and MEK1/2-ERK and NF-κB signaling is critical for 
ESCC lymphangiogenesis. No specific receptor has yet 
been identified for visfatin, although visfatin activity 
appears to be mediated by enzymatic activity [73–75] 
and also by an insulin receptor [76]. 
 
Finally, it should be noted that several limitations exist in 
this study. Firstly, although our data strongly suggest that 
visfatin enhances VEGF-C-dependent LEC tube 
formation in ESCCs, we cannot exclude the possibility 
that crosstalk exists between visfatin and its receptor, so 
we would like to address this limitation in future projects. 
Secondly, the impact of NF-κB on ESCC progression 
and lymphangiogenesis needs to be assessed in animal 
disease models. We hope to use NF-κB inhibitors to 
study in vivo ESCC progression and lymphangiogenesis. 
Thirdly, our data strongly suggest that visfatin and 
VEGF-C expression levels were higher in lymph node 
positive than in lymph node negative ESCC tissues, we 
cannot exclude the possibility that address the accurate 
observation of lymphatic vessel infiltration. Primarily, 
access to tumor tissue may not always be feasible due to 
increasingly competing demands for tumor tissue in 
research and clinical practice. 
 
CONCLUSIONS 
 
In this study, data from the GEO and TCGA databases 
demonstrated significantly higher levels of visfatin and 
VEGF-C expression in ESCC tissue samples compared 

with levels in adjacent normal tissue, and positive 
correlations were observed between visfatin and VEGF-
C expression with ESCC clinical disease stages. Our 
experiments indicate that the MEK1/2-ERK and NF-κB 
pathways are involved in visfatin-mediated upregulation 
of VEGF-C and VEGF-C-dependent lymphangiogenesis 
in ESCC cells (Figure 8). Thus, visfatin and VEGF-C 
may represent new molecular therapeutic targets for 
inhibiting ESCC lymphangiogenesis. 
 
MATERIALS AND METHODS 
 
Materials 
 
Recombinant human visfatin was purchased from 
PeproTech, Inc. (Rocky Hill, NJ, USA). VEGF-C (sc-
9047) and IgG (sc-69786) monoclonal antibodies were 
purchased from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). The cell culture mediums Dulbecco’s 
Modified Eagle Medium (DMEM) and Roswell Park 
Memorial Institute (RPMI) 1640 were purchased from 
Gibco Life Technologies Corporation (Grand Island, 
NY, USA). Chloroform and isopropanol were 
purchased from J.T. Baker (NJ, USA). Oligo-dT was 
obtained from MDBio Inc. (Gaithersburg, Maryland, 
USA). Dithiothreitol (DTT), dNTP, MMLV and 5X 
first-strand buffer were purchased from Invitrogen 
Corporation (Carlsbad, California, USA). Taqman® 

One-Step PCR Master Mix, qPCR primers and probes 
were bought from Applied Biosystems (Foster City, 
CA, USA). A BCA protein assay kit was obtained from 

 

 
 
Figure 8. Schematic illustration of how signaling pathways participate in visfatin-induced stimulation of VEGF-C expression 
and the subsequent stimulation of ESCC lymphangiogenesis in esophageal cancer. 
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Pierce (Meridian Rd. Rockford, IL 61101 USA). Tri’s 
buffer, 30% acrylamide and sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) were 
purchased from Amresco Inc (6681 Cochran Rd, Solon, 
Ohio, USA). The detailed source of inhibitors and 
siRNAs are listed in Supplementary Tables 1 and 2. All 
other chemical reagents not already mentioned were 
obtained from Sigma-Aldrich (St. Louis, MO, USA). 
 
Cell culture 
 
The well-differentiated human ESCC cell line 
CE81T/VGH was obtained from the Bioresource 
Collection and Research Center (BCRC, Hsinchu, 
Taiwan, ROC) and cultured in DMEM. The poorly 
differentiated invasive ESCC cell line KYSE-410 was 
obtained from the European Collection of Cell Culture 
(ECACC®) (Porton Down, SP4 0JG Salisbury, UK) and 
cultured in RPMI. The culture medium contained 10% 
fetal bovine serum (FBS) (Lonza, Walkersville, MD, 
USA) and streptomycin/penicillin (PS) 100 U/mL. 
 
Human telomerase gene-immortalized human dermal 
lymphatic endothelial cells (hTERT-HDLECs), an 
immortalized human LEC line, was purchased from 
Lonza (Walkersville, MD, USA). The LECs were grown 
in EGM-2 MV BulletKit Medium, consisting of 
endothelial basal medium-2 (EBM-2) plus a SingleQuots 
kit (Lonza). Cells were seeded onto culture dishes 
precoated with 1% gelatin. Cell incubation was conducted 
in a humidified atmosphere of 37°C, 5% CO2 [39, 77]. 
 
Bioinformatics analysis 
 
The GSE23400 dataset was downloaded from the GEO 
database and examined for levels of visfatin and VEGF-
C expression in human ESCC and normal tissue 
samples. Differential gene expression analysis from the 
TCGA database has identified an inverse relationship 
between visfatin and VEGF-C transcript levels in ESCC 
and adjacent normal tissue samples [78, 79]. 
 
Cell viability assay 
 
ESCC cells were incubated with indicating 
concentrations of visfatin for 24 h then cell viability 
was determined with the 3-(4,5-dimethylthiazol-2-yl)- 
2,5-diphenyltetrazolium bromide (MTT) assay over 2 h. 
Dimethyl sulfoxide (DMSO) was applied, and cell 
viability were detected on a microplate reader. 
 
Quantitative real-time PCR  
 
Total RNA was extracted from ESCC cells using TRIzol™ 
Reagent (MDBio, Taipei, Taiwan) and RNA quality was 
analyzed by a NanoVue Plus™ Spectrophotometer 

(Biochrom Ltd., Cambridge, UK). A MMLV Kit (Thermo 
Fisher Scientific; Waltham, MA, USA) used 1-3 (μg/μL) 
of total RNA to convert RNA to cDNA. The converted 
cDNA was amplified with primers (primers used in the 
qPCR assays are listed in Supplementary Table 3) using 
the StepOnePlus™ Real-Time PCR System (Applied 
Biosystems, Foster City, CA, USA) [57, 80, 81]. 
 
Western blot 
 
Total proteins were extracted using RIPA lysis buffer 
containing protease inhibitors, then quantified with the 
BCA Protein Assay Kit (Thermo Fisher Scientific Inc., 
Waltham, MA, USA). 30 μg of total proteins were 
separated by SDS‐PAGE electrophoresis then transferred 
to polyvinylidene difluoride (PVDF) membranes 
(Millipore, Bedford, MA, USA). The blots were blocked 
with 4% BSA, then incubated with primary 
antibodies overnight (antibodies used in the Western blot 
assays are listed in Supplementary Table 4). The blots 
were then incubated with horseradish peroxidase (HRP) 
conjugated secondary antibodies at room temperature 
for 1 h. Enhanced chemiluminescent imaging of the 
blots was visualized by the UVP Biospectrum system 
(UVP, Upland, CA, USA) [82–84]. 
 
ELISA 
 
ESCC cells were plated in 6-well dishes and grown to 
confluence. The culture medium was then exchanged 
with serum-free RPMI or DMEM medium. Cells were 
treated for 24 h with visfatin (0, 1, 3, 10, or 30 ng/mL). 
CM was collected and the levels of VEGF-C expression 
were examined using a human VEGF-C ELISA kit 
(R&D Systems, MN, USA) according to the 
manufacturer’s protocol [79, 85]. 
 
Tube formation  
 
Matrigel (BD Biosciences; Bedford, MA, USA) was 
dissolved at 4°C, then added at a concentration of 100 
µL to each well of 48-well plates and incubated at 37°C 
for 30 min. Briefly, LECs were resuspended in MV2 
serum-free medium and mixed with the CM from the 
visfatin-treated cells (0, 1, 3, 10, or 30 ng/mL), before 
being added to the wells. After 6–8 h of incubation at 
37°C, LEC tube formation was examined by 
microscopy. Tube branches and lengths were examined 
at a magnification of 20X and quantified by 
MacBiophotonics ImageJ software (v1.51, National 
Institutes of Health, Bethesda, MD, USA) [79, 86]. 
 
Tissue array 
 
A Human ESCC Tissue Array was supplied by US 
Biomax (Derwood, Maryland, USA). The sections were 
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deparaffinized with xylene and rehydrated with ethanol 
for immunohistochemistry (IHC) staining [87–89]. The 
sections were immunoassayed with visfatin and VEGF-
C antibodies (1:200) overnight, then incubated with 
secondary antibody (1:200) for 1 h at room temperature. 
Finally, all tissues were stained with 3,3-
diaminobenzidine and photographed using a 
ImageXpress Pico (Molecular Devices, San Jose, CA, 
USA). Assessment of lymphatic vessels in N0, N1 and 
N2 tumor tissue were reviewed independently in a 
blinded manner by two observers. Assessments at 
different parameters of the tumor tissue sought to 
identify vascular hotspots and positive microvessels. 
Counting was repeated for the whole set of tissue 
sections to quantify the reproducibility of the 
methodology. Levels of visfatin and VEGF-C 
expression are described using a scoring system 
including staining intensity and percentages of stained 
tumor cells. Moderate or strong staining was assessed as 
a positive expression of visfatin or VEGF-C in tumor 
tissues. 
 
NF-κB luciferase assay 
 
The NF-κB luciferase plasmid (Stratagene; St. Louis, 
MO, USA) was transfected into ESCCs using 
Lipofectamine™ 2000 Transfection Reagent (Thermo 
Fisher Scientific, Carlsbad, CA, USA), followed by 
treatment with pharmacological inhibitors of MEK and 
ERK. The Dual-luciferase® Reporter Assay System was 
used to examine luciferase activity (Promega, Madison, 
WI, USA). 
 
Statistical analysis 
 
All statistical analyses were performed using GraphPad 
Prism version 5.0 (GraphPad Software). All results are 
expressed as the mean ± standard deviation (SD) of at 
least three independent experiments. The Student’s 
t-test compared the means between experimental 
groups. The statistical difference was significant if the 
p-value was < 0.05. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 
Supplementary Figure 1. Lymphatic vessel density levels are upregulated in ESCC tumor tissues. Histologic sections of ESCC 
tumor stained with immunoassayed with visfatin or VEGF-C antibody. The black arrows indicate positive peritumoral lymphatic vessels 
identified in the ESCC tumor tissues. 
 

 
 

Supplementary Figure 2. A positive correlation was identified between levels of visfatin and VEGF-C expression on ESCC 
tumor tissues. Histologic sections of ESCC tumor stained with visfatin or VEGF-C antibody and positive association between visfatin and 
VEGF-C was analyzed.  
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Supplementary Figure 3. Visfatin K does not affect ESCC cell viability. ESCCs were incubated with different concentrations of 
visfatin K (0, 1, 3, 10, or 30 ng/mL) for 24 h and cell viability was examined by the MTT assay. 
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Supplementary Tables 
 
Supplementary Table 1. Inhibitors used in this study. 

Inhibitors Name Source Catalog No. Concentration 
MEK PD98059 Sigma (St. Louis, MO, USA) P215-1MG 10 µM 
ERK FR180204 Santa Cruz Biotechnology, Dallas, TX, USA SC-203945 10 µM 
κB PDTC Sigma (St. Louis, MO, USA) P8765-1G 3 µM 
κB TPCK Sigma (St. Louis, MO, USA) T4376-100MG 3 µM 

 
 
Supplementary Table 2. siRNA used in this study. 

Gene Species Source Catalog no 
MEK Human  Dharmacon (2650 Crescent Dr, Lafayette, USA) L00357100 
ERK Human Dharmacon (2650 Crescent Dr, Lafayette, USA) L00355500 
p65 Human Dharmacon (2650 Crescent Dr, Lafayette, USA) L-003533-00-0005 
Control  Human Dharmacon (2650 Crescent Dr, Lafayette, USA) D-001810-10-05 

 
 
Supplementary Table 3. Primers used in this study. 

Gene Forward Reverse 
VEGF-C CACTTGCTGGGCTTCTTCT CACAGACCGTAACTGCTCCT 
GAPD-H AATGGACAACTGGTCGTGGA CCCTCCAGGGATCTGTTTG 

 
 
Supplementary Table 4. Antibodies used in this study. 

Protein Dilution Catalog No. Source 
VEGF-C 1:3000 SC-9047 Santa Cruz Biotechnology, Dallas, TX, USA 
Visfatin  1:3000 ab45890 Abcam, Shanghai, China 
β-actin 1:3000 SC‐58673 Santa Cruz Biotechnology, Dallas, TX, USA 
p-MEK1/2 1:3000 #9121 Cell Signaling (Danvers, MA, USA) 
MEK 1:3000 #9122 Cell Signaling (Danvers, MA, USA) 
p-ERK 1:3000 SC-7383 Santa Cruz Biotechnology, Dallas, TX, USA 
ERK 1:3000 SC-1647 Santa Cruz Biotechnology, Dallas, TX, USA 
p-p65 1:3000 SC‐101752 Santa Cruz Biotechnology, Dallas, TX, USA 
p65 1:3000 SC‐8008 Santa Cruz Biotechnology, Dallas, TX, USA 

 
 


