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INTRODUCTION 
 
Osteoarthritis (OA) is a chronic, complex disease that is 
the leading cause of disability in the elderly [1–3]. 
Cartilage is primarily destroyed and usually accompanied 
by bone sclerosis and inflammation of the synovium. 
Although the molecular mechanism of OA is unknown, 
chondrocyte apoptosis is a key feature of the disease [4]. 
Apoptosis is strongly linked to mitochondrial 
dysfunction, which results in excess of reactive oxygen 
species (ROS), which eventually leads to oxidative stress 
[5, 6]. Increased levels of oxidative stress have also been 
discovered in OA patients’ synovial fluid and damaged 
cartilage, as well as in the cartilage of mice with 

surgically produced OA [7, 8]. Therefore, inhibiting 
apoptosis and oxidative stress could be useful in slowing 
OA progress. 
 
Currently, drug therapy is primarily used to treat the 
symptoms of OA. For example, nonsteroidal-anti-
inflammatory drugs (NSAIDs) can reduce pain, but 
have no significant effect on oxidative stress, 
mitochondrial dysfunction, and chondrocytes apoptosis. 
These medications have serious adverse effects, 
including gastrointestinal issues and toxicity buildup, 
which limit their long-term use [9]. Future research 
trends will emphasize alternative treatments with 
minimal side effects, and slowing disease progression is 
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ABSTRACT 
 
Osteoarthritis (OA) is a chronic and complicated degenerative disease for which there is currently no effective 
treatment. Isoorientin (ISO) is a natural plant extract that has antioxidant activity and could be used to treat OA. 
However, due to a lack of research, it has not been widely used. In this study, we investigated the protective 
effects and molecular mechanisms of ISO on H2O2-induced chondrocytes, a widely used cell model for OA. Based 
on RNA-seq and bioinformatics, we discovered that ISO significantly increased the activity of chondrocytes 
induced by H2O2, which was associated with apoptosis and oxidative stress. Furthermore, the combination of ISO 
and H2O2 significantly reduced apoptosis and restored mitochondrial membrane potential (MMP), which may be 
achieved by inhibiting apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, ISO 
increased superoxide dismutase (SOD), heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO-1) and 
reduced malondialdehyde (MDA) levels. Finally, ISO inhibited H2O2-induced intracellular reactive oxygen species 
(ROS) in chondrocytes by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) and phosphatidylinositol 
3 kinase/protein kinase B (PI3K/Akt) signaling pathways. This study establishes a theoretical framework for ISO’s 
ability to inhibit OA in vitro models. 
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critical [10, 11]. As OA is characterized by continuous 
oxidative damage [6], natural antioxidant plant extracts 
have beneficial effects with few side effects, attracting 
the attention of many researchers [12, 13]. 
 
Isoorientin (ISO) is a natural flavonoid of luteolin 
glycosides, found in variety of foods such as Polygonum 
orientale and corn [14, 15]. There are many orthopaedic 
diseases and chronic diseases that can be treated with 
ISO-rich plants or drugs in Chinese folk medicine. ISO 
was shown to have few toxic side effects and to perform 
a variety of functions, including lowering the risk of 
developing diseases caused by oxidation and 
inflammation [16, 17]. Previous research also 
demonstrated that ISO significantly reduced oxidative 
stress in the liver and kidney [18, 19]. Moreover, ISO 
increased antioxidant enzyme activity resisting 
doxorubicin-induced cardiac injury [20]. A previous 
study found that ISO improved mitochondrial function 
by modulating the AMPK/Akt/Nrf2 signaling pathway 
[21]. Furthermore, ISO protected against oxidative 
damage, apoptosis, and autophagy [22, 23]. As a result 
of ISO’s antioxidant properties, these compounds can be 
used in the development of osteoarthritis medication. 
 
Despite the fact that ISO has a wide range of biological 
activities, it has received little attention. It is likely due 
to a lack of ISO research and unclear ISO mechanisms. 
There have been few studies focusing into the 
mechanism of ISO protection on primary chondrocytes 
from a rat knee up until now. A series of experiments 
were carried out to investigate the mechanism of ISO 
action on chondrocytes. Firstly, we discovered that ISO 
could help prevent some of the cell death caused by 
H2O2. Secondly, the cell samples were calculated by 
RNA-Seq analysis integrated bioinformatic analysis. 
Thirdly, the findings indicated that ISO can reduce 
apoptosis and oxidative stress via the MAPK and 
PI3K/Akt signaling pathways. Finally, western blot, 
flow cytometry, and other experiments were used to 
validate the results of the preceding analysis. In 
summary, ISO is a potential OA treatment with low 
toxicity and anti-inflammatory properties. This work 
contributes to the study of ISO anti-inflammatory 
mechanisms and provides theoretical foundation for 
clinical applications. 
 
MATERIALS AND METHODS 
 
Reagents 
 
Dulbecco’s modified eagle medium-F12 (DMEM/F12) 
and fetal bovine serum (FBS) were purchased from 
KeyGEN BioTECH (Jiangsu, China) and Cyagen 
Biosciences, Inc. (Guangzhou, China). Solarbio 
(Beijing, China) provided cell counting kit-8 (CCK-8), 

a superoxide dismutase (SOD) kit, malondialdehyde 
(MDA), and total protein contents (BCA) kits. ROS kit 
and a MMP assay kit were obtained from Beyotime 
(Beyotime, China). Rabbit monoclonal antibodies 
against PI3K, Akt, mTOR, JNK, P38, and ERK, as well 
as their corresponding phosphorylation antibodies, were 
purchased from Cell Signaling Technology (MA, US), 
and apoptosis primary antibodies, including Bax, Bcl-2, 
Caspase-3, Cleaved Caspase-3, heme oxygenase 1 (HO-
1) and quinone oxidoreductase 1 (NQO-1), nuclear 
factor erythroid 2-related factor 2 (Nrf2), and Keap1 
were prepared by Abmart (Shanghai, China). 
 
Cell culture 
 
Primary chondrocytes are the best cells to study OA 
because they maintain cartilage structure and function. 
The primary rat chondrocytes were obtained from iCell 
Bioscience, Inc. (Shanghai, China) and grown at 37° C 
with 5% CO2 in DMEM/F12 media containing 10% 
FBS, 1% penicillin, and 1% streptomycin sulfate. 
Chondrocytes from the second passage were used in the 
experiments. 
 
Cell viability assay 
 
Effect of chondrocytes viability in a variety of 
concentrations of ISO 
After 12 h, chondrocytes were cultured in 96-well  
plates at a density of 8,000 per well. Following that, 
chondrocytes were exposed to ISO (0, 5, 10, 15, 20, 25, 
30, 35, and 40 μM) for 12 h. The cell viability of 
chondrocytes was determined using a microplate reader 
and CCK-8 to measure absorbance at 450 nm (Thermo 
Varioskan LUX, US). 
 
Effect of chondrocytes viability treated with ISO and 
H2O2 
A study found that H2O2 causes in vitro inflammation, 
which could be useful in simulating OA [24]. Eight 
thousand cells/well of chondrocytes were seeded into a 
96-well plate at 12 h. Afterward, chondrocytes were 
exposed to ISO (5, 20, and 40 μM) for 12 h. The cell 
media was then treated with 500 μM H2O2 and allowed 
to grow for 4 hours. After 30 min of incubation with the 
CCK-8 solution in each well, the absorbance at 450 nm 
was measured using a microplate reader (Thermo 
Varioskan LUX, US). 
 
Analysis of chondrocytes RNA-Seq transcriptomic 
data in bioinformatics 
 
TRIzol protocols for RNA extraction and purification 
from cell samples were carried out in accordance with the 
manufacturer’s instructions. The total RNA of 
chondrocytes from the control group without treatment, 
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the OA group with H2O2, and the OA+ISO group with 
ISO and H2O2 was sequenced by Guangdong Magigene 
Biotechnology Co., Ltd. (Guangdong, China). A fold 
change threshold of 1.5 and a p-value of 0.05 were used to 
examine differentially expressed genes (DEGs). The 
Kyoto Encyclopedia of Genes and Genomes and Gene 
Ontology (GO) analysis were also used to calculate DEG 
enrichment, which can be used to obtain information on 
the fold changes of expressed genes at the molecular 
level. To determine the metabolic and signaling pathways, 
the DEGs at various KEGG pathway levels were counted. 
 
Determination of cell apoptosis 
 
Chondrocytes were subjected to the same procedure as 
in the previous method. The chondrocytes were stained 
with an apoptotic dye (5 mL propidium iodide and 195 
mL annexin-V binding) and incubated at 37° C in the 
dark for 15 min. After that, the cell apoptosis rate was 
determined using a flow cytometer. 
 
State of mitochondrial membrane potential (MMP) 
detection 
 
In six-well plates, chondrocytes (1.5 × 105 cells/well) 
were cultured for 12 h before being treated with ISO at 
20 μM and then H2O2 for 4 h. The medium was then 
removed and thoroughly cleaned with PBS three times. 
In a murky atmosphere, chondrocytes were stained with 
staining solution and incubated for 20 min with JC-1 
solution. An inverted fluorescence microscope was used 
to measure fluorescence intensity at wavelengths of 
490/525 nm (green fluorescence) and 525/590 nm (red 
fluorescence). 
 
ROS production detection 
 
In six-well plates, chondrocytes were grown at 1.5 × 105 
cells per well, followed by 12 h of ISO treatment at 20 
μM and then incubation H2O2 for 4 h. Each well received 
100 μL DCFH-DA (10 μM) for 30 min. A fluorescence 
microscope was used to analyze the fluorescence. 
Chondrocytes were grown for 12 h in six-well plates at 
the same concentration as before. Chondrocytes were 
collected after 12 h of ISO treatment at 20 μM and then 4 
h of H2O2 incubation. DCFH-DA was applied, followed 
by washing and centrifugation. Flow cytometry was used 
to assess the level of ROS after following the prescribed 
procedures (Novocyte, Agilent, US). 
 
Level of SOD and MDA detection 
 
Eight thousand cells/well of chondrocytes were seeded 
into a six-well plate at 12 h, followed by 12 h of ISO 
treatment at 20 μM and then H2O2 after 4 h of 
incubation. The cells were collected during the fifth 

minute of centrifugation. ELISA kits were used to 
extract supernatants for BCA, SOD, and MDA analysis 
(as directed by the manufacturer). 
 
Western blot analysis 
 
Cell proteins were extracted using RIPA buffer and 1 
mM PMSF from Beyotime (Jiangsu, China). The 
lysates were transferred to a PVDF membrane after 
being electrophoresed by 7.5%–15% SDS-PAGE. The 
membrane was washed with water after incubating at 
room temperature for 12 min with 5% skimmed milk 
powder prepared in TBST solution. A diluted antibody 
was added and incubated overnight at 4° C. Afterward, 
the membrane was washed three times with TBST on a 
horizontal shaker for 5 min each. Following secondary 
antibody incubation, the membrane was thoroughly 
washed and imaged on a molecular image. ImageJ 
software was used to perform statistical analysis on the 
gray-scale values of the protein bands. 
 
Statistical analysis 
 
The results from every experiment were run in triplicate 
and reported as the mean ± standard deviation (SD) (n = 
3). The data were computed as the mean ± SD using 
SPSS 2.0 Software. To compare statistical significance, 
Tukey’s range test was used. Significant values were 
defined as those with a p-value of 0.05. 
 
RESULTS 
 
ISO recovers chondrocytes viability induced by H2O2 
 
The CCK-8 assay revealed that ISO had no negative 
effects on chondrocytes within a specified dose range  
(5–40 μM) (Figure 1C). It was necessary to evaluate the 
cytotoxicity of H2O2 in order to determine the appropriate 
concentration of H2O2 (500 μM) (Figure 1D). The CCK-8 
test was used to estimate cell viability in relation to the 
protective effect of ISO on H2O2-induced chondrocytes. 
Analysis of cell viability revealed that ISO greatly 
increased cell viability (Figure 1E). After H2O2 treatment, 
cell viability decreased to 31% compared to the control 
group. However, cells pretreated with ISO, particularly at 
a dose of 20 μM, showed excellent cell survival against 
H2O2-induced oxidative damage. Thus, this ISO (20 μM) 
was used in following studies. 
 
RNA-seq and bioinformatics analysis predicts ISO 
potential functions-apoptosis and oxidative stress. 
 
After RNA-Seq and bioinformatic analysis, the 542 
upregulated genes and the 899 downregulated genes were 
conducted to identify the mechanism of ISO therapy in 
H2O2-induced chondrocytes. A single RNA-seq library 
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represented the transcriptome of each sample. Red 
denotes upregulated genes, while green denotes 
downregulated genes, as presented in Figure 2A–2C. The 
gene change values are shown in Figure 2D. In the model 
group, a total of 3,015 DEGs were verified, with 1,141 
upregulated and 1,874 downregulated compared to the 
normal group. After ISO pretreatment, 542 genes were 
upregulated and 899 genes were downregulated in 
comparison to the OA group. GO analysis of DEGs 
revealed that “regulation of cell migration”, “regulation 
of cell component movement”, “regulation of cell 
motility” and “extracellular matrix organization” were 
the most significantly altered GO terms (Figure 2E–2G). 
Among these changes, we summarized the functions of 
the main changes as “oxidative stress” and 
“mitochondrion function.” Furthermore, KEGG pathway 
enrichment analysis (Figure 3A–3C) revealed pathways 
associated with “apoptosis,” “PI3K/Akt signaling 
pathway,” and “MAPK signaling pathway.” The genetic 
changes associated with the aforementioned terms are 
depicted in Figure 2H. 
 
ISO protects chondrocytes from apoptosis 
 
ISO inhibits H2O2-induced chondrocytes apoptosis 
Previous research found that ISO inhibited 
chondrocyte death (Figure 1E). Apoptosis is one of 

the most common cell deaths induced by H2O2. 
According to bioinformatics results, apoptosis was the 
related death mode that ISO inhibited chondrocyte 
death (Figure 2H). Additionally, flow cytometry was 
also used to validate this interaction. As shown in 
Figure 4A, flow cytometry was performed to 
determine how ISO affected H2O2-induced 
chondrocytes apoptosis. H2O2-treated chondrocytes 
produced more apoptotic cells than the control group. 
It was interesting to note that exposing chondrocytes 
to ISO reduced the number of apoptotic chondrocytes 
(Figure 4B), supporting the impact of ISO on 
chondrocyte apoptosis. 
 
ISO restores mitochondrion function 
Assessment of MMP was used as an indicator of early 
apoptosis. MMP, caused by an excess of ROS in the 
mitochondria, destroys DNA and the mitochondrial 
membrane, resulting in mitochondrial dysfunction [25]. 
Therefore, MMP was used to assess the protective 
capacity of ISO against apoptosis by H2O2 in 
chondrocytes (Figure 4F). Normal chondrocytes with 
high MMP fluoresced red after staining with JC-1. 
However, there was a decrease in membrane potential 
in the OA group, as evidenced by green fluorescence. 
The fluorescence returned to almost normal levels in the 
ISO-pretreated group. 

 

 
 

Figure 1. The effect of ISO or H2O2 on chondrocytes. (A) Identification of primary chondrocytes in SD rats. (A-a) shows the 
morphology of chondrocytes under light microscopy. (A-b) cellular immunofluorescence detection of ACAN expression. (A-c) cellular 
immunofluorescence detection of Col2α1 expression. (B) The chemical structure of isoorientin (ISO). (C) Toxicity test of ISO on cell 
viabilities of chondrocytes. (D) Effect of different concentrations of H2O2 on the viability of chondrocytes. (E) Effects of ISO on H2O2-
induced injury chondrocytes viability. Results shown are expressed as means ± SD (n = 6). #p < 0.05 compared with control group, *p < 
0.05 compared with OA group. 
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Figure 2. The result of RNA-seq analysis. (A–C) The volcano plot shows the distribution of genes and the results of significant differences 
in genes. (A) Control group vs OA group. (B) OA group vs ISO+OA. (C) Control group vs ISO+OA. (D) The up-regulation and down-regulation of 
gene in this study, Fold change > 1.5, p < 0.05. (D–F) The GO enrichment analysis. (E) Control group vs OA group. (F) OA group vs ISO+OA. (G) 
Control group vs ISO+OA. (H) Heat map of the representative function. 
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ISO inhibits apoptosis of H2O2-induced chondrocytes 
by apoptosis and MAPK signaling pathways 
A further attempt to understand its mechanism of ISO 
inhibiting apoptosis of H2O2-induced chondrocytes, we 
validated the key proteins in apoptosis signaling 
pathways. Key proteins in the mitochondrion were 
quantified using western blot assays. As a result, 
mitochondrial proteins (Bax, Bcl-2, caspase-3, and 
cleaved caspase-3) were identified [26]. The H2O2-
induced more Bax and more cleaved caspase-3 while 
less Bcl-2 in chondrocytes. The results showed that 
chondrocytes exposed to ISO had a higher Bcl-2/Bax 
ratio and lower levels of cleaved caspase-3/caspase-3 
(Figure 4C–4E). These findings indicated that ISO 
regulated the production of the aforementioned proteins 
in order to regulate mitochondrion activity. The MAPK 
signaling pathway regulates apoptosis, and the context-
dependent effects of MAPK signaling on apoptosis may 
be determined by specific MAPK subfamily members 
[27, 28]. To investigate the mechanism and validate the 
bioinformatic analysis findings, the expression of 
MAPK-related protein was analyzed via western 
blotting (Figure 4G). The OA group had significantly 
higher p-JNK/JNK, p-ERK/ERK, and p-P38/P38 ratios 
than the control group, as shown in Figure 4H–4J. 
However, ISO treatment significantly increased the 
levels of phosphorylation protein recovered. These 
findings showed that the ISO inhibited H2O2-induced 
oxidative stress by regulating MAPK signaling 
pathway. 
 
ISO protects chondrocytes from oxidative stress 
 
ISO decreases H2O2-induced ROS in chondrocytes 
In order to further understand how ISO protect 
chondrocytes from apoptosis, we studied oxidative 
stress in this study. Apoptosis is typically caused by 
oxidative stress, which causes DNA damage and 
mitochondrial dysfunction [23, 25]. To validate the 
results of the bioinformatic analysis, we investigated 
ROS production in chondrocytes. DCFH-DA was used 

as a fluorescent probe to measure ROS production. The 
level of intracellular ROS may be indicated by DCF 
fluorescence [29]. As presented in Figure 5, the ROS 
were found using flow cytometry (Figure 5B) and an 
inverted fluorescence microscope (Figure 5A). H2O2 
therapy significantly increased ROS production when 
compared to the control group. However, when 
compared to the OA group, ISO pretreatment 
significantly reduced ROS generation. The numerical 
outcome showed that ISO reduced H2O2-induced ROS 
overproduction (Figure 5C). 
 
ISO increases the expression of SOD, HO-1 and 
NQO-1 in chondrocytes 
The increase in lipid peroxidation caused by ROS-
induced oxidative damage typically reduces membrane 
fluidity and enzyme function [30]. The SOD level, 
which measures the strain on the intracellular oxidizing 
system, indirectly reflects the amount of intracellular 
free radicals [31]. When cells were treated with H2O2 
alone, it was discovered that they had acute damage 
compared to the control group, as evidenced by a 
significant decrease in SOD. In contrast to the control 
group, incubating chondrocytes with ISO resulted in a 
significantly higher increase in SOD levels. (Figure 5I). 
After ISO pretreatment, antioxidant enzymes HO-1 and 
NQO-1 significantly increased (Figure 5G, 5H). The 
Nrf2/Keap1 signaling pathway is strongly linked to ISO 
oxidation resistance [32]. 
 
ISO decreases H2O2-induced MDA production in 
chondrocytes 
It is well known that MDA, a secondary byproduct of 
lipid peroxidation, is a marker of cell membrane 
damage. As a result, we determined the MDA content 
of the chondrocytes produced. The researchers found 
that MDA generation increased in response to 500 μM 
H2O2, thereby indicating cellular oxidative stress. 
However, MDA levels in the ISO group were lower 
than in the OA group (Figure 5D), indicating that ISO 
pretreatment reduced oxidative damage. 

 

 
 

Figure 3. The result of KEGG analysis. (A) Control group vs OA group. (B) OA group vs ISO+OA. (C) Control group vs ISO+OA. 
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Figure 4. Effect of ISO on apoptosis. (A, B) Effects of ISO pretreatment on the apoptosis by flow cytometry analysis. (C–E) Effects of ISO 
pretreatment on the apoptosis pathway by western blotting analysis. (F) Effect of ISO pretreatment on the MMP in H2O2-induced 
chondrocytes. Red represents high MMP, green represents low MMP. (G–J) Effects of ISO pretreatment on the MAPK pathway by western 
blotting analysis. Results shown expressed as means ± SD (n = 3). #p < 0.05 compared with control group, *p < 0.05, **p < 0.01 compared 
with OA group. The H2O2 concentration is 500 μM. 
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Figure 5. Effect of ISO on oxidative stress. (A) Fluorescence imaging analysis and (B) flow cytometry analysis on the ROS production of 
ISO treatment; (C) Bar graph summarizes the data on ROS production. (D–H) Effects of ISO pretreatment on the Nrf2/keap1 pathway by 
western blotting analysis. (I, J) Effect of ISO on the level of SOD and the activity of MDA of H2O2-induced injury Chondrocytes viability. (K–N) 
Effects of ISO pretreatment on the PI3K/Akt pathway by western blotting analysis. Results shown are expressed as means ± SD (n = 3).  
#p < 0.05 compared with control group, *p < 0.05 compared with OA group. The H2O2 concentration is 500 μM. 
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ISO inhibits H2O2-induced oxidative stress by 
regulating Nrf2/keap1 and PI3K/Akt signaling 
pathways 
Nrf2 regulates the endogenous antioxidant defense 
system. Nrf2 significantly increased after ISO 
pretreatment, as shown in Figure 5D, 5E. These 
findings suggested that the Nrf2 pathway may be 
involved in ISO’s control of H2O2-induced oxidative 
stress. Previous research showed that activated Akt 
phosphorylates affected the expression of Nrf2 
downstream signaling pathway [7]. To confirm the 
bioinformatic analysis findings of ISO-treated H2O2-
induced chondrocytes, we assessed the expression of the 
target protein of PI3K/Akt/mTOR signaling pathway 
through western blotting. According to ISO, the ratio of 
p-Akt to Akt has been restored, implying that the 
process by which ISO controls H2O2-induced oxidative 
stress may involve the PI3K/Akt/mTOR signaling 
pathway. 
 
DISCUSSION 
 
Osteoarthritis, a chronic degenerative disease, is 
considered to affect patient health and quality of life 
[2]. According to recently published research, OA is 
an oxidative stress disease with an increased risk due 
to excessive oxidation [33, 34]. There are numerous 
treatments for OA, but none are conclusive. Herbal 
treatments are popular among researchers because they 
are non-toxic and have few side effects [35, 36]. ISO 
has a wide range of biological activities, such as 
antitumor and immunoregulatory activities. 
Furthermore, ISO has been reported in several 
publications to protect against oxidative damage [9, 
21, 37]. However, few studies have been conducted on 
the protective mechanism of ISO. The articular 
cartilage and synovial fluid of osteoarthritis patients 
are subject to oxidative stress, so we simulated 
osteoarthritis in vitro by using H2O2 [38]. Our findings 
show that ISO protects cells from apoptosis and 
oxidative damage while having no toxic effect on rat 
chondrocytes (Figure 1C). It is a desire to seek and 
investigate highly efficient and low-side-effect 
biofunctional molecules to reduce oxidative damage, 
with the goal of further clarifying the mechanism of 
ISO for future application. 
 
In recent years, RNA-seq and bioinformatics have 
emerged as new scientific research methods [39, 40]. 
RNA-seq and bioinformatics can provide valuable 
insights into a variety of aspects of an experiment [41]:1. 
RNA-seq and bioinformatics technologies can identify 
genes that are expressed differently in different groups or 
conditions, revealing details about their altered biological 
processes. 2. RNA-seq and bioinformatics technologies 
also provide data on alternative splicing events, allotypic 

use, and post-transcriptional modifications, allowing for a 
more comprehensive understanding of gene regulation. 3. 
RNA-seq and bioinformatics provide guidance for 
selecting genes for further validation using techniques 
like Western blotting and q-PCR. In the current study, 
ISO effectively prevents chondrocyte death. We used 
bioinformatics to sequence three groups of cells and 
analyze their differential genes. In our analysis, we 
discovered that ISO affects two biological processes, 
apoptosis and oxidative stress, so we validated them with 
laboratory tools. 
 
Chondrocyte apoptosis (programmed cell death) is a 
critical factor in OA [42]. Apoptosis is thought to 
occur in the early stages of OA chondrocytes in order 
to protect them from mechanical stress and 
inflammation [43]. However, As the disease 
progresses, excessive chondrocyte apoptosis can 
destroy tissues and cartilage [44]. As a result, 
apoptosis inhibition may be useful in the treatment of 
OA. Reduced Bcl-2/Bax and increased cleaved 
caspase-3/caspase-3 levels are important indicators of 
mitochondrial apoptotic pathway activation. Our 
findings demonstrated that ISO could inhibit the 
expression of pro-apoptotic proteins induced by 
hydrogen peroxide as well as the reduction of 
apoptotic proteins in chondrocytes. Furthermore, the 
combination ISO treatment restored MMP in H2O2-
induced chondrocytes. In brief, these findings suggest 
that ISO inhibits chondrocyte apoptosis induced by 
H2O2, which may be mediated by the MAPK 
signaling pathway. ISO has been shown in numerous 
studies to prevent apoptosis caused by the MAPK 
signaling pathway [27, 45–47]. This phenomenon is 
also confirmed in our current study, which provides a 
theoretical foundation for ISO osteoarthritis 
treatment. 
 
Apoptosis and oxidative stress have been highly 
correlated in many studies [48, 49]. The imbalance 
between oxidation and antioxidation causes oxidative 
stress [11]. Currently, researchers are attempting to 
comprehend how ISO protects against oxidative stress. 
ROS is a key oxidative stress indicator that is involved 
in both physiological and pathological cell functions. 
According to Zheng et al., ISO protects human dermal 
fibroblasts (HDFs) from UVB-induced damage by 
lowering ROS generation [50]. This is consistent with 
our findings, and we also discovered that ISO can 
increase SOD activity and decrease MDA 
accumulation. Furthermore, Mina Alimohammadi et al. 
[51, 52] discovered that flavonoids (ISO is one of the 
flavonoids) increased SOD activity while decreasing 
MDA production. In conclusion, ISO may protect 
chondrocytes from oxidative injury by increasing  
SOD activity and decreasing ROS and MDA 
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production. This antioxidant capacity has been 
demonstrated in vitro [53]. 
 
ISO protects against oxidative damage by increasing 
the activity of antioxidant enzymes and activating the 
Nrf2 antioxidant pathway [21, 54]. However, the 
protective mechanism of ISO against oxidative injury 
may be unclear in various disease models. The key 
signaling pathway that leads to antioxidant damage in 
organisms is known as Nrf2/Keap1. When exposed to 
oxidative stress, Nrf2 migrates to the nucleus and 
activates antioxidant response element (ARE) genes 
such as HO-1 and NQO-1. Western blot analysis 
revealed that ISO increased Nrf2 levels as well as HO-
1 and NQO-1 protein expression, implying Nrf2/keap1 
activation. In addition to validating the bioinformatics 
of KEGG, we also validated the PI3K/Akt pathway. 
Importantly, PI3K/Akt modulates Nrf2 activity 
primarily by phosphorylating Keap1, a negative 
regulator of Nrf2, and inhibiting its activity [5, 55]. 
Our findings showed that the PI3K/Akt pathway 
promotes Nrf2 activity and antioxidant gene 

expression, which can protect cells from oxidative 
stress and disease. 
 
Finally, the findings of this study indicate that ISO  
has the potential to relieve apoptosis and oxidative 
stress by modulating the MAPK and PI3K/Akt 
signaling pathways (Figure 6). This is the first study to 
examine the potential protective mechanisms of ISO in 
chondrocytes using RNA-seq and western blotting, 
providing insights into future directions for application 
through understanding ISO protective effects and 
signaling pathway targeting. 
 
CONCLUSIONS 
 
In summary, OA has been proven to progress due to 
excessive oxidative stress. Increasing antioxidant 
levels may thus represent a novel strategy for slowing 
the progression of OA. Our findings highlight that 
ISO, as a novel antioxidant, can delay the progression 
of OA by inhibiting chondrocyte apoptosis and 
oxidative stress. 

 

 
 

Figure 6. Diagram show the mechanism of ISO mitigates apoptosis and oxidative damage to Chondrocytes caused by H2O2. 
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