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INTRODUCTION 
 

Gastric cancer (GC) is one of the most common and 

fourth most lethal malignant cancers worldwide [1]. 

Unfortunately, patients with GC are often diagnosed at 

advanced stages and have few effective treatment 

options, resulting in poor prognosis [2]. Therefore, 

novel therapeutic approaches and biomarkers are 

urgently needed to improve the prognosis of gastric 

cancer. In 2014, The Cancer Genome Atlas (TCGA) 

proposed 4 molecular GC subtypes, including 

microsatellite instability (MSI), which accounts for 

about 22% of GC cases [3]. According to existing 

literature, MSI is caused by failure in the DNA 

mismatch repair system, and is characterized by 

accelerated accumulation of mutated single nucleotides, 
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ABSTRACT 
 

Background: Mounting evidence has underscored the pivotal role of the competitive endogenous RNA (ceRNA) 
regulatory networks among various cancers. However, the behavior characteristics and complexity of the ceRNA 
network in Gastric cancer (GC) remains unclear. In this study, we aimed to clarify a Microsatellite instability 
(MSI)-related ceRNA regulatory network and identify potential prognostic markers associated with GC. 
Methods and Results: We extracted transcriptome data of GC patients from The Cancer Genome Atlas (TCGA) 
and identified differentially expressed lncRNAs, miRNAs and mRNAs based on MSI status. A hub ceRNA 
network including 1 lncRNAs (MIR99AHG), 2 miRNAs and 26 mRNAs specific to MSI was established in GC. We 
further constructed a prognostic model with seven target mRNAs by Lasso Cox regression, which yielded AUC 
values of 0.76. The prognostic model was further validated in an external independent dataset that integrated 
three GEO datasets. The characterization of immune cell infiltration and immunotherapy effects between high-
risk and low-risk groups were then analyzed. Immune cell infiltration was significantly different between high- 
and low-risk groups based on risk scores. GC patients with lower risk scores correlated with better immune 
checkpoint inhibitor therapy (ICI) response. We further validated the expression and regulatory relationship of 
the ceRNA network in vitro experiments, and also confirmed the relationship between MIR99AHG and PD-L1. 
Conclusions: Our research provides in-depth insights on the role of MSI-related ceRNA in GC and the prognosis 
and ICIs therapy response of GC patients can be assessed by the risk model based on MSI-related ceRNA network. 
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which further results in alterations in the length of 

microsatellite sequences that are prevalent in the 

genome [4]. Several MSI studies on GC have shown 

that the overall survival of patients in the MSI group 

was better than that in the stable category, for 

participants who had received surgical resection alone 

or a combination of surgery and radiotherapy. However, 

this trend is inconsistent in patients receiving 

chemotherapy [3]. Additionally, recent studies indicated 

that GC patients with MSI are more likely to benefit 

from immune checkpoint inhibitors (ICIs) [5]. 

Therefore, further attention should be paid to how MSI 

affects the prognosis of GC and the efficacy of 

immunotherapy.  

 

The Competing endogenous RNA network (ceRNA 

network) is a ubiquitous regulatory network, which 

greatly enriches the genetic diversity of the human 

genome [6]. In traditional conditions, miRNAs exert 

their function of regulating gene expression by binding 

to the mRNAs’ miRNA response elements (MREs), and 

further guiding the Argonaute protein to activate the 

degradation of target genes. However, recent insights 

propose that miRNAs can be competitively absorbed by 

other long non-coding RNAs (lncRNAs) containing the 

same MREs, thus affecting their regulatory effect on 

target genes. This type of lncRNAs is called ceRNAs 

and the wide crosstalk among genes mediated by 

miRNAs is referred to the ceRNA network [7]. Because 

the same MREs can be contained in many different 

lncRNAs and target genes, the formed ceRNA 

regulatory network is very large and nearly 60% of 

coding genes are regulated by this kind of crosstalk [7]. 

Recent studies have shown that ceRNA networks also 

play a critical role in the progression of GC [8]. Some 

lncRNAs, for example HULC, RP11-314B1.2, 

LINC00106 and RP11-999E24.3 can affect the 

prognosis of GC patients through the ceRNA 

mechanism, presenting potentially new therapeutic 

targets [8]. Furthermore, several studies have shown 

that the ceRNA network may be related to immune cell 

infiltration in the tumor microenvironment (TME) [9]. 

However, to the best of our knowledge, there are no 

studies on the ceRNA network in the MSI GC subtype, 

and it is therefore necessary to explore the possible 

ceRNA regulatory network under microsatellite 

instability and its impact on the prognosis of GC. 

 

Over the recent years, immune checkpoint inhibitor 

(ICI) therapy has gained popularity as a new form of 

cancer treatment. In 2017, the United States (US) Food 

and Drug Administration (FDA) approved the use of 

pembrolizumab for the treatment of PD-L1+ GC 

patients. Additionally, a retrospective analysis also 

confirmed that patients with MSI are more likely to 

benefit from ICI [3]. However, some patients still have 

little response to ICIs therapy or exhibit resistance to 

ICIs [10]. Therefore, it is urgent to find novel 

biomarkers that can predict and improve ICI efficacy 

and prognosis of GC.  

 

In this study, differentially expressed mRNAs, miRNAs 

and lncRNAs (DEmRNAs, DEmiRNAs, DElncRNAs) 

between patients with high microsatellite instability 

(MSIH) and microsatellite stability or low microsatellite 

instability (MSIL/S) were analyzed. The MSI-related 

ceRNA network was established using the 

“GDCRNATools” package in R. In addition, survival 

analysis and location prediction were conducted targeting 

the lncRNAs in the network and MIR99AHG, located in 

the cytoplasm, was identified as a hub lncRNA with 

prognostic significance. MIR99AHG encodes lncRNA 

MIR99AHG as well as a miR-99a/let-7c/miR-125b2 

cluster on chromosome 21q. Precious studies reported that 

MIR99AHG was involved in progression of head and 

neck squamous cell carcinoma and lung squamous cell 

carcinoma, and correlated with survival rate [11, 12]. In 

addition, MIR99AHG could inhibited glioblastoma 

temozolomide sensitivity [13]. Of note, MIR99AHG 

could accelerate EMT and suppress apoptosis of GC cells 

by miR577/FOXP1 axis [14]. The specific mechanism of 

MIR99AHG in the progression of GC and its relationship 

with immunotherapy still need further exploration. 

Therefore, the MIR99AHG-related subnetwork was 

screened and nodes with prognostic value were retained. 

The prognosis prediction model based on this network 

was then established using TCGA data and validated in 

independent GEO datasets. Next, correlation between our 

predicted risk score and ICI efficacy was analyzed. The 

results showed that our predictor could reflect patients’ 

responses to ICI to a certain extent. Finally, differences in 

immune cell infiltration and expression of chemokine 

genes between different risk groups were simultaneously 

analyzed. The co-expression patterns of these immune 

cells and chemokines were also identified and their 

relationship with MIR99AHG analyzed. The MSI-related 

ceRNA network established in this study provides new 

insights on the mechanisms through which MSI regulates 

GC progression and influences prognosis. Moreover, the 

generated GC-prognostic model based on the hub network 

can successfully predict the prognosis of patients and 

forecast response to ICI.  

 

RESULTS 
 

Differentially expressed mRNAs (DEmRNAs), 

miRNA (DEmiRNAs) and lncRNAs (DElncRNAs) 

between MSIH and MSIL/S 

 

Supplementary Table 1 shows the patient information 

collected in this study, and the proportion of patients 

with different clinical characteristics. DEmRNAs, 
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DEmiRNAs and DElncRNAs between the MSIH and 

MSIL/S groups were analyzed based on the 343 

samples with MSI information from TCGA-STAD. The 

screening conditions were set at |log2 (fold change) |>1 

and FDR<0.05 for mRNA and lncRNA, and |log2 (fold 

change) |>0.5 and FDR<0.05 for miRNA. The results in 

Figure 1A–1C show that there were 900 DEmRNAs of 

which 44 and 856 were up and down regulated, 

respectively; 96 DEmiRNAs of which 29 and 67 were 

up and down regulated, respectively; and 60 

DElncRNAs of which with 9 and 51 were up and down 

regulated, respectively. 

 

Construction of an MSI-related lncRNA-miRNA-

mRNA ceRNA network 

 

Based on the screened DEmRNAs, DEmiRNAs and 

DElncRNAs, the “gdcCEAnalysis” function in the 

“GDCRNATools” package was used to construct the 

MSI-related ceRNA network. The cut-off P values for 

the hypergeometric and Pearson correlation tests were 

both set at 0.01 and the regulation similarity value was 

required to be higher than 0. The constructed ceRNA 

network consisting of 2,729 lncRNA-mRNA pairs, 

13,334 edges and 895 nodes (808mRNA, 44 miRNAs 

and 43 lncRNAs), is shown in Supplementary Table 2. 

The table also contains information on LncRNA-

miRNA-mRNA pairs, hypergeometric distribution, 

correlation test details, regulation similarity and 

sensitivity correlation. Enrichment analysis was 

conducted based on the 808 mRNAs. The findings in 

Figure 1D, 1E show that 44 KEGG pathways were 

enriched, including MAPK signaling pathway, focal 

adhesion and Wnt signaling pathway. On the other 

hand, GO analysis revealed that the most enriched 

biological process (BP) was the muscle system 

process, the most enriched cellular component (CC) 

was the collagen-containing extracellular matrix, and 

the most enriched molecular function (MF) was 

channel activity. 

 

 
 

Figure 1. Identification of DEmRNAs, DEmiRNAs, DElncRNAs, and enrichment analysis of genes associated with the MSI-
related ceRNA network. (A–C) DEmRNAs, DElncRNAs and DEmiRNAs between MSIH and MSIL/S. (Red represents upregulated whereas 

green represents downregulated genes). (D, E) The KEGG and GO enrichment analysis of genes in the MSI-related ceRNA. (Based on the gene 
ratio, the top 30 KEGG pathways and top 10 GO terms are shown). 
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Screening of the hub MSI-related ceRNA with 

prognostic significance 

 

We conducted survival analysis on 43 lncRNAs in the 

constructed MSI-related ceRNA network. Three lncRNAs 

with prognostic significance were identified, including 

MIR99AHG, HAGLR and LINC02381 (Figure 2A). Based 

on the sequences downloaded from NCBI, the lncLocator 

prediction results (Figure 2B) showed that only 

MIR99AHG was located in cytoplasm. Therefore, 

MIR99AHG was selected as the hub lncRNA and the 

MIR99AHG-related ceRNA network was shown in 

Figure 2C. This subnetwork contained 87 lncRNA-

mRNA pairs, 1116 edges and 109 nodes (1 lncRNA, 21 

miRNAs and 87 mRNAs). Additionally, Unicox analysis 

was conducted, targeting the nodes in this subnetwork 

(Supplementary Table 3). Only nodes with prognostic 

significance were retained for constructing the final hub 

ceRNA network (Figure 2D). This network is comprised 

of 26 lncRNA-mRNA pairs, 43 edges and 29 nodes (1 

lncRNA, 2 miRNA and 26 mRNA). Of the two miRNAs, 

let-7f-5p was identified as a protective factor while mir-

125a-5p was shown to be the risk factor. All the 26 

mRNAs were risk-associated genes.  

 

Establishment and validation of the prognosis 

prediction model based on the MSI-related ceRNA 

regulatory network 

 

The Lasso Cox regression algorithm was applied to 

establish the prognosis prediction model, based on the 26 

mRNAs in the final hub ceRNA network (Supplementary 

Figure 2). The constructed model comprised of 7 genes 

and the risk score was calculated as follows: 

RiskScore=IL1RL1*0.042604+SPAG16*0.069518+FAM

110B*0.050744+ANKRD6*0.017904+ACSS3*0.068896+

CORO2B*0.034964+TNFAIP8L3*0.036276. Patients 

were stratified into the high- and low-risk groups based on 

the predicted score. In addition, KM curves were plotted, 

and survival difference was analyzed. The results revealed 

that high-risk patients had worse OS (Figure 3A). 

Moreover, ROC curve analysis (Figure 3B) showed that 

the AUC of the prediction model was 0.76. Results from 

PCA (Figure 3E) showed that the distribution of these 2 

groups was diverse, and could not be separated linearly. 

Moreover, the scatter plots (Figure 3E) showed that, with 

increased risk scores, patients had a shorter lifespan and a 

higher possibility of death. Finally, a heatmap was used to 

show the expression patterns of the 7 genes used in the 

model. As shown in Figure 3F, all the genes were risk 

factors for GC patients. Additionally, the precited risk 

score was associated with some clinical characteristics, 

therefore correlation tests were conducted. The findings 

revealed that a high risk was associated with MSIL/S, a 

higher grade and a younger age (Supplementary  

Figure 3A). 

 

To test the generalization ability of the established 

model, the above tests were repeated in an independent 

GEO dataset (n=689). The overall results were 

consistent with those obtained from the TCGA 

database, further validating our model. Figure 4A shows 

 

 
 

Figure 2. Construction of the final hub ceRNA network. (A) Three lncRNAs with prognostic significance: MIR99AHG, HAGLR and 

LINC02381. (B) Predicted location of MIR99AHG, HAGLR and LINC02381. (C) MIR99AHG-related ceRNA network. (D) The final hub ceRNA 
network with prognostic significance. (In the above network, green, red and blue circles represent lncRNA, miRNA and mRNA, respectively). 



www.aging-us.com 5 AGING 

that high-risk patients had worse OS and Figure 4B 

shows that the AUC was 0.7. The PCA results (Figure 

4C) showed that the distribution of the 2 groups was 

different and the scatter plot (Figure 4E) confirmed that 

the mortality rate increased with a higher risk score. 

Finally, the heatmap showed that the 7 genes were all 

risk factors, and a higher risk was associated with a 

younger age (Supplementary Figure 3B).  

 

To further test whether the predicted risk score was an 

independent prognosis index for GC patients, this study 

integrated the risk score with other clinical factors into 

Unicox and Multicox analyses. Results for the TCGA 

database are shown in Figure 5A, 5B. Unicox analysis 

revealed that age, stage, T, M, N, and the risk score, 

were risk factors for GC patients (Figure 5A). On the 

other hand, Multicox analysis confirmed that age, M 

and risk score, were independent prognostic factors for 

GC (Figure 5B). Results for the GEO database were 

shown in Figure 5C, 5D. Unicox analysis showed that 

age and risk score were risk factors for GC patients 

(Figure 5C). Moreover, Multicox analysis identified 

these 2 factors (age and risk score) as independent 

prognostic factors for GC (Figure 5D). Furthermore, 

Differential expression gene (DEG) analysis was 

conducted in the TCGA database between the high- and 

low-risk groups. The results showed that 913 genes 

were up regulated in the high-risk group while 30 genes 

were downregulated. KEGG and GO enrichment 

analyses were then conducted on these DEmRNAs. A 

 

 
 

Figure 3. Construction and validation of prediction model in the TCGA database. (A) KM curves and survival analysis. (B) Time-

dependent ROC curves and AUCs. (C) PCA analysis. (D) Distribution of risk scores and median values. (E) Scatter plot showing the overall 
survival of patients. (F) Heatmap of the 7 genes used in the model. 
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total of 52 pathways (Figure 5E) were enriched in the 

KEGG analysis and the most interesting included the 

PI3K-Akt signaling pathway, focal adhesion and 

vascular smooth muscle contraction. After comparing 

these pathways with the 43 enriched pathways in Figure 

1D (representing the MSI-related ceRNA regulatory 

network), 28 pathways were shown to be conserved 

(Supplementary Table 4). This demonstrated that the 

constructed model generally represented the MSI-

related ceRNA regulatory network. Finally, GO analysis 

showed that the most enriched BP, CC, and MF were 

extracellular matrix organization, collagen-containing 

extracellular matrix and the extracellular matrix 

structural constituent, respectively (Figure 5F). 

 

Correlation between risk score and IPS 

 

315 IPS scores for TCGA-STAD patients were 

downloaded from the TCIA database and integrated into 

patient data. The IPS score can be classified into 2 

types, where one type represents the possibility of 

response to the PD1/PDL1/PDL2 blocker, while the 

other represents the possibility of response to the 

CTLA4 blocker. Additionally, patients can be divided 

into 3 groups based on the IPS score: 4-6, 7-8 and 9-10. 

With respect to the PD1/PDL1/PDL2 blocker, these 3 

groups of patients accounted for 18%, 66% and 16%, 

respectively, while for the CTLA4 blocker, these 3 

categories of patients accounted for 7%, 57% and 36%, 

respectively. Differences in risk scores among the 3 

groups were compared and the results are shown in 

Figure 6A, 6B. In both therapies, the risk score of the 9-

10 group was significantly lower than that of the 7-8 

category, indicating that a lower risk score was 

associated with a better ICI response. These results 

demonstrated that our calculated signature could not 

only predict OS but also forecast the ICI response to a 

certain degree. To further explore this interesting 

observation, we assessed the correlation between the 

expression of the hub nodes (MIR99AHG and 7 genes 

 

 
 

Figure 4. Validation of the prediction model in the GEO database. (A) KM curves and survival analysis. (B) Time-dependent ROC 

curves and AUCs. (C) PCA analysis. (D) The distribution of risk scores and median values. (E) Scatter plot showing the overall survival of 
patients. (F) Heatmap of the 7 genes used in the model. 
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used in the model) and 3 immune checkpoint genes 

(PD-L1(CD274), PD1(PDCD1), CTLA4). The findings 

showed that MIR99AHG, ANKRD6, ACSS3, CORO2B, 

FAM110B, and SPAG16 were negatively associated 

with PD-L1 (Figure 6C). Additionally, TNFAIP8L3 was 

positively correlated with PD1, while IL1RL1 was 

positively correlated with CTLA4. However, SPAG16 

was negatively correlated with CTLA4. 

 

Analysis of immune cell infiltration between 

different risk groups 

 

This study simultaneously investigated immune cell 

infiltration and chemokine gene expression among 

different risk groups in the TCGA and GEO databases. 

The results revealed that there were 8 immune cells 

with consistent infiltration in the 2 databases (Figure 

7A, 7B). T cells CD4 memory resting, Mast cells 

resting, B cells naïve and Monocytes were infiltrated in 

the high-risk group, while T cells CD4 memory 

activated, Mast cells activated, Neutrophils and 

Macrophages M1 were mainly infiltrated in the low-risk 

group. In addition, the stromal score and the estimate 

score in the high-risk group were markedly higher, 

demonstrating that the patients had lower tumor  

purity. And the risk score was positively correlated  

with the stromal score and the immune score  

(Supplementary Figure 4). Additionally, 17 chemokines 

 

 
 

Figure 5. Unicox and multicox analyses, and enrichment analysis targeting the DEmRNAs in different risk groups. (A, B) Unicox 

and Multicox analyses in the TCGA database. (C, D) Unicox and Multicox analyses in the GEO database. (E, F) KEGG and GO analyses targeting 
DEmRNAs in different risk groups (According to gene ratio, the top 30 KEGG pathways and the top 10 GO terms are displayed for each 
category). 
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Figure 6. Correlation between the constructed model and ICI. (A) Analysis of risk scores among different IPS-PD1/PDL1/PDL2 groups. 

(B) Comparation of risk scores in the indicated IPS-CTLA4 groups. (C) Expression correlation between hub nodes and immune checkpoint. 
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were consistently expressed in the 2 databases (Figure 

7C, 7D). A total of 14 chemokines (XCL1, CCL2, 

CCL11, CCL13, CCL16, CCL17, CCL19, CCL21, 

CCL22, CCL23, CXCL12, CXCL13, CXCL14 and 

CX3CL1) were highly expressed in the high-risk group, 

while three others (CCL20, CXCL1 and CXCL2) were 

mainly expressed in the low-risk group. The correlation 

of the above immune cells of interest with chemokines 

was further studied. Eight co-expression patterns were 

identified among 5 immune cells and 6 chemokines 

(Co-expression patterns were denoted as “chemokine ~ 

immune cell”), as shown in Figure 7E, 7F. They 

included CX3CL1 ~ T cells CD4 memory activated, 

CXCL14 ~ B cells naïve, CXCL12 ~ mast cells resting, 

CXCL1 ~ neutrophils, CXCL2 ~ neutrophils, CXCL1 ~ 

mast cells activated, CXCL2 ~ mast cells activated and 

CCL19 ~ B cells naïve. This study also investigated the 

association between the hub lncRNA MIR99AHG and 

the 6 identified chemokines. MIR99AHG was observed 

to be positively related to CXCL14, CXCL12 and 

CCL19, but negatively correlated to CX3CL1, CXCL1 

and CXCL2 (Figure 7G). Finally, survival analyses 

were performed on the five identified immune cells in 

the 2 databases. The results showed that Mast cells 

resting and T cells CD4 memory activated were 

significantly correlated with the OS of patients in the 

GEO database (Figure 7H). Moreover, Mast cells 

resting was identified as a risk factor while T cells CD4 

memory activated had the opposite effect. 

 

Validation of the expression and regulatory 

relationship of the ceRNA network 

 

To further validate our findings, we quantified the 

expression levels of MIR99AHG and the crucial genes 

in the prognostic model (IL1RL1, SPAG16, FAM110B, 

ANKRD6, ACSS3, CORO2B and TNFAIP8L3) in 15 GC 

samples and their adjacent nontumor tissues. The PCR 

results revealed that MIR99AHG, IL1RL1, SPAG16, 

ANKRD6 and ACSS3 were upregulated in GC tissues, 

while CORO2B and TNFAIP8L3 were downregulated 

(Figure 8). There was no significant difference in the 

expression of FAM110B between GC samples and the 

corresponding nontumor tissues. Due to the limited 
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Figure 7. Correlations among risk score, immune cell infiltration and chemokine expression. (A, B) Differential infiltration of 

immune cells between high- and low-risk groups in the TCGA and GEO databases. (C, D) Differentially expressed chemokines between high- 
and low-risk groups in TCGA and GEO databases. (E, F) Co-expression pattern of immune cells and chemokines in TCGA and GEO databases. 
(Red box represents consistent trend in both databases) (G) Correlation between MIR99AHG and chemokines of interest. (H) Survival analysis 
of the selected immune cells. 
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number of high-MSI samples, additional MSIH samples 

are needed to verify the expression levels of the above 

genes in different MSI types. 

 

What’s more, we confirmed that MIR99AHG was 

overexpressed in GC cell lines compared with normal 

gastric epithelial cell (Supplementary Figure 5A). 

Knockdown or overexpression of MIR99AHG could 

negatively regulate the expression level of let-7f-5p and 

miR-125a-5p, and positively regulate the expression 

level of IL1RL1, SPAG16, FAM110B, ANKRD6, 

ACSS3, CORO2B and TNFAIP8L3 (Supplementary 

Figure 5B, 5C). The above results confirmed the 

regulatory relationship among the ceRNA network 

molecules. In addition, we analyzed the effect of 

MIR99AHG knockdown and overexpression on PD-L1 

mRNA and protein expression, and also confirmed that 

MIR99AHG could negatively modulate PD-L1 

expression (Supplementary Figure 5D–5F). The specific 

mechanism needs to be further elaborated. 

 

DISCUSSION 
 

Globally, gastric cancer ranks fourth among the most 

common malignancies with poor prognosis [1]. As a 

crucial subtype of GC, MSI was shown to be associated 

with prognosis and ICI response [5]. On the other hand, 

ceRNA is a ubiquitous regulatory network in the human 

genome and is correlated with carcinogenesis, tumor 

progression and immune cell infiltration in the TME 

[7]. In this study, an MSI-related ceRNA network was, 

for the first time, constructed in GC, and a hub 

MIR99AHG-related subnetwork with prognostic 

significance was screened. The results showed that the 

prognosis model based on this network could 

successfully predict OS and was also related to ICI 

efficacy as well as immune cell infiltration in the TME.  

 

MIR99AHG (also referred to as MONK) is located in 

chromosome 21q21.1, with the main function of 

promoting cell proliferation and differentiation. A 

previous study reported that MIR99AHG was 

significantly overexpressed in human GC tissues and 

can promote tumor progression. It was also identified as 

a significant risk factor for patient prognosis. 

Mechanistically, MIR99AHG acted as a ceRNA for 

mir-577, further activating the FOXP1-regulated Wnt/β-

catenin pathway [15]. Additionally, Yutong Ma et al. 

classified MIR99AHG as an immune-associated 

lncRNA, which is significantly associated with survival 

in human skin melanoma (SKCM) and was used in the 

construction of a SKCM prognostic model [16]. Our 

study identified MIR99AHG as a risk factor for GC 

prognosis, consistent with previous findings. 

Interestingly, we also observed low expression of 

MIR99AHG in GC with MSI and its expression had a 

significant negative correlation with PD-L1 expression. 

Notably, most gene targets (ANKRD6 ACSS3, 

CORO2B, FAM110B and SPAG16) for MIR99AHG 

were also negatively correlated with PD-L1 and CTLA4 

expression. According to results from Cox analysis, all 

the target genes and MIR99AHG were risk factors and 

had lower expression levels in the low-risk group. This 

trend was consistent with the observation that a lower 

 

 
 

Figure 8. Validation of the expression of key genes in human tissues. The qRT-PCR results showing expression level of the 8 key 

genes. *p< 0.05, **p < 0.01, ***p < 0.001, ns: no significant difference. 
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risk score was correlated with higher expression levels 

of PD-L1 and a higher possibility of ICI response. 

These results suggest that the final ceRNA network may 

be involved in regulating the expression of immune 

checkpoint targets, thus affecting the efficacy of ICI in 

GC patients. Previous research also showed that 

immune checkpoint-inhibitor therapy alone may be 

inadequate, with a response rate of about 12%. 

Therefore, incorporating other molecular targets to 

improve the efficacy of ICI is an important aspect t that 

needs to be considered in future research. This study 

suggested that MIR99AHG may serve as a novel target 

for GC patients undergoing ICIs therpay. 

 

Seven mRNA genes were included in the final 

prognostic model, including IL1RL, SPAG16, 

FAM110B, ANKRD6, ACSS3, CORO2B and 

TNFAIP8L3. They were all downregulated in the MSIH 

group, positively correlated with MIR99AHG 

expression and were risk factors for the prognosis of 

GC. The Interleukin 1 Receptor Like 1 (IL1RL1) gene 

encodes for the Interleukin-33 (IL-33) receptor. A 

previous study showed that IL1RL1 was upregulated in 

GC tissues and IL-33/ IL1RL1 contributes to the 

progression of GC by regulating the MAPK pathway 

[15]. In addition, Mast cells can be activated by IL-33 

and release macrophage-attracting factors to promote 

the accumulation of tumor-associated macrophages, 

then promote the progression of gastric cancer [15]. 

IL33/ IL1RL1 signaling can also promote the 

accumulation of tumor-infiltrating regulatory T-cells in 

the TME, suggesting that IL1RL1 may be a novel target 

for cancer immunotherapy [17]. The Sperm Associated 

Antigen 16 (SPAG16) is one of the cancer-testis (CT) 

antigens which are significantly associated with 

activation of the anticancer immune response. In a 

previous study, SPAG16 was upregulated in a variety of 

cancer tissues and may therefore serve as a potential 

target for immunotherapy [18]. The Family with 

Sequence Similarity 110 Member B (FAM110B) is 

located in the centrosome and its dysregulation is 

associated with abnormal cell cycle progression [19]. A 

recent study demonstrated that FAM110B was an 

immune-related hub gene in colorectal cancer and its 

expression was positively associated with the 

infiltration of multiple immune cells, such as CD4 T 

cells, macrophages, neutrophils, and dendritic cells [20]. 

Nonetheless, its role in GC remains unclear and 

warrants further research. Coronin 2B (CORO2B) is 

involved in a variety of cell adhesion and cytoskeletal 

related pathways [21]. It was identified as a TME-

related gene and was associated with prognosis in 

esophageal squamous cell carcinoma [22]. In addition, 

the Ankyrin Repeat Domain 6 (ANKRD6), also known 

as Diversin, was highly expressed in several cancer 

tissues [23]. Rui Bai et al. reported that high expression 

of ANKRD6 was correlated with poor prognosis and 

high M2 Macrophage infiltration in colorectal cancer 

[24]. The tumor necrosis factor alpha-induced protein 8-

like 3 (TNFAIP8L3) is a member of the death effector 

domain (DED)-containing protein coding gene family. 

It is involved in multiple biological processes such as 

immune homeostasis, inflammatory response, and 

tumorigenesis [25]. Additionally, TNFAIP8L3 can 

promote tumor invasion and metastasis of GC through 

the PI3K/Akt pathway and was related to poor 

prognosis [26]. Another study reported that miR-9-5p 

inhibits GC growth by downregulating TNFAIP8L3, 

suggesting its pivotal role in GC progression [27]. 

Moreover, the Acyl-CoA Synthetase Short Chain 

Family Member 3 (ACSS3) is recognized as a crucial 

regulator of cancer cell metabolism, especially in the 

context of metabolic stress [28]. According to previous 

research, ACSS3 exhibited high expression in GC and 

was correlated with poor survival. Depletion of ACSS3 

inhibited the growth and invasion of GC cells, 

particularly under starvation [29]. In conclusion, all the 

seven target genes used for constructing the model play 

a critical role in cancer progression. Moreover, a review 

of existing literature confirmed the effect of these genes 

on the prognosis of cancer patients, consistent with our 

study. Importantly, the results demonstrated that several 

genes were involved in immune cell infiltration and 

immune response in the TME. These findings explain 

why the established prognosis predictors are also related 

to the efficacy of ICI in GC, indicating that the target 

genes in the hub MSI-related ceRNA network based on 

MIR99AHG may be future auxiliary targets for ICIs 

therapy in GC. 

 

Immune cells in the TME regulates cancer development 

and progression, thereby influencing the prognosis of 

GC patients [30]. In this study, the relationship between 

the novel predictor and immune cell infiltration was 

analyzed. Results showed that among 22 types of 

immune cells analyzed, 8 immune cells were associated 

with risk score. Moreover, T cells CD4 memory resting, 

mast cells resting, B cells naïve and monocytes were 

enriched in the high-risk group. The other four cell 

types were enriched into the low-risk group, namely the 

T cells CD4 memory activated, mast cells activated, 

neutrophils and macrophages M1. Particularly, mast 

cells resting were identified as a risk factor whereas T 

cells CD4 memory activated were considered as a 

protective factor in our survival analysis. Evidence from 

prior studies has shown that the proportion of mast cells 

in GC tissues is higher than in normal tissues. Mast 

cells were identified as a risk factor in GC, because it 

promoted angiogenesis and metastasis of GC by 

releasing lymphangiogenic factors (VEGF-C and 

VEGF-F) and angiogenic factors (VEGF-A, CXCL8, 

MMP-9) [31]. In addition, studies have shown that 
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programmed death ligands (PD-L1 and PD-L2) were 

expressed in mast cells infiltrating in the GC tissue. 

They can thus be used as an effective target for ICIs 

[31]. As for T cells CD4 memory activated, it was 

found that they mainly inhibit tumor growth. They 

release cytokines at an early stage to chemotactic the 

anti-tumor immune response, and enhance B cell and 

CD8+ T cell responses, and can directly kill damaged 

cells [32]. We further calculated immune, stromal, and 

the estimate score for evaluating the immune cell 

infiltration. The results indicated that the high-risk 

group had a higher TME score and lower tumor purity. 

Collectively, the variation in the content of these 

immune cells and immune functions between the two 

groups suggests a connection between the risk score and 

the TME. Chemokines are chemotactic cytokines which 

play a role in recruiting and locating immune cells in 

TME. In view of the plasticity of immune cells in the 

TME, we analyzed the differentially expressed immune 

cells and chemokines between the high- and low-risk 

groups, and the co-expression relationship among them. 

In total, we found 8 co-expression patterns between 6 

chemokines and 5 immune cells (CX3CL1 ~ T cells 

CD4 memory activated, CXCL14 ~ B cells naïve, 

CXCL12 ~ mast cells resting, CXCL1 ~ neutrophils, 

CXCL2 ~ neutrophils, CXCL1 ~ mast cells activated, 

CXCL2 ~ mast cells activated and CCL19 ~ B cells 

naïve). Previously, Heqiang et al. found that CagA- 

Helicobacter pylori infection induced the release of 

CX3CL1 from the gastric epithelium which 

subsequently recruited CD4 T memory cells. This 

recruitment reduced the infection and damage caused by 

H. pylori [33]. The CXCL14, which is named as B cell 

and monocyte-activated chemokine (BMAC) was 

associated with the deterioration and metastasis of 

multiple malignant tumors [34]. As for CXCL12, Yipin 

et al. found that GC cells recruited mast cells by 

releasing CXCL12. Moreover, the recruited mast cells 

inhibited the immunotoxicity of T cells by increasing 

PD-L1 expression to promote immune evasion by GC 

cells [35]. CXCL1 and CXCL2 are important 

chemokines secreted by neutrophils. Studies have 

shown that CXCL1 and CXCL2 promoted the 

progression of GC by recruiting pro-tumoral neutrophils 

[36]. However, it has also been reported that CXCL1 

and CXCL2 have bidirectional roles in cancer 

progression [37, 38]. In our study, the expression of 

CXCL1 and CXCL2 was significantly correlated with 

neutrophil infiltration. Moreover, both CXCL1 and 

CXCL2 were upregulated in the low-risk group, and the 

role of CXCL1 and CXCL2 in the pathogenesis of GC 

should be further investigated. CCL19 expression was 

significantly increased in the co-culture environment of 

H. pylori-infected gastric mucosa and B cell. H. pylori 

activates the NF-κB pathway in B cells to prevent 

apoptosis of B cells and promote the malignant 

conversion of B cells [39]. In addition, we analyzed the 

relationship among these 6 chemokines and 

MIR99AHG expression, and the results showed that 

MIR99AHG expression was positively correlated with 

CXCL14, CXCL12, and CCL19, and negatively 

correlated with CX3CL1, CXCL1 and CXCL2. 

Importantly, in our survival analysis, mast cells resting 

and MIR99AHG were identified as risk factors whereas 

T cells CD4 memory activated were considered as a 

protective factor. These results were consistent with 

each other and also with the previous literatures. 

Therefore, among the 8 co-expression patterns based on 

chemokines and immune cells, CXCL12 ~ mast cells 

resting and CX3CL1 ~ T cells CD4 memory activated 

should be further investigated.  
 

CONCLUSIONS 
 

To summarize, our bioinformatic analyses revealed an 

MSI-related lncRNA-miRNA-mRNA network with the 

potential to predict the prognosis of GC. Performance of 

the prognosis prediction model was validated in 

external datasets, and was found to be associated with 

ICIs therapy response. The lncRNA MIR99AHG was 

negatively associated with PD-L1 and highly correlated 

with the expression of chemokine genes and immune 

cell infiltration in the GC TME. The established ceRNA 

network and prognostic model lays the foundation for 

future basic and clinical investigations, and 

MIR99AHG might be identified as a novel molecular 

target for accurate diagnosis, targeted therapy, and 

immunotherapy of GC patients. 

 

MATERIALS AND METHODS 
 

Research design and data preprocessing 

 

The study was designed according to the flow diagram 

(Supplementary Figure 1). 

 

Three GEO microarray datasets and the TCGA-STAD 

dataset were downloaded. Specifically, expression 

data from 689 samples and their corresponding 

clinical information were extracted from the  

GEO database (https://www.ncbi.nlm.nih.gov/geo/), 

including 200 samples from GSE15459, 56 from 

GSE34942 and 433 samples from GSE84437. The 

“Combat” function in the “sva” R package was used 

to remove the batch effect. Additionally, the mRNA, 

lncRNA and miRNA expression data from 348 

patients and their clinical characteristics, were 

obtained from the TCGA GDC pipeline 

(https://portal.gdc.cancer.gov/). Moreover, 

immunophenoscore (IPS) and MSI data for patients in 

the TCGA database, were obtained from the Cancer 

Immunome Atlas (TCIA, https://tcia.at/home).  

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://tcia.at/home
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Screening for differentially expressed mRNAs 

(DEmRNAs), miRNA (DEmiRNAs) and lncRNAs 

(DElncRNAs) 

 

Referring to the revised Bethesda guidelines for 

colorectal cancer, samples were divided into two 

groups: samples displaying instability at two or more of 

the five recommended loci (BAT-25, BAT-26, NR-21, 

NR-24, NR-27) were interpreted as MSIH (19.2%), 

while tumors with only one or no locus altered were 

identified as MSIL/S (80.8%). The “gdcDEAnalysis” 

function in the “GDCRNATools” package was applied 

to screen for differentially expressed genes between the 

MSIH and MSIL/S groups [40]. The screening 

conditions were set at |log2 (fold change) |>1 and 

FDR<0.05 for mRNA and lncRNA, and |log2 (fold 

change) |>0.5 and FDR<0.05 for miRNA. A volcano 

plot was used to display the DEmRNAs, DEmiRNAs, 

and DElncRNAs. 

 

Construction of the lncRNA-miRNA-mRNA 

network  

 

The “gdcCEAnalysis” function in the 

“GDCRNATools” package [16] was used to construct 

the ceRNA regulatory network based on the genes 

screened in step 2 (above). This function screens 

credible lncRNA-mRNA pairs based on the following 

criteria [41]: (1) a significant number of miRNAs must 

be shared between the lncRNA-mRNA pair 

(hypergeometric test, p<0.01); (2) a positive correlation 

must exist between this lncRNA-mRNA pair (Pearson 

correlation, Cor>0 and p<0.01); and (3) the common 

miRNAs should play similar roles in regulating the 

expression of the lncRNA and mRNA (regulation 

similarity>0) [42]. Notably, the database used to search 

for possible lncRNA -miRNA and mRNA-miRNA pairs 

can be set in the “gdcCEAnalysis” function. To explore 

as many pairs as possible, the parameter was set as 

“miRcode”, which constructed the largest network. 

Finally, the “clusterProfiler” package was used to 

conduct enrichment analysis targeting the mRNAs in 

the construed network, to reveal the potential functions 

and mechanisms of this ceRNA regulatory network.  

 

Screening for the hub ceRNA network with 

prognostic significance 

 

The constructed ceRNA network from the previous step 

comprised of 2729 lncRNA-mRNA pairs and 895 nodes 

(808 mRNAs, 44miRNAs and 43 lncRNAs). Survival 

analysis was conducted on the 43 lncRNAs to identify the 

hub lncRNAs with prognostic significance. According to 

literature, lncRNAs exert their function based on their 

cellular position and sponging lncRNAs are mainly 

located in the cytoplasm [43]. Therefore, location 

prediction was conducted following survival analysis. In 

addition, nucleotide sequences for the lncRNAs of interest 

were downloaded from the NCBI nucleotide website 

(https://www.ncbi.nlm.nih.gov/nuccore/), then uploaded 

to the lncLocator database (http://www.csbio.sjtu.edu.cn/ 

bioinf/lncLocator/) [44] to predict the possible positions 

of the lncRNAs. The result from this database revealed 5 

possible locations and the corresponding possibility. 

Notably, MIR99AHG was targeted as the hub lncRNA, as 

it was located in the cytoplasm and was a significant risk 

factor for the overall survival of GC patients. Finally, we 

screened for the MIR99AHG-related mRNAs and 

miRNAs, then performed Unicox analysis on the related 

genes. Only genes with prognostic significance were 

retained and the final hub ceRNA regulatory network was 

constructed. 

 

Construction and validation of a prognosis 

prediction model  

 

Based on the mRNAs in the final hub ceRNA 

regulatory network, the “glmnet” package was used to 

construct the prognosis prediction model. Thereafter, 

patients were stratified into the high- and low-risk 

groups based on the median value of the predicted risk 

score. In addition, survival differences between these 2 

groups were analyzed using the Kaplan-Meier curve 

method. The efficiency of the model was tested through 

the ROC curve which was plotted using the “ROCR” 

package. Moreover, PCA analysis was conducted to test 

whether the predicted risk score could successfully 

stratify patients based on risk. MultiCox analysis was 

also conducted to show whether the predicted risk score 

was an independent prognostic factor in GC patients. To 

test the generalization ability of the established model, 

all the above analyses were conducted in the GEO 

datasets which have been detailed in the “Data 

Acquisition and Preparation” section. Furthermore, 

correlation analysis was conducted to check for 

consistencies between the risk score and existing 

clinical characteristics. Finally, differentially expressed 

genes between the 2 risk groups were screened using 

FDR≤0.05 and | logFCfilter | ≥1, and GO and KEGG 

enrichment analyses were conducted based on these 

differentially expressed genes. 

 

Correlation analysis between the predicted risk 

score and ICI response predictor 

 

The IPS scores for 415 patients were downloaded from 

the TCIA database, which uses expression data and a 

machine learning-based algorithm to predict ICI 

(PD1/PDL1/PDL2 blocker or CTLA4 blocker) response 

in 20 types of solid tumors (range from 0-10, higher 

score means higher possibility to response to ICI) [10]. 

The downloaded TCGA-STAD IPS scores ranged from 

https://www.ncbi.nlm.nih.gov/nuccore/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
http://www.csbio.sjtu.edu.cn/bioinf/lncLocator/
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4-10. Therefore, we divided patients into 3 different 

groups (4-6, 7-8 and 9-10) and the Wilcoxon rank test 

was used to show differences in the risk scores between 

the 3 categories. In addition, the study assessed the 

correlation between the hub genes in the final 

prognostic model and the PD-L1/PD1/ CTLA4.  

 

Analysis of immune cell infiltration between 

different risk groups 

 

Basic data files for 22 types of immune cells and the R 

script for infiltration scoring were obtained from the 

CIBERSORT website (https://cibersort.stanford.edu/) 

[45]. The immune-cell infiltration score was calculated 

and compared between different risk groups. The 

immune, stromal, and the estimate score were 

calculated for each sample using the “estimate” 

package. And then we used “ggplot2” package to reveal 

differences in the immune score and stromal score 

between the high- and low-risk groups and the 

relationship between risk score, immune score, and the 

stromal score [46]. Notably, chemokines are a type of 

small cytokines with chemotactic functions. They guide 

cell migration and localization between tissues and play 

an important role in embryogenesis, tissue development 

and immune response [47]. Studies have shown that 

chemokines play an important role in immune cell 

infiltration in the tumor microenvironment (TME) [48]. 

Therefore, this study obtained the list of 40 human 

chemokines, and analyzed differences in their 

expression between different risk groups. Pearson 

correlation analysis was used to find the potential 

regulatory chemokine and immune cell pairs (denoted 

as “chemokine ~ immune cell”) based on the 

differentially expressed immune cells and chemokines 

between the 2 risk groups. Furthermore, the correlation 

between MIR99AHG and these chemokines was 

analyzed. Finally, patients were divided into two groups 

according to the median infiltration score of the immune 

cells of interest, and differences in survival between the 

two categories were analyzed using the KM curve. 

 

RNA isolation and qRT-PCR  

 

Gastric cancer specimen and adjacent nontumor tissues 

were obtained from 15 individuals with GC who had 

undergone gastric cancer surgery between January 2021 

and January 2022 in the Xijing Hospital of Digestive 

Diseases. The TRIzol reagent (Invitrogen, Waltham, 

MA, USA) was used to isolate total RNA from both GC 

and the adjacent nontumor tissues, according to the 

manufacturer’s protocol. Thereafter, 2 µg of the 

extracted total RNA was used for reverse transcription 

using the PrimeScript™ RT Master Mix kit (Takara). 

qRT-PCR analyses for the expression of the 

MIR99AHG, IL1RL1, SPAG16, FAM110B, ANKRD6, 

ACSS3, CORO2B and TNFAIP8L3 genes were 

conducted on the CFX96 Real-Time System (Bio-Rad, 

USA), including with 45 cycles of 95◦C for 5 s and 60◦C 

for 30 s. The primers are listed in Supplementary Table 

5. The 2−ΔΔCt method was employed to analyze the 

relative changes in gene expression. 

 

Statistics 

 

In this study, the Wilcoxon rank test was applied to 

compare indexes between the high and low risk groups. 

Pearson analysis was used to test for the correlation 

between variables of interest and the KM curve was 

employed for survival analysis. All the statistical 

analyses were conducted in R (Version 4.0.2 (2020-06-

22)), and p<0.05 was considered to be statistically 

significant, unless otherwise stated. A Github page 

(https://github.com/itkwffc/MSI-STAD.git) were 

created and all scripts and supported data were 

uploaded. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The flow diagram of the study. 
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Supplementary Figure 2. Prognostic model constructed using LASSO algorithm. (A) LASSO coefficient profiles of the expression of 

26 candidate RBPs. (B) Selection of the penalty parameter (λ) in the LASSO model via cross-validation. 
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Supplementary Figure 3. Correlation between predicted risk score and clinical features. (A) TCGA database results. (B) GEO 

database results. 
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Supplementary Figure 4. Signature-related immune landscape based on the stromal, immune and ESTIMATE scores. (A, B) 

Differences in the TME score between the two risk groups in the TCGA and GEO datasets, respectively. (C, D) The relationship between the 
immune score and risk score in the TCGA and GEO datasets, respectively. (E, F) The relationship between the stromal score and risk score in 
the TCGA and GEO datasets, respectively. 
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Supplementary Figure 5. Experimental validation. (A) Relative expression of MIR99AHG in six gastric cancer cell lines (hgc27, MGC803, 

NCI-N87, SGC7901, SNU-1 and MKN45) and human normal gastric epithelial cell line (GES1) analyzed by quantitative RT-PCR. (B, C) Effect of 
MIR99AHG overexpression or knockdown on the ceRNA network molecules expression. (D–F) Effect of MIR99AHG overexpression or 
knockdown on PD-L1 expression. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 2, 4. 

 

Supplementary Table 1. Data information in 
TCGA and GEO database. 

 
TCGA 

overall  GEO overall 

(N=443) (N=681) 

Event  fustat  

  Alive 247 (55.8%) 0 350 (51.4%) 

  Dead 159 (35.9%) 1 331 (48.6%) 

  Unknow 37 (8.4%)  
 

Age  Age  

  <=65 181 (40.9%) <=65 384 (56.4%) 

  >65 222 (50.1%) >65 297 (43.6%) 

  Unknow 40 (9.0%) Gender  

Gender  Female 224 (32.9%) 

  Female 150 (33.9%) Male 457 (67.1%) 

  Male 256 (57.8%)   

  Unknow 37 (8.4%)   

Grade    

  G1 10 (2.3%)   

  G2 149 (33.6%)   

  G3 240 (54.2%)   

  Unknow 44 (9.9%)   

Stage    

  Stage I 56 (12.6%)   

  Stage II 118 (26.6%)   

  Stage III 167 (37.7%)   

  Stage IV 39 (8.8%)   

  Unknow 63 (14.2%)   

T    

  T1 23 (5.2%)   

  T2 85 (19.2%)   

  T3 185 (41.8%)   

  T4 103 (23.3%)   

  Unknow 47 (10.6%)   

M    

  M0 361 (81.5%)   

  M1 27 (6.1%)   

  Unknow 55 (12.4%)   

N    

  N0 122 (27.5%)   

  N1 109 (24.6%)   

  N2 80 (18.1%)   

  N3 78 (17.6%)   

  Unknow 54 (12.2%)   

MSI    

  Stable 295(66.6%)   

  Low 63(14.2%)   

  High 85 (19.2%)   

PD1_pos    

  10 5 (1.1%)   
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  4 2 (0.5%)   

  5 10 (2.3%)   

  6 63 (14.2%)   

  7 132 (29.8%)   

  8 146 (33.0%)   

  9 57 (12.9%)   

  Unknow 28 (6.3%)   

CTLA4_pos    

  10 23 (5.2%)   

  5 2 (0.5%)   

  6 26 (5.9%)   

  7 83 (18.7%)   

  8 157 (35.4%)   

  9 124 (28.0%)   

  Unknow 28 (6.3%)   

PD1_CTLA4_pos   

  10 3 (0.7%)   

  3 1 (0.2%)   

  4 5 (1.1%)   

  5 31 (7.0%)   

  6 84 (19.0%)   

  7 140 (31.6%)   

  8 101 (22.8%)   

  9 50 (11.3%)   

  Unknow 28 (6.3%)   

 

Supplementary Table 2. MSI-related CeRNA. 

 

Supplementary Table 3. Unicox resultes of hub CeRNA nodes. 

Symbol Type HR HR.95L HR.95H pvalue 

MIR99AHG lnc 1.110934 1.012531 1.218901 0.026207 

hsa-let-7f-5p mir 0.837702 0.718352 0.976882 0.023932 

hsa-miR-125a-5p mir 1.326392 1.078564 1.631165 0.007436 

RASD2 pc 1.155149 1.012299 1.318157 0.032237 

FGF14 pc 1.094469 1.001677 1.195856 0.04582 

CORO2B pc 1.169927 1.03789 1.318762 0.01021 

EFNB3 pc 1.126146 1.011925 1.25326 0.029465 

VTN pc 1.085238 1.019612 1.155089 0.010163 

MAPK10 pc 1.135742 1.015335 1.270427 0.026006 

ACSS3 pc 1.190187 1.064229 1.331052 0.002283 

C7 pc 1.07052 1.011043 1.133497 0.019463 

IL1RL1 pc 1.107351 1.000791 1.225258 0.048236 

ITIH5 pc 1.115472 1.002102 1.241667 0.045676 

ATP1B2 pc 1.145148 1.022607 1.282374 0.01892 

ANKRD6 pc 1.197949 1.043141 1.37573 0.010521 

NOVA1 pc 1.102721 1.011909 1.201683 0.025751 

RGS5 pc 1.193371 1.033213 1.378356 0.016202 

SPAG16 pc 1.152548 1.019445 1.30303 0.023357 

TMEM108 pc 1.17777 1.02045 1.359342 0.025306 

GFRA1 pc 1.082308 1.009488 1.16038 0.026034 
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APBB1 pc 1.144415 1.004878 1.303327 0.04202 

FAM110B pc 1.173547 1.052473 1.308549 0.00397 

SUSD5 pc 1.113545 1.009306 1.22855 0.031979 

SCN4B pc 1.118421 1.005903 1.243526 0.038569 

TNFAIP8L3 pc 1.186751 1.053663 1.336649 0.004783 

FLRT2 pc 1.177858 1.062291 1.305999 0.001891 

FAT4 pc 1.138871 1.009026 1.285424 0.035251 

PLN pc 1.072955 1.001546 1.149454 0.045077 

RTL5 pc 1.139186 1.008323 1.287034 0.036341 

 

Supplementary Table 4. KEGG enrichment results. 

 

Supplementary Table 5. Primers in quantitative real time-polymerase chain reaction. 

Gene Forward primer Reverse primer 

MIR99AHG TAGCAAGGCCCAACCAGTTC TCCCTTTGCAGCTCAGTAGT 

IL1RL1 ATGGGGTTTTGGATCTTAGCAAT CACGGTGTAACTAGGTTTTCCTT 

SPAG16 ATGGGTGTTGGGACGAAGG TGAAAGCAATCAAGAGTTCTGGT 

FAM110B TAGCTCCGAGGGCTCTAGC CACCTTGCGGATGTCCGAA 

ANKRD6 GTCGCTGCACTTTCAGAGC CCATGCTTGGTAACCGCTAC 

ACSS3 TGGACCAAAACGCTGGAGAAC ACGATCAACGGCATTGTAACA 

CORO2B CGTCCGCAATACCGTAGCTC TAGTTGGGTTCAATCCTGCCT 

TNFAIP8L AAGCACACTGGTTTCCACACT TGGGTCCCTGCATATCCGTT 

 


