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INTRODUCTION 
 

Renal cell carcinoma (RCC) is among the top 10 cancers 

worldwide. It is a commonly diagnosed and 

histologically diverse urologic malignancy accounting 

for >90% of all renal neoplasms, with clear cell RCC 

(ccRCC) representing almost 75% of cases [1]. 

Localized RCC is treatable surgically by either radical or 

partial nephrectomy; nevertheless, ∼30% of localized 

ccRCC metastasize at some point [2]. RCC major risk 

factors include obesity, hypertension, and smoking, and 

the incidence increases markedly with age. The 
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ABSTRACT 
 

Clear cell renal cell carcinoma (ccRCC) is a common urological malignancy with diverse histological types. This 
study aimed to detect neoantigens in ccRCC to develop mRNA vaccines and distinguish between ccRCC 
immunological subtypes for construction of an immune landscape to select patients suitable for vaccination. 
Using The Cancer Genome Atlas SpliceSeq database, The Cancer Genome Atlas, and the International Cancer 
Genome Consortium cohorts, we comprehensively analysed potential tumour antigens of ccRCC associated 
with aberrant alternative splicing, somatic mutation, nonsense-mediated mRNA decay factors, antigen-
presenting cells, and overall survival. Immune subtypes (C1/C2) and nine immune gene modules of ccRCC were 
identified by consistency clustering and weighted correlation network analysis. The immune landscape as well 
as molecular and cellular characteristics of immunotypes were assessed. Rho-guanine nucleotide exchange 
factor 3 (ARHGEF3) was identified as a new ccRCC antigen for development of an mRNA vaccine. A higher 
tumour mutation burden, differential expression of immune checkpoints, and immunogenic cell death were 
observed in cases with the C2 immunotype. Cellular characteristics increased the complexity of the immune 
environment, and worse outcomes were observed in ccRCC cases with the C2 immunotype. We constructed the 
immune landscape for selecting patients with the C2 immunotype suitable for vaccination. 
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pathogenesis of ccCCR is closely related to several 

genetic mutations, including VHL, [3] PBRM1, [4] 

SETD2, [4] BAP1, [5] KDM5C, [4] and mTOR mutations 
[6]. However, ccRCC development requires 

supplementary epigenetic and genetic events [7]. As 

RCCs are highly vascular, it is not surprising that 

tyrosine kinase inhibitors, [8] anti-VEGF monoclonal 

antibodies, [9] and mTOR [10] inhibitors have been used 

to explore their features. Unfortunately, there are no 

available clinical markers to classify patients for 

therapies, despite intensive efforts. With respect to 

immunotherapy, nivolumab response rate is only 25%, 

and there was no significant decrease in tumor size in 

most patients treated with nivolumab [11]. The relevance 

of the International Metastatic Renal Cell Carcinoma 

Database Consortium (IMDC) prognostic criteria 

remains to be established in the era of frontline 

combination immunotherapy [12]. In the absence of 

prognostic standards based on alternative 

immunotherapy, the IMDC criteria continue to be used 

in clinical trials to stratify patients at risk under the guide 

of clinical guidelines. Immune checkpoint (ICP) 

blockade (ICB) therapy increases the overall survival 

(OS) rates of advanced RCC cases treated with 

nivolumab [11]. 

 

Tumor mutation burden (TMB) is a clinically related 

parameter that highlights the molecular characteristics 

associated with immunotherapy responses [13]. Splicing 

of pre-mRNA is significant to the pathology of various 

diseases, especially cancer. Aberrant splicing isoforms 

are highlighted as tumor markers and cancer therapy 

targets [14]. Aberrantly expressed transcripts in cancer 

cells are degraded by nonsense-mediated mRNA decay 

(NMD), a process involved in the mRNA quality 

control system [15]. NMD disruption factors have 

significant correlation with the splicing isoform count in 

TCGA-Lung adenocarcinoma datasets; [16] the precise 

identification of aberrant transcripts in cancer cells is 

essential for identifying potential neoantigens. 

Particularly, the initial hypothesis based on TMB as an 

immunotherapy-relevant parameter is associated with 

the fact that somatic variants can generate tumor-

specific neoantigens. Several clinical trials have used 

TMB as an important stratification factor or a landmark 

endpoint to decipher the role of TMB in cancer-type 

treatment decision-making [17]. A minority of somatic 

mutations in DNA can give rise to neoantigens, but not 

all neopeptides present on the cell surface are 

immunogenic [18]. Consequently, TMB analysis to 

detect the underlying mutations subsets responsible for 

immunogenicity may enable substantial optimization of 

biomarker accuracy and improved therapeutic targeting 
of neoantigens [19]. Hence, profiling abnormal 

transcripts is equally essential as a potential biomarker 

of an ICP inhibitor (ICI). 

Although mRNA-based cancer vaccines have been 

extensively reviewed, with the recent approval of two 

mRNA lipid nanoparticle vaccines for coronavirus 

disease 2019 (COVID-19), the focus has again shifted to 

mRNA vaccines as a promising platform for cancer 

immunotherapy. Recently, the Massachusetts Institute of 

Technology (MIT) Technology Review released the 2021 

list of “Top 10 Breakthrough Technologies in the 

World,” and mRNA vaccines that have caused significant 

changes in the field of medicine topped the list. MIT 

commented that mRNA technology has broad application 

prospects for treating various infectious diseases 

(including COVID-19 and malaria) and cancer, among 

other diseases. mRNA vaccines are rapidly advancing in 

preclinical and clinical studies of cancer and infectious 

diseases [20]. We can design cancer vaccines to target 

tumor-associated unique antigens that have preferential 

expression in cancerous cells, and to achieve this goal, 

multiple preclinical and clinical trials of mRNA vaccines 

have been conducted [21]. Compared to an infectious 

disease vaccine, the challenge in developing a cancer 

vaccine lies in the limitation of clinical translation 

because of the difficulty in predicting antigens and their 

poor immunogenicity. Tumor antigens vary significantly 

among cancer patients; hence, identifying immunogenic 

tumor-associated antigens and tumor-specific antigens 

and overcoming the inhibitory tumor microenvironment 

remain significant obstacles for the development of 

mRNA-based cancer vaccines. Here, we aimed to 

identify novel ccRCC antigens and different immune 

subtypes for developing mRNA-based cancer vaccines 

and mapping the immune landscape of ccRCC to select 

patients fitting the criteria for vaccination. 

 

RESULTS 
 

Identification of aberrant alternative splicing (AS) 

events and potential ccRCC antigens 

 

To identify the features of aberrant AS in ccRCC 

patients, seven AS events compared with normal 

samples were screened from TCGA cohort 

(Supplementary Figure 1A); exon skip (ES) had the 

highest incidence (15481), appearing in 6506 genes, 

followed by the alternative promoter (AP) event. In 

contrast, the lowest mutually exclusive exons (MEs) 

occurred 178 times in 172 genes (Figure 1A; 

Supplementary Figure 1B). A PSI value can be used to 

evaluate the variation of AS events; the PSI values for 

11289 and 12049 AS events increased and decreased, 

respectively, in ccRCC patients (Figure 1B). The 

heatmap of PSI for the top 100 AS events is shown in 

Figure 1C. Gene mutations, especially splice site 

mutations, may lead to aberrant splicing isoforms; [22] 

consequently, we analyzed and visualized somatic 

mutations (MuTect2 variant aggregation and masking) 
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Figure 1. Potential antigen identification and enrichment of gene ontology (GO). (A) Overview of alternate splicing (AS) in ccRCC 

patients. (B) PSI of all the AS events, Green represents downregulated gene expression, while red represents upregulated gene expression. 
(C) Heatmap of PSI for the top 100 AS events. (D) Twenty highly mutated genes in ccRCC patients from TCGA cohort. (E) Total of 901 
potential antigens were found in PSI, which were significantly upregulated after frame shift mutations, Green represents frame shift genes, 
while red represents PSI up genes. (F) Expression of 156 potential antigens was significantly regulated. (G, H). Frequency of somatic 
mutations and genes/patients involved. (G, H). GO enrichment of significantly upregulated/downregulated potential antigens. 
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in ccRCC patients from TCGA cohort (Figure 1D). 

Among the entire cohort of patients included in the 

database, it was observed that 49% of the patients 

presented with VHL gene mutations, while 42% had 

mutations in the PBRM1 gene [4, 23]. Importantly, 

within the subset of patients exhibiting mutations in 

either the VHL or PBRM1 gene, approximately half of 

them concurrently possessed mutations in both genes. 

Missense mutations occurred most frequently in 5689 

genes, followed by frameshift deletion in 578 genes 

(Supplementary Figure 1C). Multiple mutations 

commonly occurred in one sample, and the top three 

mutation types were missense mutations, frameshift 

deletions, and nonsense mutations (Supplementary 

Figure 1D). The distributions of the top 10 mutated 

genes in all individuals and ccRCC patients are shown 

in Supplementary Figure 1E, 1F, respectively. Our data 

revealed that missense mutations and frameshift 

mutations occurred more frequently in patients with 

ccRCC. 

 

In total, 901 genes were identified as encoding for 

potential antigens in the PSI significantly upregulated 

group (including frameshift deletion and frameshift 

insertion) (Figure 1E). GO enrichment analysis of the 

901 potential antigens in terms of biological processes 

(BP), molecular function (MF), cellular component 

(CC) is shown in Supplementary Figure 1G–1I. 

Further analysis of the expression profiles of TCGA 

cohort revealed 10393 and 8134 genes with 

upregulated and downregulated expression, 

respectively. Among these significantly regulated 

genes (Figure 1F), GO enrichment analysis indicated 

that potential upregulated antigens were related to the 

apical part of the cell, apical plasma membrane, and 

cell projection membrane in CC and modified amino 

acid binding and phosphatidylserine binding in MF 

(Figure 1G). Potential downregulated antigens were 

related to apical junction complex, tight junction, and 

bicellular tight junction in CC, and ATPase activity, 

actin binding, and metal ion transmembrane 

transporter activity in MF (Figure 1H). Furthermore, 

156 candidate antigens showed upregulated aberrant 

AS events with frameshift mutations and abnormal 

expression. 

 

Potential antigens related to NMD 

 

Twelve NMD factors were used to identify the potential 

antigens in ccRCC. The expression profiles of TCGA 

datasets were grouped according to the median 

expression level of each NMD factor. Forty-seven 

differentially expressed genes were identified with 
respect to the expression of 12 NMD factors. Notably, 

the expression of ARHGEF3, CABIN1, FAM193A, 

ING3, LIMCH1, TMTC2, ZC3H14, and ZNF677 (the 

low- and high-expression groups) was significantly 

different among the 12 NMD factors (Figure 2A). 

Furthermore, 157 differentially expressed PSI genes 

were observed among the 12 NMD factors 

(Supplementary Table 1). Similarly, the PSI of 

ARHGEF3, CABIN1, FAM193A, ING3, LIMCH1, 

TMTC2, ZC3H14, and ZNF677 was significantly 

different among the 12 NMD factors in the low- and 

high-expression groups (Figure 2B). 

 

Potential antigens related to prognosis and antigen 

presenting cells (APCs) in ccRCC patients 

 

Cox regression modeling was performed on the 

potential antigens and OS or DFS data. A total of 510 

genes were closely related to OS, whereas 40 genes 

were closely related to DFS. Twenty-one of these 

genes were common in both, and 15 potential genes 

were notably relevant to the survival rate. PRPF39, 

SPG7, PISD, TUBGCP6, RBM6, SORBS2, PAM, 

ZFAT, DOCK7, ZNF266, RBM39, DFNA5, ERMAP, 

BTF3, GUSB were significantly associated with OS 

(Supplementary Figure 2). Patients overexpressing 

PRPF39, SPG7, PISD, TUBGCP6, RBM6, ZNF266, 
RBM39, DFNA5, and GUSB in the tumor tissues had 

significantly shorter survival duration than patients in 

the low-expression group. In contrast, patients with 

insufficient expression of SORBS2, PAM, ZFAT, 

DOCK7, ERMAP, BTF3, and GUSB in the tumor 

tissues had shorter survival duration than patients in 

the high-expression group. 

 

Furthermore, six candidate potential antigens related to 

NMD factors, including, ARHGEF3, ING3, LIMCH1, 

TMTC2, ZC3H14, and ZNF677, were closely related to 

APCs (Figure 3A). For example, ARHGEF3 

overexpression was notably associated with decreased 

infiltration of memory B cells, M0 macrophages, and 

activated myeloid dendritic cells in tumors; in contrast, 

infiltration of naïve B cells, macrophage M1 cells, and 

resting myeloid dendritic cells was increased. ZNF677 

overexpression was associated with decreased 

infiltration of memory B cells and resting myeloid 

dendritic cells, but increased infiltration of naïve B 

cells and M2 macrophages in tumors. These results 

suggest that we can directly process tumor antigens 

and present them by APCs to T cells and for 

recognition by B cells to elicit an immune response. 

These antigens hold promise as candidates for 

developing mRNA-based vaccines against ccRCC. 

Combining the aforementioned results, ARHGEF3 and 

ZNF677 were closely related to differences in the 

expression of NMD factors, OS, and APC function 
(Figure 3B–3D). According to TCIA database, 

ARHGEF3 is the best candidate antigen for mRNA-

based vaccine for ccRCC. 
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Figure 2. The expression and PSI of eight potential antigens related to 12 NMD factors. (A) The expression of eight potential 

antigens between NBAS, UPF3A, SMG1, SMG5, SMG6, SMG7, SMG8, SMG9, DHX34, UPF1, UPF2, UPF3B high-expression and low-
expression groups. (B) The PSI of eight potential antigens between NBAS, UPF3A, SMG1, SMG5, SMG6, SMG7, SMG8, SMG9, DHX34, UPF1, 
UPF2, UPF3B high-expression and low-expression groups. *padj < 0.05; **padj < 0.01; ***padj < 0.001. 
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Figure 3. Potential antigens related to prognosis and antigen presenting cells (APC) in clear ccRCC patients. (A) ARHGEF3, 

ING3, LIMCH1, TMTC2, ZC3H14, and ZNF677 were closely related to APCs. (B) ARHGEF3 and ZNF677 were closely related to the expression 
difference, NMD factor difference, OS difference, and APC difference. (C) Effect of ARHGEF3 on overall survival rate in ccRCC patients. (D) 
Effect of ARHGEF3 on disease free survival rate in ccRCC patients. 
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Potential immune subtype identification in ccRCC 

patients 

 

Immunotyping has been proven to be of clinical 

relevance in multiple tumors; it can present tumor-

infiltrating immune cells and reveal the ccRCC 

microenvironment, helping in the identification of 

suitable patients to receive vaccines. The expression 

profiles of 577 immune-related genes were screened 

using the ImmPort database for consensus clustering. 

ccRCC patients from TCGA were clustered into two 

immune subtypes (C1 and C2) based on the clustering 

of immune-related genes (stabilized when K = 2) and 

their cumulative distribution function (CDF) and 

function delta area (Figure 4A; Supplementary Figure 

3A–3C). Immune-related genes of C1/C2 could be 

clustered into five types as shown in the heatmap 

(Figure 4B). A better prognosis had a significant 

association with C1 (Figure 4C) and differed from that 

in the ICGC cohort (Figure 4D). Consistently, subtype 

was distributed along variable tumor grades and stages, 

which indicates that the C1 subtype showed a high 

proportion of stage I or grade 2/3 patients, whereas C2 

showed a higher proportion of stage III/IV or grade 3/4 

patients. ccRCC patients were divided into four 

molecular subtypes (KIRC1-4) according to TCGA 

cohort molecular classification. Interestingly, C1 

accounted for the majority of KIRC1/2 subtypes, while 

C2 accounted for most KIRC3/4 subtypes. Subtype 

distribution across patients diagnosed with differential 

TNM pathologies was irregularly clustered; 11% of N1 

patients belonged to C2, which was nearly four times 

the percent of patients belonging to C1 (3%) 

(Supplementary Figure 3D). In summary, 

immunotyping is a possible prognostic marker for 

ccRCC patients and has a superior accuracy to the usual 

grading and staging, which was consistent across 

different cohorts. 

 

Overexpression of AHNAK2 and loss of VHL and 

CDKN2A are correlated with poor prognosis in patients 

with ccRCC [24, 25], and are generally used as 

prognostic markers for ccRCC. We analyzed the 

differences in the expression of AHNAK2, CDKN2A, and 

VHL between the C1 and C2 immunotypes in TCGA and 

ICGC cohorts. The results of TCGA cohort showed that 

AHNAK2 was significantly overexpressed in the C2 

subtype, but the expression of VHL and CDKN2A was 

not significantly different (Supplementary Figure 3E). 

However, the results of the ICGC cohort did not agree 

with those of TCGA cohort, indicating that these 

prognostic markers may not be suitable as potential 

antigens due to their inconsistent expression profiles 
(Supplementary Figure 3F). Thus, immunotyping is 

superior to VHL, AHNAK2, and CDKN2A expression 

profile in prognosis prediction of ccRCC patients. 

Molecular characteristics of immune subtypes 

 

TMB is a clinically related parameter associated with 

immunotherapy response. We detected somatic 

mutations and CNV in TCGA cohort between the two 

immune subtypes. TMB of the C2 subtype was higher 

than that of C1, and a higher number of mutant genes 

was present in C2 (Figure 4E; Supplementary Figure 

3G). Among all tested genes, including VHL and 

PBRM1, the frequency of missense mutations was the 

highest in both immune subtypes. Mutation in PBRM1 

plays a suppressing role in ccRCC [26] and occurs at a 

lower frequency in the C2 subtype (37%) than in the C1 

subtype (44%), indicating that C2 may be more 

sensitive to immunotherapy (Supplementary Figure 3H, 

3I). However, no significant dissimilarity in CNV 

between C1 and C2 was observed (Supplementary 

Figure 3J). A recent study reported that ccRCC tumors 

show a high infiltration of CD8+ T cells, favorable 

PBRM1 mutation depletion, and enrichment for 

unfavorable chromosomal losses of 9p21.3 [27].  

 

Similarly, the results of CNV analysis showed that 

CNV loss occurred frequently in chromosome 9 of the 

patients in the C2 subtype (Supplementary Figure 4A). 

Neoantigen load (NAL) is a predictive biomarker for 

ICI therapy. The higher NAL in C2 subtype patients 

suggests a higher immunogenicity of the mRNA 

vaccine in this subtype (Figure 4F). Chromosomal 

instability is the main cause of tumor evolution, and 

tumor cells that show chromosomal instability opt for 

chronically active innate immunity pathways to 

metastasize to remote organs [28]. Hence, ccRCC 

patients with the C2 subtype have a higher risk of 

metastasis (Figure 4G). Homologous recombination 

deficiency (HRD) can lead to sensitivity to poly (ADP-

ribose) polymerase inhibitors and is used as a biomarker 

for monitoring treatment efficacy [29]. MRNAsi is an 

index that can be used for quantification of stemlike 

indices and has a significant correlation with patient 

outcomes, and high mRNAsi is associated with 

upregulation of immunosuppressive checkpoints [30]. 

Unfortunately, we could not determine the difference in 

HRD and mRNAsi between the two subtypes 

(Supplementary Figure 4B, 4C). 

 

We detected the AS of 901 potential neoantigens 

between the two subtypes. PSI difference was noted in 

337 potential neoantigens (37.4%) between the two 

subtypes. The immune system induces diverse 

repertoire of antigen receptors, which are expressed by 

B and T cells and are capable of recognizing a variety of 

protein antigens [31]. Downregulated expression ICP-
related genes can sensitize cells to immunotherapy, and 

immunogenic cell death (ICD) can stimulate the 

dysfunctional anti-tumor immune system. In TCGA 
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Figure 4. Identification of potential immune subtypes of ccRCC patients and molecular characteristics. (A) PCA of ccRCC 

patients in TCGA cohort. (B) Heatmap of immune-related genes of C1/C2 ccRCC patients. (C, D) Kaplan-Meier curves showing overall 
survival (OS) of ccRCC immune subtypes in TCGA and ICGC cohorts. (E) TMB and number of mutated genes in C1/C2 ccRCC patients. (F, G) 
NAL and CIN score of C1/C2 ccRCC patients. (H, I) Expression of ICP genes in C1/C2 ccRCC patients from TCGA cohort and ICGC cohort 
separately. (J, K) Expression of ICD factors in C1/C2 ccRCC patients from TCGA cohort and ICGC cohort separately. (L, M) Expression of NMD 
factors in C1/C2 ccRCC patients from TCGA cohort and ICGC cohort separately. *padj < 0.05; **padj < 0.01; ***padj < 0.001. 
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cohort, significant and differential expression of 32 ICP 

genes were found between the two subtypes (Figure 

4H), and most of them had a higher expression in the 

C2 subtype. 

 

We also verified 10 ICP genes that had differential 

expression between the two subtypes in the ICGC 

cohort (Figure 4I). A total of 29 ICD factors and four 

NMD factors were significantly and differentially 

expressed between the two subtypes from TCGA cohort 

(Figure 4J–4L), and five ICD factors and four NMD 

factors were verified in the ICGC cohort (Figure 4K–

4M). Therefore, reflection of the expression levels of 

ICP and ICD modulators can be achieved through 

immunotyping, which is potentially a therapeutic 

biomarker for mRNA vaccines. 

 

Cellular characteristics of immune subtypes 

 

To demonstrate immunotyping reliability, we analyzed 

the percentage of six earlier demonstrated pan-cancer 

immune subtypes (ImmuC1-ImmuC6) among the C1 

and C2 immunotypes. The proportions of pan-cancer 

immuC3 were 88.52% and 83.73% in the C1 and C2 

immunotypes, respectively, and immuC4 was the 

secondary subtype (6.23%) in the C1 immunotype, 

whereas immuC2 was the secondary subtype (6.22%) in 

the C2 immunotype. Compared to the C1 immunotype, 

the lack of immuC5 and abundance of immuC6 in the 

C2 immunotype may induce some differences between 

them (Figure 5A). These outcomes correspond to the 

higher survival observed in the C1 immunotype tumors 

than in the C2 immunotype tumors. Tumor 

immunophenotype systematic tracking is required for 

understanding cancer immunity fundamental 

mechanisms and improvement of cancer 

immunotherapy clinical benefits [32]. As shown in 

Figure 5B, the overall activity of immune cells in the 

C2 group was significantly higher than that in the C1 

group, and most anti-cancer immune response steps 

correlated with this observation. In particular, the 

difference in Th2 cell-recruiting activity during the 

trafficking of immune cells to tumors was consistent 

with other reports, which showed that the increase in the 

expression of type-2 T helper cell signature was 

associated with low survival in ccRCC, papillary RCC, 

and chromophobe RCC [24].  

 

In patients, immune and stromal scores can help 

determine tumor purity and immune cell infiltration in 

the tumor microenvironment, with high immune scores 

indicating cytolytic good immune responses and better 

prognosis [33, 34]. Consistently, immune and stromal 
scores were remarkably higher in the C2 subtype in 

TCGA cohort (Figure 5C) and the immune scores of the 

two subtypes were verified in the ICGC cohort (Figure 

5D). In addition, the tumor purity of C2 was remarkably 

lower than that of C1 in both TCGA and ICGC cohorts 

(Figure 5E, 5F). CYT reflects the cell-killing function 

and can be used to assess immune-mediated attacks 

against cancer cells; moreover, it is associated with the 

mutational burden [35]. The CYT score from TCGA 

and ICGC cohorts indicated a higher mutational burden 

and more complex immune microenvironment in the C2 

subtype (Figure 5G, 5H). The proportion of 15 types of 

immune cells, comprising memory B cells, naïve B 

cells, plasma B cells, M0 macrophages, activated mast 

cells, monocytes, activated myeloid dendritic cells, 

resting myeloid dendritic cells, neutrophils, resting 

natural killer calls (NKCs), activated CD4+ memory T 

cells, CD8+ T cells, follicular helper T cells, gamma 

delta T cells, and regulatory T cells (Tregs) was 

remarkably different between the two subtypes in 

TCGA cohort (Figure 5I). Although memory B cells, 

plasma B cells, follicular helper T cells, and gamma 

delta T cells were verified in the ICGC cohort, some 

other immune cell types, such as CD8+ T cells, resting 

NKCs, and activated CD4+ memory T cells showed the 

same trend (Figure 5J). These results indicated that 

patients with the C2 subtype had a significant tumor 

infiltration of CD8+ T cells, [27] suggesting that these 

patients were more suitable for our mRNA vaccine. 

Taken together, these results suggest that the immune 

subtypes are promising candidates for mRNA vaccines, 

and patients with C2 tumors with/without an 

immunosuppressive microenvironment are potentially 

more suitable for mRNA vaccination. 

 

ccRCC immune landscape 

 

The immune landscape of ccRCC was created from 28 

immune cell types of pan-cancer gene expression 

profiles using ssGSEA and monocle (Figure 6A). C1 

integral distribution was opposite to that of C2. The 

correlation between PCA1/2 and 28 types of pan-cancer 

immune cells is shown in Figure 6B. The pan-cancer 

immune cells did not show any positive correlation with 

PCA1 expression. Nevertheless, activated and immature 

B cells, myeloid-derived suppressor cells, and T 

follicular helper cells were the most negatively 

correlated immune cells. Immature dendritic cells, mast 

cells, and memory B cells showed the highest positive 

correlation with PCA2. Moreover, differential 

distribution was displayed in the same subtype, 

indicating significant intra-cluster heterogeneity within 

the subtypes. Based on the location of immune cell 

populations, C1 was further divided into four subsets 

defined as C1a, C1b, C1c, and C1d, and C2 was further 

divided into three subsets separately defined as C2a, 
C2b, and C2c (Figure 6C). The enrichment score of 

several immune cells showed significant difference 

between every subset (Figure 6D). C1c and C2c showed 
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Figure 5. Cellular characteristics of immune subtypes. (A) Distribution of immune subtypes (ImmuC1-C6) across C1/C2 ccRCC 

patients. (B) Overall activity of immune cells in C1/C2 ccRCC patients. (C, D) Immune score and stromal score of C1/C2 ccRCC patients from 
TCGA and ICGC cohorts. (E–H) Tumor purity and CYT score of C1/C2 ccRCC patients from TCGA (E, G) and ICGC (F, H) cohorts. (I, J) Immune 
cell proportions of C1/C2 ccRCC patients from TCGA and ICGC cohorts separately. *padj < 0.05; **padj < 0.01; ***padj < 0.001. 
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Figure 6. Immune landscape of ccRCC. (A) Immune landscape of ccRCC. (B) Heat map of two principal components with 28 immune cell 

signatures. (C) Immune landscape of the subsets of ccRCC immune subtypes. (D) Differential enrichment scores of 28 immune cell 
signatures in the above subsets. (E, F) The prognostic status of each subset of C1 and C2 separately. (G) Immune landscape of samples from 
three extreme locations and (H) their prognostic status. *padj < 0.05; **padj < 0.01; ***padj < 0.001. 
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lower enrichment scores for most immune cells, such as 

activated B cells, activated CD4 T cells, activated CD8 

T cells, central memory CD8 T cells, effector memory 

CD4 T cells, effector memory CD8 T cells, and 

memory B cells, suggesting that patients with these 

subsets may be more suitable for mRNA vaccination. 

C1a subtype patients showed the highest survival rates, 

while subtypes of C1c and C2c showed the worst 

survival rates (Figure 6E, 6F). In addition, samples that 

showed utmost immune landscape distribution positions 

were compared in terms of prognosis, and the 

probability of survival was the best in a group 14 of 

patients, consistent with the aforementioned results 

(Figure 6G, 6H). Taken together, the immune landscape 

based on immune subtypes can be used for 

identification of immune components of each ccRCC 

patient and prediction of their prognoses and can 

preferably be used to provide a personalized mRNA 

vaccine therapy. 

 

ccRCC hub genes and gene co-expression module 

identification 

 

TCGA co-expression module identification was 

performed by sample clustering based on WGCNA 

(Supplementary Figure 5A) with a soft threshold of 4 

for a scale-free network (Supplementary Figure 5B, 

5C). Nine co-expression modules obtained from TCGA 

are shown in black, blue, green, pink, red, turquoise, 

yellow, gray, and brown (Figure 7A; Supplementary 

Figure 5D). The expression of the black, blue, green, 

pink, red, turquoise, and yellow module eigengenes was 

significantly different between the two subtypes. C2 

showed higher eigengenes in the black, blue, pink, and 

turquoise modules and lower eigengenes in the green, 

red, and yellow modules (Figure 7B). Furthermore, the 

black, gray, red, and yellow modules showed significant 

positive correlations with prognosis, whereas the green 

and turquoise modules were notably negatively 

correlated with prognosis (Figure 7C). GO enrichment 

of the green, black, gray, and turquoise modules 

indicated that the prognostic modules were related to 

small molecule catabolic processes, nuclear division, 

organelle fission, and epidermis development. 

Regulation of membrane potential, kidney epithelium 

development, and renal tubule development were 

enriched in the KEGG pathway, indicating that the 

prognostic modules were closely linked to kidney health 

(Supplementary Figure 5E). 

 

A risk estimation model was established to predict 

tumor risk according to the expression of 25 hub genes 

that were obtained from prognostic modules (Figure 
7D–7F). Low-risk patients showed a better survival rate 

(Figure 7G). The time-dependent receiver operating 

characteristic (ROC) curve suggested that this model 

can accurately predict the 1- to 5-year survival rate of 

ccRCC patients (Figure 7H). Thus, this model can be 

used to identify patients who can benefit from mRNA 

vaccines through risk scoring and provide a reference 

for immunotherapy. Next, 592 patients treated with 

programmed cell death protein 1 (PD-1) blockade were 

divided into clinical benefit (CB) and no clinical benefit 

(NCB) groups; NCB patients showed a higher risk score 

(Figure 7I). In contrast, 56% of patients with CB were 

concentrated in the low-risk group, while 63% of 

patients in the high-risk group had a poor survival rate 

(Figure 7J, 7K). The time-dependent ROC curve 

suggested that this model can accurately predict 1- to 5-

year survival rate of ccRCC patients treated with PD-1 

blockade (Figure 7L). Collectively, these results provide 

evidence for the accuracy of the risk prediction model, 

based on which, more patients can benefit from mRNA 

vaccines. 

 

DISCUSSION 
 

The study aimed to identify potential tumor antigens 

and immune subtypes of ccRCC for mRNA vaccine 

development. We constructed the aberrant AS and 

mutational landscape of ccRCC and identified 

ARHGEF3 as a promising mRNA vaccine candidate. 

RhoGEFs play critical roles in various signaling 

cascades and cellular processes and are involved in 

multiple cancers. ARHGEF3 downregulation may be 

associated with invasion, metastasis, and proliferation in 

osteosarcoma because this gene specifically activates 

RHOA and RHOB, which play a role in bone cell 

biology [36, 37]. According to the Human Protein Atlas 

database, high ARHGEF3 expression is favorable for 

patient survival and potentially a prognostic marker for 

renal cancer, endometrial cancer, and head and neck 

cancer, and others. In contrast, elevated ARHGEF3 

expression is a crucial contributor to the pathogenesis of 

nasopharyngeal carcinoma (NPC) by inhibiting cell 

apoptosis and potentially used as a novel marker for 

prognosis and an effective target for treatment [38]. 

Alternatively spliced transcript variants encoding 

different isoforms have been found for ARHGEF3, 

suggesting that aberrant splicing isoforms are 

responsible for the diverse effects of ARHGEF3 in 

various tumors. According to TCGA SpliceSeq 

database, the PSI of the alternate promoter from exon 7 

in ccRCC patients was twice as high as normal. Hence, 

the mRNA vaccine of ARHGEF3 for ccRCC patients 

was designed to target this specific splicing isoform. 

 

The aberrant splicing transcript of ARHGEF3 not only 

had an association with bad prognosis but also with 

higher APCs and infiltration of B cell. Given that the 

benefit of mRNA vaccines is applicable for some cancer 

patients only, we divided ccRCC patients into two 
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Figure 7. Immune gene co-expression modules and immune hub genes for ccRCC identification and the established risk-
estimating model. (A) Dendrogram of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM). Clustering of 
samples. (B) Differential distribution of feature vectors of each module in ccRCC subtypes. (C) Forest maps of single-factor survival analysis 
of nine modules of ccRCC. (D–F) Risk-estimating model was established from prognostic modules and (G) their prognostic status from TCGA 
cohort. (H) ROC curve of risk of ccRCC patients from TCGA cohort. (I, J) Risk score of ccRCC patients treated with PD-1 and (K) their 
prognostic status from TCGA cohort. (L) ROC curve of risk of ccRCC patients treated with PD-1 from TCGA cohort. *padj < 0.05; **padj < 0.01; 
***padj < 0.001. 
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groups (C1 and C2) according to 577 immune-related 

genes. The two immune groups showed distinct 

molecular, cellular, and clinical characteristics. The 

worse prognosis of patients with the C2 subtype in both 

ICGC and TCGA cohorts indicates that we can use 

immunotyping as prognostic marker in patients with 

ccRCC as it is superior to traditional grading and staging 

in terms of accuracy. Further, the prognostic performance 

of immune subtype is superior to that of traditional tumor 

markers (VHL, AHNAK2, and CDKN2A) in ccRCC 

patients. As a promising predictor of immune checkpoint 

inhibitor efficacy, the tumor’s ability to produce new 

antigens is possibly reflected indirectly by TMB. A high 

TMB is an indicator supporting the use of monotherapy 

in children and adults with solid tumors. In addition to its 

prognostic potential, immunotyping can predict mRNA 

vaccine therapeutic response. The molecular 

characteristics of immune subtypes indicated that the 

TMB, number of mutated genes, NAL, and chromosomal 

instability in patients with C2 tumors were higher than 

those in patients with C1 tumors, suggesting that ccRCC 

patients with the C2 subtype may respond better to 

mRNA vaccines. 

 

ccRCC poses a challenge to known standards in cancer 

immunology because of the modest mutation burden; 

however, it responds to immunotherapies, and a higher 

CD8+ T cell infiltration has traditionally been linked to 

poor prognosis [39, 40]. Aberrant splicing transcripts of 

ARHGEF3 play a critical role in ccRCC progression 

and development and can be processed directly and 

presented to CD8+ T cells to elicit an immune response. 

However, the high expression of partial ICPs, such as 

CD200R1, CD244, CD28, CD48, CD80, CD86, ICOS, 

PDCD1LG2, TNFRSF9, and TNFSF14, in C2 tumors 

suggests that the tumor microenvironment is 

immunosuppressive; thus, mRNA vaccine inhibition 

may be caused by eliciting an effective immune 

response. Further, the response to ICIs is related to the 

depletion of PBRM1 mutations and enrichment of 

chromosomal losses of 9p21.3, [27] while the elevated 

expression of partial ICD modulators, such as EIF2A, 

IL1B, TFAM, TLR5, and TLR7, in C2 tumors suggests 

that mRNA vaccines are effective in these immune 

subtypes. Moreover, the immunological complexity of 

the ccRCC landscape considerably suggests 

heterogeneity between individual cases and within the 

same immune subtype, thus decreasing the immune 

components needed to develop personalized mRNA 

vaccine-based therapeutics. Patients in group 10 showed 

the worst prognosis, consistent with the results for the 

C1c and C2c subsets. C1c and C2c showed significantly 

lower scores for activated CD8 T cells, eosinophils, 
activated B cells, effector memory CD4 T cells, effector 

memory CD8 T cells, and monocytes than for other 

subsets, indicating that C1c and C2c are 

immunologically “hot,” and therefore, should respond 

better to mRNA vaccines. Furthermore, the risk 

estimation model established based on 25 hub genes of 

prognostic modules can be used to accurately determine 

CB ccRCC patients and enable more patients to benefit 

from mRNA vaccines. 

 

In conclusion, ARHGEF3 is a potential ccRCC antigen 

for mRNA vaccine development. Candidates with 

immune subtype 2, especially C2c, were the most 

suitable for vaccination. This study provides a 

theoretical basis for developing anti-ccRCC mRNA 

vaccines, predicting patient outcomes, and selecting 

vaccination candidates. We recommend further study 

and validation of the identified vaccine antigens and 

other prognostic markers. Moreover, we are attempting 

to verify the potential application of ARGEF3 as a 

promising vaccine antigen. By constructing an aberrant 

AS AHRGEF3 cell line, cell-line-derived xenograft, and 

ccRCC patient-derived tumor xenograft, we intent to 

understand how aberrant AS AHRGEF3 induces 

changes in the tumor immune environment in ccRCC. 

Moreover, the intrinsic connection between the novel 

ccRCC antigen ARHGEF3 and immune subtype 

warrants further studies. Similar investigations should 

be conducted for other cancer types as well. 

 

MATERIALS AND METHODS 
 

Data acquisition and preprocessing 

 

Percent spliced in (PSI) values for the splice events of 

all genes and samples of kidney renal clear carcinoma 

(KIRC) were downloaded from TCGA SpliceSeq 

database. MuTect2 Variant Aggregation and Masking 

(n = 336) GDC Hub, Phenotype (n = 985) GDC Hub, 

GISTIC - focal score by gene (n = 536) GDC Hub, and 

gene expression RNAseq (n = 607) were obtained from 

the clinical and follow-up information from the XENA 

TCGA-KIRC database. The clinical characteristics of 

the samples from TCGA are shown in Supplementary 

Table 2. The RECA-EU project data were obtained 

from the ICGC cohort. 

 

AS and enrichment analysis 

 

The difference in PSI between ccRCC and normal 

control was determined using the t-test, and significance 

was set at p < 0.05. Gene ontology (GO) enrichment 

analysis of the target gene set was performed by the 

ClusterProfiler package [41] in R (version “4.1”). 

 

Gene expression analysis 

 

Gene expression data (FPKM values) from RNAseq 

(n = 607) of ccRCC and normal control from TCGA-
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KIRC database were compared using the limma 

package in R (version “4.1”) [42] and filtered using 

|LogFC| > 1 and p < 0.01 as threshold criteria. 

 

Cox proportional-hazards model and survival 

analysis 

 

The Cox proportional-hazards model and survival 

analysis were used for regression modeling of the 

characteristic gene and OS or disease-free survival 

(DFS) data using the coxph function in the survival 

package [43] in R (version “4.1”) and filters with 

p < 0.05 as the threshold. The effect sizes were 

displayed in a forest plot using corresponding modeling 

parameters. For multifactor Cox analysis, multigene 

pairs were built using the coxph function of the survival 

package for regression modeling. The genes identified 

in the survival analysis were grouped after screening for 

the median expression level, and the OS was fitted 

using the survfit function of the survival package. 

Analysis and visualization were performed using the 

ggsurvplot function of the Survminer package in R 

(version “4.1”). 

 

TIMER2 analysis 

 

Tumor Immune Estimation Resource [42] was 

employed for analysis and visualization of the 

association between tumor-infiltrating cells (TICs) and 

ccRCC-related genes using analytical modules for 

somatic mutations, gene expression, clinical outcomes, 

and somatic copy number alterations. Adjustment of 

purity was performed by Spearman’s correlation 

analysis. Statistical significance was set at p < 0.05. 

 

Consensus clustering analysis 

 

Screening of the immune gene set downloaded from 

ImPort using single-factor Cox yielded 577 immune-

related genes associated with prognosis. The prognosis-

related immunogenetic expression data of TCGA-KIRC 

patients were screened and normalized with the median, 

and then analysed using the R package 

ConsensusClusterPlus for Consensus clustering. The 

clustering algorithm was k-means algorithm, and 

sampling was performed 500 times. 

 

Analysis of somatic mutation and copy number 

variation (CNV) between immune subtypes 

 

We downloaded TCGA-KIRC somatic mutation maf 

file from the TCGA, calculated the TMB using the 

maftools package in R, and visualized the mutation 
type. The frequency of CNV gain or loss was calculated 

through GISTIC file from the Xena database, visualized 

using maftools. 

Analysis of intertype immune activity 

 

Data for the immune activity of TCGA-KIRC were 

downloaded from the TIP database, and the t-test was 

conducted for testing differences in the immune activity 

scores of different subtypes. 

 

Homologous recombination defects, new antigen 

loads, chromosomal instability, and dryness index 

analysis 

 
The DNA damage repair (DDR) score was downloaded 

from https://gdc.cancer.gov/about-data/publications/ 

PanCan-DDR-2018 and The Cancer Immunome Atlas 

(TCIA) database. Maftools was used to calculate the 

new antigen load TMB from TCGA-KIRC. A list of 

unstable chromosomal genes was obtained from a 

published paper [44], and the sum of the expression 

values of these genes was used as the chromosomal 

instability score. mRNAsi was used to calculate the 

dryness index of tumor subtypes according to a 

previously published paper [PMID:29625051], and t-

test was used to calculate the differences between the 

four indicators. 

 

Immune cell analysis 

 

The immune, matrix, and tumor purity evaluations of 

different TCGA-KIRC subtypes were performed using 

R-package estimate, and the expression means of the 

genes granzyme A and perforin 1 were used as immune 

cytolytic activity (CYT) scores. The immuno-

immersion score file from TCGA was downloaded from 

the TIMER2 database, the data related to TCGA-KIRC 

sample was included, the CIBERSORT score data were 

analyzed, the immune immersion score of test data set 

was calculated using CIBERSORT, and a Wilcox-test/t-

test was used to calculate the differences in the 

immunization score index. 

 

Immune landscape of ccRCC 

 

Data of 28 pancellular immune cell types were 

downloaded from a published paper, [45] using the 

sSGSEA algorithm to analyze the relative abundance 

of each immune cell type in TCGA-KIRC. The 

DDRTree dimension reduction of TCGA-KIRC was 

then carried out using the monocole package, and the 

correlation between the first two main components 

and 28 pancellular immune cell types was calculated. 

The subtype was subdivided according to the 

pseudotime analysis of TCGA-KIRC samples. The 

relative abundance difference of 28 pancellular 

immune cell types in each subcategory was 

determined using single-factor analysis of variance 

(ANOVA). 

https://gdc.cancer.gov/about-data/publications/PanCan-DDR-2018
https://gdc.cancer.gov/about-data/publications/PanCan-DDR-2018
https://pubmed.ncbi.nlm.nih.gov/29625051


www.aging-us.com 16 AGING 

WGCNA co-expression network construction 

 

The expression level of differentially expressed genes in 

TCGA-KIRC was screened, and the co-expression 

network of TCGA-KIRC expression matrix was 

constructed using the WGCNA package. We set 0.8 as 

the threshold for the average connectivity of the scale-

free fit index and network with the change of the soft 

threshold parameter, when soft threshold (softpower) 

changed from 1 to 10. The softpower was set to 4, such 

that it met the scale-less network, a co-expression 

network was built, and the prognosis module was 

identified, wherein the minimum number of genes of 

the module was 30 and the combined correlation was 

greater than 0.7. The pearson correlation coefficient 

between the genes in the module and the module feature 

genes was calculated. |cor| > 0.9 and p < 0.001 was used 

to identify hub genes, and a risk score was determined 

according to a multivariate Cox model of the hub genes. 

 

Data availability 

 

The data supporting the findings of this study are available 

from the corresponding author upon reasonable request. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Potential antigen identification and enrichment of gene ontology (GO). (A) Seven AS events in ccRCC 

patients. (B) Number of genes involved in AS events. (C, D) Frequency of somatic mutations and genes/patients involved. (E, F) The 
mutation frequency of top 10 genes in all samples/ccRCC patients. (G–I) biological process (BP), molecular function (MF), and cellular 
component (CC) enrichment of 901 potential antigens. 
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Supplementary Figure 2. Fifteen candidates significantly associated with the overall survival rate. Effect of PRPF39, SPG7, 

PISD, TUBGCP6, RBM6, SORBS2, PAM, ZFAT, DOCK7, ZNF266, RBM39, DFNA5, ERMAP, BTF3, and GUSB on overall survival rate. 
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Supplementary Figure 3. Identification of potential immune subtypes of ccRCC patients. (A) Cumulative distribution function 

curve and (B) delta area of immune-related genes in TCGA cohort. (C) Sample clustering heat map. (D) Distribution of C1/C2 across ccRCC 
stages, grades, molecular subtypes, T, N, M staging of TCGA cohort. (E, F) The expression of ccRCC patient biomarkers in C1/C2 subtypes. 
(G) Number of mutated genes in C1/C2 ccRCC patients. (H, I). Twenty highly mutated genes in C1/C2 ccRCC patients. (J) CNV frequency of 
C1/C2 ccRCC patients. 
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Supplementary Figure 4. Molecular characteristics of immune subtypes. (A) Overview of CNV in C1/C2 ccRCC patients. (B, C) HRD 

score and mRNAsi score of C1/C2 ccRCC patients. *padj < 0.05; **padj < 0.01; ***padj < 0.001. 
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Supplementary Figure 5. Immune gene co-expression modules and immune hub genes for ccRCC identification. (A) Clustering 
of samples. (B) Scale-free fit index for various soft-thresholding powers (β). (C) Mean connectivity for various soft-thresholding powers. (D) 
Gene numbers in each module. (E) BP, MF, CC, and KEGG enrichment of green, black, gray, and turquoise modules. The dot size and color 
intensity represent the gene count and enrichment level, respectively. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The list of 157 differentially expressed PSI genes. 

 

 

Supplementary Table 2. The clinical characteristics of samples from TCGA. 

Characteristic Tumor Normal 

Sample 531 71 

Stage I 265 − 

II 58 − 

III 123 − 

IV 82 − 

Grade I 13 − 

II 230 − 

III 206 − 

IV 74 − 

KIRC subtype 1 147 − 

2 90 − 

3 93 − 

4 86 − 

Pathologic T1 271 − 

T2 70 − 

T3 179 − 

T4 11 − 

Pathologic N0 239 − 

N1 16 − 

Pathologic M0 422 − 

M1 78 − 

 

 


