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INTRODUCTION 
 

Lung cancer (LC) accounts for the second predominant 

cause of cancer-related death worldwide, with 5-year 

overall survival rates of less than 20% [1, 2]. Lung 

adenocarcinoma (LUAD) is the most frequent 

pathological subtype of LC that constitutes about 60% 

of LC cases [3]. Furthermore, smoking is generally 

described as the commonest risk factor for LUAD [4]. 

Other non-smoking associated risk factors include 

long-term exposure to radon, occupational exposure to 

carcinogens, and air pollution [5]. Despite the advent 

of comprehensive therapies and novel clinical drugs, 

therapeutic outcomes of patients with recurrence and 

metastatic adenocarcinoma remain poor [6]. 

The term “oncogene addiction” refers to the phenomenon 

in which tumorigenesis is dependent on the specific 

activity of a single oncogene [7]. The key oncogenic 

drivers in LUAD are mutations of TP53, EGFR, KRAS, 

and ALK rearrangements [8, 9]. In addition, novel 

molecular divers are emerging, such as BRAF mutations 

and HER2. A majority of oncogenic studies to date 

almost exclusively focused on the changes in nuclear 

genomics while ignoring the mitochondrial genome. 

Being the foundation for a wide range of inborn 

metabolic disorders, mitochondrial genome variation and 

translation are currently recognized as hallmarks of 

cancer progression [10, 11]. Specifically, gene expression 

alternations as a consequence of mitochondrial pathway 

abnormalities and metabolic dysregulation can lead to 
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ABSTRACT 
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prognosis-associated MMRGs (also termed as PMMRGs: ACOT11, ALDH2, and TXNRD1) that were engaged in 
the evolution of LUAD. To investigate the correlation between clinicopathological characteristics and MMRGs, 
we divided LUAD samples into two clusters (C1 and C2) based on key MMRGs. In addition, important pathways 
and the immune infiltration landscape affected by LUAD clusters were also delineated. Further, we nominated 
potential regulatory mechanisms underlying the MMRGs in LUAD development and progression. In conclusion, 
our integrative analysis enables a more comprehensive understanding of the mutation landscape of MMRGs in 
LUAD and provides an opportunity for more precise treatment. 
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tumor invasion and metastasis as well as immune evasion 

[12]. And such mutations in mitochondrial genomes have 

been frequently corroborated to be involved in the 

malignancy progression of LUAD [13, 14]. 

 

With the rapid development of sequencing technologies, 

the complex genomic alterations in LUAD have been 

extensively deciphered over the past several decades. 

However, the roles and mechanisms of mitochondrial 

metabolism-related genes (MMRGs) in LUAD and their 

clinical significance remain primarily in a backwater 

inhabited by a few academics and professionals and are 

not visible to public researchers. For example, a study 

by Ye et al. showed that a signature model based on 

four mitochondrial energy metabolism pathway-

associated genes could excellently diagnose patients 

with LUAD [15]. The limitation of this study was that it 

was a correlational study and did not explore the 

underlying molecular biological mechanisms and 

illustrate the potential of these genes in LUAD 

prevention and treatment. Further studies are required to 

understand the role of MMRGs in LUAD progression 

and their clinical significance. 

 

The Cancer Genome Atlas (TCGA) is a collective effort 

conducted to decode the vast amounts of genomic data 

that drives diverse malignancies through large-scale 

sequencing [16]. Clinical trials based on expression 

profiling have been successfully applicated in predicting 

the prognosis of breast cancer and derivative large B-cell 

lymphomas, offering crucial information for treatment 

planning [17, 18]. The expression patterns of MMRGs in 

LUAD development and their corresponding clinical and 

mutational characteristics are relatively concordant across 

studies. In the present study, we investigated the role and 

latent mechanisms of crucial MMRGs, extracted from the 

TCGA and GEO database, during the development and 

progression of LUAD. Also, we explored the correlation 

of prognostic MMRGs (PMMRGs) in the evolution of 

LUAD. These findings may provide clues for the 

prevention and personalized target therapy of LUAD. 

 

MATERIALS AND METHODS 
 

Data preparation 

 

Aiming to comprehensively analyze the roles of MMRGs 

during LUAD progression, the whole genome sequence, 

RNA sequencing (RNA-seq), microRNA-seq (miRNA-

seq), DNA methylation data, and corresponding 

clinicopathological information were downloaded from 

the TCGA-LUAD database using UCSC XENA. For 

further investigation of our study, two datasets 

(GSE33479 and GSE4573) were obtained from the 

public GEO database (https://www.ncbi.nlm.nih.gov/geo/). 

GSE33479, a gene expression profile calculated by 

microarrays, was designed to figure out the expression 

difference between 24 normal and 14 LUAD samples, 

thus identifying latent MMRGs affecting LUAD 

development. Determined to filter those MMRGs 

engaged in LUAD survival (namely PMMRGs), 

GSE4573 was an RNA-seq dataset that comprised 130 

LUAD samples. 

 

Clinical characterization of LUAD cluster identified 

by MMGRs 

 

We performed genotyping analyses to determine the 

optimal conditions for LUAD samples clustering. Then, 

nonnegative matrix factorization (NMF), performed by 

R package NMF (0.26), was used to classify these 

LUAD samples into two clusters based on the gene 

expression profiles of MMRGs. Ten algorithms used for 

splitting the LUAD samples into two clusters were 

demonstrated as Ward, Single, Complete, Average, 

McQuitty, Median, Centroid, Kmeans, marriot and 

trcovw. Kaplan-Meier analysis was exploited to 

investigate the correlation between two clusters and 

overall survival (OS), progression-free interval (PFI), 

disease-specific survival (DSS), and disease-free 

interval (DFI) of LUAD, respectively. Furthermore, we 

illustrated the relationship between clusters and 

clinicopathological parameters of LUAD. According to 

the clinical information from the TCGA-LUAD 

database, we separately explored the correlation 

between LUAD clusters and age, gender, radiotherapy 

and chemotherapy receiving, TNM stage, and tumor 

recurrence, respectively. 

 

Functional analysis of MMRGs 

 

Based on the above LUAD clusters, the “limma” R 

package (3.52.4) was employed to ascertain the 

differential expression genes (DEGs) in the RNA-seq 

data. Simultaneously, |log2 fold change| >1.0 and 

adjusted p <0.05 were chosen as the criteria  

for screening differentially expressed MMRGs 

(DEMMRGs). Subsequently, we further illuminated 

the functional characteristics of DEMMRGs in LUAD 

progression. Gene Ontology (GO) is an internationally 

standardized database that describes gene products  

and gene functions across species and databases [19]. 

We used the “clusterProfiler” package (4.4.4) in R to 

perform GO-MF enrichment analysis of MMRGs to 

further investigate the major pathways through which 

these MMRGs participated in LUAD progression. 

Simultaneously, the GSVA algorithm was exploited to 

evaluate the immune infiltration score and tumor 

characteristic pathway score of LUAD patients, 

thereby analyzing the effect of genotyping of  

MMRGs on immune cells and tumor characteristic 

pathways. 

https://www.ncbi.nlm.nih.gov/geo/
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Analysis of latent regulatory mechanisms of 

MMRGs 

 

In general, the expression level of MMRGs is subject to 

multiple factors. To understand the possible regulatory 

mechanisms, present in cluster-related MMRGs, we 

analyzed the latent mechanisms from three perspectives: 

gene mutation, DNA methylation, and transcription 

factor regulation. Based on the whole genome sequence 

from the TCGA-LUAD database, we distinguished the 

mutational MMRGs, thus investigating their alternations 

in the expression levels. The DNA methylation data of 

LUAD and RNA-seq data were used to observe the 

influence of methylation on MMRGs expression by co-

expression analysis with R < -0.25 as a screening 

criterion. We determined the possible transcription 

factors targeted by the differentially expressed MMRGs 

based on the Chip-seq data from the ENCODE database. 

On the other hand, RNA-seq data was used to calculate 

the co-expression relationship between MMRGs and 

transcription factors, and the screening criterion of 

transcriptional regulation was defined as | R | >0.25. 

 

Statistical analysis 

 

All statistical analyses and data visualization were 

conducted using R software (version 4.1.2). The data 

were presented as means ± standard deviations. 

Wilcoxon rank sum analysis was used to compare the 

MMRGs between different groups, and Kaplan-Meier 

analysis was tailored to evaluate the survival difference 

among LUAD patients in distinct groups. P value <0.05 

was considered statistically significant. 

 

RESULTS 
 

Identification of DEMMRGs in LUAD 

 

The MITOCARTA3.0 (https://www.broadinstitute.org/ 

mitocarta/mitocarta30-inventory-mammalian-mitochond 

rial-proteins-and-pathways) database collected 1136 key 

genes that played a crucial role in the functions of 

mitochondria. These 1136 mitochondrial genes were then 

screened by TCGA and GSE33479 dataset to select those 

deregulated MMRGs affecting LUAD progression. The 

results showed that 188 MMRGs were overexpressed and 

30 MMRGs were low expressed in LUAD cases 

according to the TCGA database (Figure 1A). On the 

other hand, there were 151 DEMMRGs in GSE33479 

(Figure 1B). To further narrow the key DEMMRGs in 

LUAD, we performed the crosstalk analysis of the 

differential genes between TCGA and GSE33479, 

thereby filtering 54 overlapped pivotal DEMMRGs 

(Figure 1C). To elucidate the underlying functional 

pathways, we conducted a KEGG enrichment analysis 

based on the 54 pivotal DEMMRGs. We found that the 

54 genes were significantly enriched in the amino acid 

metabolism, vitamin metabolism, mtDNA maintenance, 

and Folate and 1-C metabolism pathways (Figure 1D and 

Supplementary File 1). These pathways were primarily 

involved in the activities of mitochondria, suggesting 

their essential roles in mitochondrial metabolism. 

 

Identification of PMMRGs in LUAD 

 

In an attempt to reveal the role of MMRGs during the 

prognosis of LUAD, we extracted the vital survival-

associated MMRGs from the TCGA and GSE4573 

datasets based on the 1136 genes in the 

MITOCARTA3.0 database. Among them, a total of 469 

MMRGs were demonstrated to be related to LUAD 

prognosis in the TCGA database, while 171 MMRGs 

were found to link with LUAD survival in GSE4573 

(Figure 2A and Supplementary File 2). Cross-correlation 

analysis showed that 109 shared MMRGs participated in 

the prognosis of patients with LUAD, defined as 

PMMRGs. KEGG enrichment analysis displayed that 

these PMMRGs could influence 122 pathways, wherein 

carbon metabolism and pyruvate metabolism were 

dramatically affected (Figure 2B). 

 

Determination of key genes in LUAD 

 

According to the previous four gene lists (DEMMRGs in 

TCGA and GSE33479, and PMMRGs in TCGA and 

GSE4573), we obtained three specific genes (ACOT11, 

ALDH2, and TXNRD1) in LUAD (Figure 3A). These 

key genes were involved in the progression of LUAD by 

affecting LUAD survival. Thus, we defined these genes 

as survival-related DEMMRGs. To further uncover the 

relationships between three survival-related DEMMRGs 

and clinicopathological parameter data, we delineated 

the landscape of three genes in age, gender, TNM stage, 

radiotherapy and chemotherapy situation, TNM stage, 

and tumor recurrence, respectively. The results 

manifested that TXNRD1 was associated with gender, 

radiotherapy receiving, and M stage (Figure 3B–3E), 

while ALDH2 was strongly related to T stage and age 

(Figure 3F, 3G). Additionally, ACOT11 was largely 

involved in the N stage of LUAD (Figure 3H). 

 

Cluster analysis identified by MMRGs 

 

Multiple algorithms were used to determine the optimal 

number of cluster analyses. Results indicated that more 

than 10 algorithms splitting the LUAD samples into two 

clusters were the best answer regarding this issue 

(Figure 4A). With this in mind, we divided these LUAD 

samples into Cluster1 (C1) and Cluster2 (C2) using the 

non-negative matrix decomposition (NMF), an effective 

https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways
https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways
https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-proteins-and-pathways
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Figure 1. MMRGs identification in LUAD. (A, B) Volcano plots of the differentially expressed MMRGs in the TGCA and GSE33479 

database. (C) Venn diagram of differentially expressed MMRGs in TGCA and GSE33479. (D) KEGG pathway enrichment analysis of 54 pivotal 
MMRGs. 
 

 
 

Figure 2. PMMRGs identification in LUAD. (A) The bar chart of prognosis-associated MMRGs in the TGCA and GSE4573 databases.  

(B) KEGG pathway enrichment analysis of 109 common MMRGs. 
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Figure 3. Identification of key genes in LUAD. (A) Determination of survival-associated DEMMRGs in LUAD based on four gene lists.  

(B–H) Boxplots of the correlation between the three genes and clinicopathological characteristics. 
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Figure 4. Classification of LUAD patients. (A) Multiple algorithms to determine the optimal number of clusters. (B) Clustering heatmap 

of two subtypes. (C) Average silhouette width exhibited the coherence of clusters. (D) Kaplan-Meier survival analysis of two subtypes. 
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method for clustering linearly separable data, based on 

the characteristics of the MMRG in LUAD [20]. 

Moreover, such a clustering approach could distinguish 

different OS of LUAD patients, as well as clear 

boundaries between distinct color regions, integrated 

with the value of average silhouette width (ASW), 

which is calculated as a measure of clustering 

consistency to estimate the degree of similarity of 

samples within subtypes (Figure 4C). Survival analysis 

indicated that the C1 cluster was negatively associated 

with a longer survival time in LUAD (Figure 4D). 

 

Clinicopathologic characteristics of the LUAD 

clusters 

 

We first clarified the correlation between LUAD 

subtypes and clinicopathologic features and found that 

LUAD clusters identified by MMRGs were associated 

with gender, T stage, N stage, tumor recurrence, and 

receiving radiotherapy. (Figure 4B). Moreover, C1 

displayed a weak relationship with these clinical 

characteristics compared to C2 (Figure 5A–5F). To 

further delineate the survival outcomes of LUAD 

patients, we carried out survival analysis in the two 

subtypes. Results showed that, in two clusters, there 

existed a difference in OS, DSS, and PFI of LUAD, 

suggesting the impact of LUAD clustering on LUAD 

survival (Figure 5G–5I). 

 

Functional analysis of DEMMRGs in two clusters 

 

In order to explore the main biological functions 

affected by MMRGs in the C1 and C2 clusters, we first 

performed the DEGs analysis by RNA-seq data from 

 

 
 

Figure 5. Clinicopathologic characteristics and survival status in C1 and C2. (A–F) The different clinicopathologic characteristics 

between C1 and C2. (G–I) Survival analysis of C1 and C2. 
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the TCGA-LUAD database between the two clusters. A 

total of 313 DEMMRGs were identified to be 

differentially expressed in the two clusters (Figure 6A). 

To ascertain the specific functions influenced by 

MMRGs, we then carried out molecular functions 

analysis among these DEGs. Results indicated that 

DEMMRGs were mainly enriched in 16 mitochondria-

associated pathways (mainly were alkali cargo 

endopeptidase activity, extracellular matrix structural 

constituer, alditol: NADP+D-th1-dehydrogenase/ 

oxidoreductase, water channel trans transporter, and 

glycosaminoglycan sulfur compound) (Figure 6B). 

 

Immune infiltration in two clusters 

 

Considering the indispensable role of immune infiltration 

in tumorigenesis, we analyzed the relationship between 

immune cells and two clusters (Figure 7A). It was 

observed that a variety of immune cells including T cells, 

B cells, eosinophils, mast cells, and NK cells, manifested 

a different distribution in C1 and C2 (Figure 7B–7F). 

These findings revealed that distinct DEGs signatures in 

LUAD subtypes impact immune infiltration levels. 

 

Tumor-specific pathways of two clusters 

 

Expanding literature on oncology has corroborated the 

existence of various pathways during the development 

and progression of LUAD [21, 22]. Therefore, we 

further elucidated the main tumor-specific pathways 

affected by MMRGs in the well-known hallmark gene 

sets from GSEA analysis. Results suggested that 10 

pathways, including allograft rejection, apical surface, 

complement, estrogen response early, inflammatory 

 

 
 

Figure 6. Underlying function analysis of DEGs in two clusters identified by MMRGs. (A) Volcano plot of DEGs in two clusters.  

(B) Function enrichment analysis of DEMMRGs. 
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response, KAS signaling up, mitotic spindle, MYC 

targets V2, pancreas β cells, and Wnt/β-catenin 

pathways were significantly expressed in two clusters 

(Figure 8). 

 

Latent regulatory mechanisms of cluster 

 

The previous 313 DEGs in two clusters were considered 

to be related to LUAD genotyping (Figure 6A). We 

attempted to explore the potential regulatory mechanism 

of these genes in LUAD progression from the 

perspective of gene mutation, DNA methylation, and 

transcription factors. Through analysis of gene 

mutation, we found that 198 MMRGs contained gene 

mutations. Among them, 25 MMRGs with gene 

mutations could affect the gene expression levels. 252 

MMRGs were screened out to have methylation sites. 

Furthermore, 138 MMRGs were found to be negatively 

regulated by methylation sites for their innate gene 

expression. As for the analysis of transcription factors, 

77 MMRGs were demonstrated to be manipulated by 

transcription factors, among which EGR1 was capable 

of modulating 10 MMRGs (Figure 9). 

DISCUSSION 
 

Regardless of the tremendous progress in precision 

oncology through nuclear genomic analysis of LUAD, 

existing strategies targeting mitochondrial genetic 

abnormalities still exhibit limitations. A more complete 

understanding of LUAD based on MMRGs could fill 

the gap between genomic abnormalities and oncogenic 

MMRGs mechanisms. Mitochondria are cellular energy 

factories that are responsible for more than 90% of the 

required energy [23]. Moreover, the process of energy 

generation is coordinated by the interaction between 

nuclear and mitochondrial genomes [24]. The 

dysregulation and/or mutation of the mitochondrial 

genome exert significant effects on altering cellular 

metabolic status, which is permissive for tumor growth 

and proliferation [25]. And such characteristic 

metabolic transition and elevated glucose uptake in 

tumor cells have been previously depicted in breast 

cancer and pancreatic cancer [26, 27]. Also, research 

insights into the abnormality of mitochondrial energy 

metabolism is a vital hallmark of LUAD [28]. Given the 

essential role of mitochondria in metabolism, somatic 

 

 
 

Figure 7. The landscape of immune infiltration between two clusters. (A) Heatmap of immune cell infiltration in two clusters.  

(B–F) The distribution of various immune cells in C1 and C2 was shown as a box plot. 
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mutations in the mitochondrial genome may emerge as 

pivotal divers of deregulated tumor cell metabolism. 

However, the mutational profile of the mitochondrial 

genome has not been extensively studied. Here, we 

identified key MMRGs in LUAD progression and 

prognosis and as well as their potential functional 

mechanisms. 

 

Firstly, 1136 MMRGs were obtained from 

MITOCARTA3.0. Then, differential expression analysis 

was exploited to select DEMMRGs from the TCGA and 

GSE33479 datasets, and 54 DEMMRGs were ultimately 

identified. Subsequently, we found that these 54 genes 

were mainly engaged in amino acid metabolism, vitamin 

metabolism, mtDNA maintenance, and folate and 1-C 

metabolism pathways (Figure 1B). These metabolism-

associated pathways showed great promise for clinical 

use. For example, glutaminolysis is therapeutically 

exploited in subsets of KRAS-mutant LUAD through 

glutaminase inhibition. KRAS is one of the most 

commonly mutated oncogenic drivers in LUAD that has 

yet to be fully conquered in cancer treatment given the 

challenge of inhibiting KRAS directly [29]. However, 

mutations that frequently co-occur with those in KRAS 

could be defined as therapeutic vulnerabilities in LUAD. 

In KRAS-mutant LUAD, tumors with LKB1 loss are 

highly enriched for concurrent KEAP1 mutations, which 

activate the KEAP1/NRF2 pathway [30]. LKB1-deficient 

tumors were dramatically concentrated with concurrent 

KEAP1 mutations, which in turn activated the 

KEAP1/NRF2 signaling pathway. Initiation of the 

KEAP1/NRF2 axis in tumors with LKB1 loss increased 

cell survival rates and maintained the energetic and redox 

homeostasis in a glutamine-dependent manner [31]. 

 

Subsequently, based on the TGCA and GSE4573 

databases, 109 common PMMRGs were collected and 

they were involved in 122 pathways, such as carbon 

metabolism and pyruvate metabolism, which were 

crucial in mitochondria. Combining the differential 

expression profiles and survival analysis of MMRGs  

in LUAD, three MMRGs (ACOT11, ALDH2, and 

 

 
 

Figure 8. The box plots of 10 tumor-specific pathways in C1 and C2. 
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TXNRD1) were identified as prognostic DEMMRGs. 

ACOT11 encoded enzymes that participated in the 

metabolism of fatty acids [32, 33]. We found that 

ACOT11 was correlated to the N stage. An isolated 

study revealed that ACOT11 was upregulated in LUAD 

patients and generally associated with an unfavorable 

prognosis, which was in accord with our study [34]. 

ACOT11 could regulate cell proliferation, migration, 

and invasion of LUAD through multiple signaling 

pathways, suggesting its promising potential in 

molecular treatment [34]. ALDH2 is capable of 

detoxifying acetaldehydes into non-toxic acetic acids 

[35]. Our study showed that ALDH2 was associated 

with age and T stage. It was reported that ALDH2 

repression contributed to a dismal prognosis of patients 

with LUAD [36]. As for TXNRD1, there were few 

studies focused on its role in LUAD. However, in our 

current study, TXNRD1 was discovered to be related to 

gender, receiving radiotherapy, and the M stage. Taken 

together, our research extended the current knowledge 

by emphasizing the scientific merits of these three 

PMMRGs during LUAD progression. 

 

Further, to get a more comprehensive landscape of 

MMRGs in LUAD, we divided them into two clusters 

(C1 and C2) and explored the difference of 

clinicopathological features in C1 and C2. The results 

manifested that C2 had more apparent characteristics 

compared with C1. Furthermore, the MMRGs-signature 

influence the OS, DSS, and PFI of LUAD clusters. 313 

differentially expressed MMRGs are identified in C1 

and C2 and they were mainly enrichment in 16 

methodical-associated function pathways, in particular, 

extracellular matrix (Figure 6B). Indeed, it has been 

established that the tumor extracellular matrix was 

responsible for drug resistance and immune suppression 

[37]. Then, we investigated the context of immune cell 

infiltration level in LUAD given the increasingly 

important role of immune infiltration in tumorigenesis 

[38]. There existed a clear difference in the distribution 

of various immune cells in C1 and C2. In addition, the 

pathways influenced by MMRGs were delineated. 10 

characteristic pathways were ultimately figured out, 

such as Wnt/β-catenin signaling, which was a critical 

driver in epithelial-mesenchymal transition and tumor 

metastasis [39]. 

 

Finally, the detailed mechanisms underlying the MMRGs 

signatures in two clusters were investigated from  

the perspective of gene mutation, DNA methylation,

 

 
 

Figure 9. The transcriptional regulatory network of EGR1. 
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and transcription factors. In general, DNA methylation is 

more frequent in solid tumors compared with genomic 

mutations [40]. Both hypermethylation of tumor 

suppressor genes and hypomethylation of carcinogenic 

genes are essential factors in tumor development and 

progression. However, few studies have been conducted 

to decode the function of MMRGs in DNA methylation, 

which may be an important aspect to focus on in future 

research. More important, in LUAD progression, we 

identified a key transcription factor of MMRGs 

clustering, EGR1, which modulated 10 genes. As a 

transcriptional activator, EGR1 has been proposed to 

induce overexpression of LINC01116 [41]. However, 

the exact function of EGR1 in LUAD still needs more 

assays to illustrate. 

 

CONCLUSIONS 
 

In summary, we provided a complementary and more 

comprehensive understanding of MMRGs during the 

development and progression of LUAD. Also, we 

investigated the latent mechanisms underlying the 

MMRGs in LUAD. These findings may offer an 

opportunity to expedite translation of basic research to 

more precise treatment in the clinic. 
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Supplementary File 1. The results of GSEA from Figures 1D, 2B. 

 

Supplementary File 2. The survival outcomes from TCGA and GEO databases. 

 


