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INTRODUCTION 
 

In 2021, breast cancer (BRCA) surpassed lung cancer 

to become the most newly diagnosed cancer type in the 

world [1]. Combined with the fact of its high mortality, 

BRCA has become one of the most threatening 

malignant tumors in women [1]. Although the etiology 

of BRCA is not fully understood, it has been reported 

that the occurrence of BRCA involves a variety of 

factors, such as genetics, environment or aging [2]. 

Tumor invasion, metastasis and distant spread are the 

most common causes of death in BRCA patients [3, 4]. 

In recent years, since the application and development 

of a variety of novel combined treatment strategies, the 

survival time of BRCA patients has been significantly 

prolonged. However, many BRCA patients develop 
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ABSTRACT 
 

Background: Breast cancer (BRCA) represents a significant threat with high mortality rates due to relapse, 
metastasis, and chemotherapy resistance. As a regulated cell death process characterized by the induction of 
immunogenic signals, immunogenic cell death (ICD) has been identified as an effective anti-tumorigenesis 
approach. However, the comprehensive study and its clinical value of ICD-related lncRNAs in BRCA is still missing. 
Methods: The transcriptome matrix and corresponding clinical information of BRCA patients were obtained 
from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was performed to identify ICD-
related lncRNAs (ICDRLs). To determine the prognostic value of the identified ICDRLs, univariate Cox regression 
analysis, LASSO algorithm, and multivariate Cox regression analysis were employed to construct a risk model. 
The prognostic risk model was subsequently evaluated using univariate and multivariate Cox regression 
analysis, as well as Nomogram analysis. In vitro experiments were also conducted to validate the bioinformatics 
findings using quantitative real-time PCR (qRT-PCR). 
Results: We established a prognostic risk signature consisting of five ICDRLs. The prognostic value of this model 
was subsequently confirmed in guiding BRCA prognostic stratification. Furthermore, we explored the 
correlation of the risk score with various clinical characteristics and chemotherapy response. qRT-PCR result 
confirmed the abnormal expression of ICDRLs, which was consistent with the bioinformatics data. 
Conclusions: Our findings provide evidence of the critical role of ICDRLs in BRCA and offer a novel perspective 
for exploring precise treatment options for BRCA patients. 
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relapse, metastasis and chemotherapy resistance after 

treatment, which ultimately leads to patient death [5, 

6]. Therefore, further research on new potential 

therapeutic targets for BRCA has positive clinical 

significance. 

 

Immunogenic cell death (ICD) is a regulated form of 

cell death characterized by the release of tumor-

associated antigens (TAAs) and danger-associated 

molecular patterns (DAMPs) from dying cancer cells, 

including cell-surface exposure of calreticulin, extra 

cellular adenosine triphosphate (ATP), and high-

mobility group box 1 (HMGB1) [7]. By producing 

reactive oxygen species (ROS), induced endoplasmic 

reticulum (ER) stress leads to the immunogenicity of 

tumor cells, which is the first step in the ICD signaling 

cascade [8]. In recent years, ICD induction has been 

revealed to be one of the most promising approaches for 

building long-term immunity against tumors [9]. In 

triple-negative BRCA (TNBC), immune checkpoint 

inhibitor (ICI) treatment is one of the most successful 

immunotherapies [10]. In response to ICI, progression-

free survival (PFS) and overall survival (OS) can be 

significantly improved [11]. The occurrence of response 

to ICI in TNBC is related to certain biological pattern, 

including tumor-infiltrating lymphocytes, programmed 

death ligand 1 (PD-L1), and non-synonymous mutations 

[12]. In addition, preclinical models and clinical trials 

confirmed that induction of ICD sensitizes TNBC to 

ICIs treatment in this process [13, 14]. Previous studies 

also showed that chemo/ radiotherapy-elicited TNBC 

cell-derived HMGB1 enhances antitumor immunity 

induced by activated CD8+ T cells, revealing the 

importance of DAMP in immunotherapeutic treatment 

of TNBC [15]. Additionally, some ICD-targeted drugs 

have also shown the impact on BRCA treatment. 

Teniposide, a DNA topoisomerase II inhibitor, was 

reported to induce ICD through the cGAS/STING 

pathway and effectively inhibit tumor progression [16]. 

Sr-4835, a CDK12/13 specific inhibitor, triggers ICD 

and initiates T cell-dependent tumor elimination in 

BRCA [17]. This evidence preliminarily indicates that 

ICD biomarkers may serve as candidate prognostic 

factors for BRCA, which has potential for further 

comprehensive research and clinical application. 

 

In this study, we first constructed a prognostic risk 

signature with five ICDRLs by using BRCA cohort. 

The reliability and sensitivity of the signature were 

further verified. We also explore the correlation of the 

risk score with various clinical characteristics, 

anticancer immune status, and chemotherapy response. 

qRT-PCR also showed significant ICDRL expression 

differences in BRCA cell line, which was in line with 

the bioinformatics results. The findings highlight the 

critical role of ICDRLs in BRCA and provide a novel 

perspective for exploring the metabolic mechanism and 

treatment of BRCA. 

 

MATERIALS AND METHODS 
 

Transcriptome matrix collection of BRCA 

 

The transcriptome matrix and corresponding clinical 

information of patients diagnosed with BRCA (BRCA) 

were obtained from The Cancer Genome Atlas (TCGA) 

database, accessible at https://portal.gdc.cancer.gov/. To 

ensure data quality, samples with missing survival 

information or less than 0 days of survival time were 

excluded from the analysis. The final cohort comprised 

1069 BRCA samples, which were included in this 

study. The gene matrix was extracted using Perl scripts. 

The Ensembl Human Genome Browser GRCh38.p13 

database, available at http://asia.ensembl.org/ 

index.html, was used for mRNA expression annotation. 

Clinical information was obtained using Perl scripts 

from the TCGA database. Subgroup analysis by gender 

and M stage was not conducted due to marked 

differences in sample sizes. 

 

Exploration of ICD-related lncRNAs 

 

In this study, a total of 33 ICD-related genes were 

collected from a previously published article 

(Supplementary Table 1). The expression levels of ICD-

related genes in BRCA (BRCA) were extracted using 

Perl scripts and the R package “limma”. Pearson 

correlation analysis was then conducted to identify 

ICDRLs using a threshold of |correlation coefficient| > 

0.4 and P-value < 0.001 (r > 0.4, P < 0.001). A total of 

184 ICDRLs were identified for further analysis 

(Supplementary Table 2). 

 

Prognostic signature development using ICD-related 

lncRNAs 
 

Univariate Cox regression analysis was performed using 

the R package “survival” to identify prognostic ICDRLs 

for BRCA. The least absolute shrinkage and selection 

operator (LASSO) algorithm, implemented with the R 

package “glmnet”, was utilized to determine the critical 

variables of prognostic ICDRLs. A multivariate Cox 

regression analysis was then conducted to construct the 

risk model. The risk scores were calculated using the 

following formula: Risk Score = (−2.276 × expression 

of LINC02511) + (−0.751 × expression of AL451085.2) 

+ (−1.649 × expression of AL133467.1) + (0.449 × 

expression of AC092718.4) + (−2.548 × expression of 

LINC01055). Subsequently, the BRCA patients were 

categorized into low- and high-risk groups based on 

their median risk scores. The R packages “survival” and 

“ggplot2” were used to estimate overall survival (OS) 

https://portal.gdc.cancer.gov/
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rates and investigate the separation pattern by principal 

component analysis (PCA). The BRCA samples were 

randomly divided into training and validation cohorts at 

a 1:1 ratio, and the risk scores of each sample were 

calculated accordingly [18]. 

 

Independence evaluation and immune infiltration 

landscape estimation 

 

In this study, we conducted univariate and multivariate 

Cox regression analyses using the R package “survival” 

to examine the independence of the factors. A 

nomogram model was then developed using the R 

package “rms” to predict the 1-, 3-, and 5-year survival 

probabilities of patients based on clinicopathological 

characteristics and risk score. The prognostic 

performance of the model was validated using time-

dependent receiver operating characteristic (ROC) 

analysis with the R package “timeROC”. Additionally, 

we evaluated the stromal and immune cells, as well as 

the ESTIMATE score and tumor purity, using the 

ESTIMATE algorithm and the R package “estimate”. 

Finally, we used the “CIBERSORT R script v1.03” and 

the R package “CIBERSORT” to estimate the 22 types 

of immune cells in BRCA samples. 

 

Tumor mutational burden, immune response and 

drug sensitivity analysis 

 

The tumor mutation data of BRCA samples were 

obtained from the TCGA database in “maf” format. Perl 

scripts were utilized to extract the mutation data from 

the raw dataset, while the creation of a waterfall 

diagram was accomplished using the “Maftools” 

package. The Immunophenoscore (IPS) outcome was 

acquired from the TCIA database, which is accessible at 

https://tcia.at/home. To extract immune checkpoint 

inhibitor (ICI) expressions from the TCGA matrix, the 

R package “limma” was employed, and the expressions 

were then log2-transformed (expression + 1). The 

Genomics of Drug Sensitivity in Cancer (GDSC) 

database was employed to assess drug sensitivity (IC50) 

using “pRRophetic” from R. 

 

Functional enrichment analysis 

 

In this study, the R package “limma” was utilized to 

identify differential expression genes (DEGs). A 

screening threshold was set at |Fold Change| ≥ 2 and 

P-value < 0.05 to select the DEGs. Gene set variation 

analysis (GSVA) was then employed to calculate the 

KEGG terms of BRCA patients in both low- and high-

risk groups. A significance level of P < 0.05 was 
considered to indicate statistically significant 

differences. To further analyze the DEGs, we performed 

pathway enrichment using Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analysis through the use of the “clusterProfiler” R 

package. 

 

qRT-PCR analysis 

 

The MCF-7 and MCF-10A cell lines were obtained 

from the American Type Culture Collection (ATCC) 

and cultured in DMEM (Dulbecco’s Modified Eagle 

Medium) supplemented with 10% Fetal Bovine Serum, 

1% penicillin/streptomycin, and 2 mM L-glutamine in 

a humidified incubator at 37°C with 5% CO2. To 

extract mRNA, the cells were cultured in appropriate 

culture dishes until they reached 70–80% confluency. 

Total RNA was extracted using TRIzol reagent 

according to the manufacturer’s instructions. The 

quality and quantity of the RNA samples were assessed 

using a NanoDrop spectrophotometer and gel 

electrophoresis. mRNA was subsequently purified from 

the total RNA using poly-T oligo-attached magnetic 

beads and eluted in RNase-free water. The quality and 

quantity of the purified mRNA samples were assessed 

using an Agilent 2100 Bioanalyzer. The primer 

sequences for lncRNAs are shown in the Sup-

plementary Table 3. 

 

Wound healing assay 

 

Cells were seeded in 6 cm culture plates, and the 

monolayer cells were wounded by scratching with 

sterile plastic 200 μl micropipette tips and photographed 

using phasecontrast microscopy immediately and 48 hrs 

after wounding. The assays were independently 

performed in triplicate. The migration distance of each 

cell was measured after the photographs were converted 

to Photoshop files. 

 

Cell invasion and motility assay 

 

Invasion of cells was measured in Matrigel (BD, 

Franklin Lakes, NJ, USA) -coated Transwell inserts 

(6.5 mm, Costar, Manassas, VA, USA) containing 

polycarbonate filters with 8 μm pores as detailed 

previously. The inserts were coated with 50 μl of 1 

mg/ml Matrigel matrix according to the 

manufacturer’s recommendations. 2 × 105 cells in 200 

μl of serum-free medium were plated in the upper 

chamber, whereas 600 μl of medium with 10% fetal 

bovine serum were added to lower well. After 24 hr 

incubation, cells that migrated to the lower surface of 

the membrane were fixed in 4% paraformaldehyde and 

stained with 0.5% crystal violet. For each membrane, 

five random fields were counted at ×10 magnification. 
The mean cell number was calculated and data were 

presented as mean ± sd. from three independent 

experiments done in triplicate. 

https://tcia.at/home
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Statistical analysis 

 

All statistical analyses were conducted using R software 

(version 4.1.0) and Perl scripts. To investigate the 

correlation between risk score and drug sensitivity, 

Spearman-ranked correlation analysis was utilized with a 

significance level of p < 0.05 considered to indicate 

statistically significant differences. Differential functions 

between the two groups were analyzed using the 

Wilcoxon rank-sum test, and a significance level of p < 

0.05 was considered to indicate statistical significance. 

 

Data availability statement 

 

The datasets analyzed for this study are available in the 

Cancer Genome Atlas (TCGA) (http://tcga-data. 

nci.nih.gov/tcga/) and the Genotype-Tissue Expression 

Project (GTEx) (http://www.gtexportal.org/home/ 

index.html) databases. 

 

RESULTS 
 

Identification of prognostic-associated ICDRLs in 

BRCA 

 

In this study, we utilized the Pearson correlation 

algorithm and set the threshold for significance at |r| > 

0.4 and p < 0.05. Based on this criterion, we identified 

and collected 184 ICDRLs for subsequent analysis. A 

Sankey diagram was employed to display the significant 

associations between ICD genes and ICDRLs (Figure 

1A). Using univariate Cox analysis, we evaluated the 

potential prognostic value of the 184 ICDRLs in BRCA 

and found 17 ICDRLs that were significantly associated 

 

 
 

Figure 1. Screening and identification of prognostic-associated ICDRLs. (A) Sankey diagram displays the relationship between ICD 

genes and ICDRLs. (B) ICDRLs associated with BRCA prognosis are filtered and selected. (C) LASSO analysis shows the minimum lambda value of 
the characteristic variables. (D) The correlation heatmap reveals the associations between five independent prognostic factors and ICD genes. 

http://tcga-data.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/
http://www.gtexportal.org/home/index.html
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with prognosis, including three risk factors and 14 

beneficial factors (Figure 1B). Through LASSO 

analysis, we further selected the characteristic variables 

of ICDRLs that were associated with BRCA prognosis, 

and by performing multivariate Cox analysis, we 

ultimately determined five independent characteristic 

variables that could predict BRCA prognosis (Figure 

1C). The correlation results suggest that these five 

characteristics, including AC092718.4, AL133467.1, 

LINC01055, LINC02511, and AL451085.2, are 

significantly correlated with most ICD genes (Figure 

1D). Specifically, AC092718.4, AL133467.1, 

LINC01055, and LINC02511 are positively correlated, 

while AL451085.2 is negatively correlated with most 

ICD genes. 

 

Constructing a prognostic risk model based on 

independent prognostic ICDRLs 

 

Based on the coefficients obtained from the 

multivariate Cox analysis for five independent 

prognostic factors, we calculated the risk score for each 

BRCA sample. To explore the potential association 

between the risk score and BRCA prognosis, we 

divided the BRCA samples into two risk subgroups 

based on the median risk score and constructed a novel 

risk model, as shown in Figure 2A, 2B. The 

unsupervised PCA model based on the five 

independent prognostic factors clearly distinguished the 

risk subgroups of BRCA (Figure 2C). Clinical survival 

outcomes indicated that the low-risk subgroup had 

better survival prognosis than the high-risk subgroup of 

BRCA (Figure 2D). Furthermore, time-dependent ROC 

curve analysis showed that the AUC values for 1-, 3-, 

and 5-year survival were 0.745, 0.638, and 0.619, 

respectively (Figure 2E). These findings suggest that 

the risk model constructed based on the five 

independent ICDRLs prognostic factors may be 

associated with BRCA prognosis and can provide 

insights into different clinical survival outcomes. 

 

Evaluation of the independence of ICDRLs 

prognostic features 

 

In view of the potential role of ICDRLs prognostic 

features in predicting the clinical survival outcome of 

BRCA, we integrated the clinical information of each 

BRCA sample and explored the independent prognostic 

value of each variable. We conducted both univariate 

and multivariate Cox analyses and calculated the hazard 

ratio (HR), p-value, and risk score for different clinical 

variables. Univariate Cox analysis revealed that age, 

 

 
 

Figure 2. Construction of a risk model based on five independent ICDRLs prognostic factors. (A, B) Division of BRCA samples 

into two risk subgroups. (C) PCA analysis of high and low-risk subgroups. (D) Assessment of clinical survival outcomes for risk subgroups of 
BRCA. (E) Time-dependent ROC curve analysis. 
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stage, T, N, and risk score were closely associated with 

adverse prognostic outcomes in BRCA (HR > 1, p < 

0.001). Multivariate Cox analysis suggested that the 

prognostic model based on five independent ICDRLs 

prognostic factors was an independent prognostic 

factor for BRCA (Figure 3A, 3B). Additionally, we 

developed a nomogram based on different clinical 

variables and ICDRLs prognostic features to accurately 

analyze the survival probability of BRCA at 1, 3, and 5 

years (Figure 3C). In addition to evaluating the 

independent prognostic value of ICDRLs prognostic 

features, we also explored their prognostic value in 

different clinical-pathological features. Based on the 

median value of ICDRLs risk scores, BRCA samples 

with different clinical-pathological features were 

classified into high- and low-risk subgroups (Figure 

3D–3K). Clinical survival outcome analysis revealed 

that in different clinical-pathological subgroups, the 

clinical prognosis of low-risk group BRCA samples 

was better than that of high-risk group samples. We 

therefore conclude that the prognostic model based on 

five ICDRLs features is an independent prognostic 

factor for BRCA and can accurately evaluate the 

clinical prognosis of BRCA in different clinical-

pathological features. 

 

Validation of ICDRLs prognostic features in 

different independent cohorts 

 

In the subsequent study, we further explored the 

independence and accuracy of ICDRLs prognostic 

features. Using the R script “caret” and a 1:1 random 

split, we divided BRCA samples from TCGA into 

training and validation cohorts. Based on the 

coefficients calculated by the multivariate Cox model 

and the expression of the five ICDRLs, we computed 

the risk score for each BRCA sample in the training and 

validation cohorts and classified them into high- and 

low-risk subgroups according to the median risk score 

(Figure 4A, 4B). In the training cohort, we found that 

the low-risk subgroup had a better clinical prognosis for 

BRCA (Figure 4C). Time-dependent ROC curves 

indicated AUC values of 0.814, 0.708, and 0.648 for 1-, 

3-, and 5-year survival, respectively (Figure 4D). 

 

 
 

Figure 3. Independent prognostic evaluation of ICDRLs prognostic features. (A, B) Univariate and multivariate COX analysis 

calculating HR and p-values for different clinical-pathological variables and ICDRLs prognostic features. (C) Development of a nomogram 
based on different clinical-pathological variables and ICDRLs prognostic features. (D–K) Clinical survival outcome evaluation of risk 
subgroups based on ICDRLs prognostic features in different clinical-pathological features. 
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In the validation cohort, we observed consistent results 

with the training cohort, with the low-risk subgroup 

showing better clinical outcomes compared to the high-

risk subgroup (Figure 4E). The time-dependent ROC 

curves showed AUC values of 0.662, 0.608, and 0.630 

for 1-, 3-, and 5-year survival, respectively (Figure 4F). 

Based on the results of these two independent cohorts, 

we conclude that the prognostic features based on the 

five ICDRLs can accurately evaluate the prognosis of 

BRCA. 

 

Exploration of potential mechanisms based on the 

risk subgroups of ICDRLs 

 

To explore the potential regulatory mechanisms 

underlying the differential clinical survival outcomes 

between different ICDRLs risk subgroups, we analyzed 

some potential signaling pathways and molecular 

functional mechanisms between the subgroups. Based 

on the limma script, we investigated the differentially 

expressed genes (DEGs) between the two risk 

subgroups. As shown in Figure 5A, we obtained 149 

significantly upregulated DEGs and 906 significantly 

downregulated DEGs according to the differential 

analysis. The GSVA heatmap revealed that some 

immune-related signaling pathways, such as B cell 

receptor signaling pathway and cytokine-cytokine 

receptor interaction were significantly upregulated in 

the low-risk subgroup, while some cancer-related 

signaling pathways, such as cell cycle, mismatch repair 

and RNA degradation were significantly upregulated in 

the high-risk subgroup (Figure 5B). Furthermore, we 

conducted GO and KEGG enrichment analyses based 

on these DEGs (Figure 5C, 5D). The GO results 

indicated significant enrichment of DEGs in immune 

functional signaling pathways such as B cell receptor 

signaling pathway, positive regulation of cell activation, 

and positive regulation of leukocyte activation, while 

the KEGG enrichment results suggested significant 

correlation between DEGs and a series of immune-

related signaling pathways, involving positive 

regulation of lymphocyte activation, positive regulation 

of leukocyte activation, and positive regulation of cell 

activation. Based on these results, we hypothesize that 

the differentially expressed genes based on ICDRLs risk 

subgroups are related to immune functional signaling 

pathways, and the changes in immune signaling 

pathways may be the potential mechanism causing 

different clinical survival outcomes between risk 

subgroups. 

 

Assessment of immune infiltration in ICDRLs risk 

subgroups 

 

Based on the potential mechanisms of the ICDRLs risk 

subgroups, we speculate that immune-related changes 

may be the key factors that contribute to the differential 

outcomes observed in the ICDRLs risk subgroups. In 

light of this, we further explored the immune infiltration 

characteristics between different risk subgroups. Firstly, 

we employed the ESTIMATE algorithm to evaluate the 

immune status between two risk subgroups. The results 

 

 

 
Figure 4. Analysis of ICDRLs prognostic features in different independent cohorts. (A, B) Risk subgroups based on ICDRLs 

prognostic features in the training and validation cohorts. (C) Clinical prognostic survival analysis in the training cohort. (D) Time-related 
ROC curve analysis in the training cohort. (E) Clinical prognostic survival analysis in the validation cohort. (F) Time-related ROC curve 
analysis in the validation cohort. 
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indicate that the stromal, immune, and ESTIMATE 

scores were significantly lower in the high-risk group 

compared to the low-risk group, while the tumor purity 

was higher, suggesting a significant difference in 

immune status between the two risk subgroups (Figure 

6A–6D). Using the CIBERSORT algorithm, we further 

assessed the immune infiltration characteristics of 

BRCA in the ICDRLs risk subgroups (Figure 6E). The 

proportion of 22 immune cells infiltrating the tumors 

suggests that the proportions of B cells naive, plasma 

cells, T cells CD8+, T cells CD4+ memory resting, T 

cells regulatory (Tregs), T cells gamma delta, 

macrophages M1, dendritic cells resting, mast cells 

activated, and neutrophils were higher in the low-risk 

group than in the high-risk group, while the proportions 

of NK cells resting, macrophages M0, macrophages 

M2, dendritic cells activated, and eosinophils were 

significantly lower in the high-risk group. Correlation 

analysis suggests that the ICDRLs risk score was 

significantly positively correlated with neutrophils, 

dendritic cells activated, NK cells resting, macrophages 

M0, eosinophils, mast cells activated, and mast cells 

resting, and significantly negatively correlated with T 

cells CD4 memory activated, T cells gamma delta, 

plasma cells, T cells CD8, mast cells resting, dendritic 

cells resting, B cells naive, and T cells CD4 memory 

resting. Meanwhile, we also observed a significant 

correlation between five prognostic factors and immune 

cell infiltration (Figure 6F). Immune checkpoint results 

indicate that the expression levels of PD-L1, PD-1, 

LAG3, and CTLA4 were significantly higher in the 

low-risk subgroup than in the high-risk subgroup 

(Figure 6G–6J). In summary, these results suggest 

significant differences in immune infiltration between 

different risk subgroups and may be related to the 

response to immune therapy. 

 

Analysis of immune therapy response and mutation 

burden characteristics 

 

The application of immunotherapy strategies in BRCA 

treatment has shown remarkable potential. We 

conducted further evaluation of the immune therapy 

response of BRCA to PD-1 and CTLA4 in different 

ICDRLs risk subgroups. Utilizing the TCIA database, 

we predicted the immune therapy response of BRCA 

samples in both low and high-risk subgroups. The 

results demonstrated that BRCA samples in the low-risk 

group exhibited a significantly higher response to PD-1 

and CTLA-4 therapy compared to the high-risk group 

(Figure 7A–7C). TMB analysis indicated that BRCA 

samples in the high-risk subgroup displayed a higher 

 

 
 

Figure 5. Exploration of potential mechanisms in different ICDRLs risk subgroups. (A) Differential gene expression analysis of risk 

subgroups. (B) GSVA analysis of different ICDRLs risk subgroups. (C, D) GO and KEGG enrichment analysis of differentially expressed genes. 
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TMB score. Moreover, the clinical prognostic outcome 

of BRCA in the low-risk group was significantly better 

than that of the high-risk group in different mutational 

congruence subgroups (Figure 7D, 7E). The somatic 

mutation landscape results revealed that among 451 

samples in the low-risk subgroup, 361 had somatic 

mutations, whereas among 487 samples in the high-risk 

subgroup, 427 had somatic mutations. In comparison to 

the mutation characteristics of the high-risk subgroup, 

we observed significantly lower mutation frequencies of 

TP53 and TTN in the low-risk subgroup. Notably, the 

mutation frequencies of PIK3CA, CDH1, and MAP3K1 

were significantly lower in the high-risk subgroup than 

in the low-risk subgroup (Figure 7F, 7G). Based on 

these findings, we postulate that the ICDRLs prognostic 

characteristics based on five prognostic factors can 

reflect the immune therapy response of different risk 

subgroups and are associated with mutation feature. 

 

Prediction of chemotherapeutic drugs based on 

ICDRLs risk subtypes 

 

In addition to immunotherapy, chemotherapeutic treat-

ment represents a crucial therapeutic approach for 

 

 
 

Figure 6. Immune infiltration assessment of ICDRLs risk subgroups. (A–D) Evaluation of immune status. (E) Evaluation of the 
proportions of 22 immune cells. (F) Analysis of the correlation between ICDRLs prognostic features, prognostic factors, and immune-
infiltrating cells. (G–J) Analysis of the expression profiles of immune checkpoints in ICDRLs risk subgroups. 
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patients diagnosed with BRCA. In further inves-

tigations, we expanded our research by predicting the 

potential benefit of certain chemotherapy drugs for 

BRCA treatment, using the GDSC database. As 

illustrated in Figure 8, we identified significantly higher 

IC50 values of Z-LLNle-CHO, Sunitinib, S-Trityl-L-

cysteine, PHA-665752, Paclitaxel, Dasatinib, CGP-

60474, Cyclopamine, and Rapamycin in the high-risk 

 

 
 

Figure 7. Evaluation of immune therapy response and mutation load characteristics of ICDRLs risk subtypes. (A–C) IPS scores 

predicting ICDRLs risk subtypes based on the TCIA database. (D) Tumor mutation load score of ICDRLs risk subtypes. (E) Clinical prognosis 
analysis of high and low mutation load groups based on ICDRLs risk subtypes. (F, G) Assessment of somatic mutation frequency in ICDRLs 
risk subtypes. 
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group as opposed to the low-risk group. This finding 

implies that individuals diagnosed with BRCA and 

classified in the high-risk group may display a greater 

degree of sensitivity towards these chemotherapy drugs. 

 

qRT-PCR validation of 5 prognostic ICDRLs  

 

In order to further verify the abnormal expressions of 

ICDRLs in BRCA, human normal mammary epithelial 

cell line MCF-10A and BRCA cell line MCF-7 were 

utilized. MCF-7 had higher mRNA expressions of 

AC092718.4, AL451085.2, while lower LINC02511, 

AL133467.1 and LINC01055 expressions in com-

parison to control cell line MCF-10A. All five ICDRLs 

showed abnormal expressions with significant 

differences in vitro, which was in line with the 

bioinformatics results (Figure 9). 

 

Over-expression of LINC01055 inhibits the 

migration and invasion of BRCA cells 

 

To further verify whether LINC01055 affects the 

progression of BRCA, we transfected human BRCA 

cell line BT-549 with an adenovirus vector over-

expressing LINC01055. qRT-PCR results showed that 

LINC01055 was significantly overexpressed compared 

to the negative control (Figure 10A). Scratch assay and 

Transwell analysis were subsequently performed to 

evaluate the role of LINC01055 in BRCA migration and 

invasion. Transwell results showed that overexpression 

 

 
 

Figure 8. Prediction of potential chemotherapy drugs. Predicted IC50 values of (A) Z-LLNle-CHO, (B) Sunitinib, (C) S-Trityl-L-cysteine, 

(D) PHA-665752, (E) Paclitaxel, (F) Dasatinib, (G) CGP-60474, (H) Rapamycin, and (I) Cyclopamine in the ICDRLs risk subtypes. 
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of LINC01055 significantly reduced the number of BT-

549 cells passing through the lower chamber in 

comparison to the control group (Figure 10B, 10C). 

Similarly, scratches in the vector control group 

continued to heal over time, while overexpression of 

LINC01055 inhibited the ability of cells to migrate to 

the scratched area (Figure 10D, 10E). These results 

suggest that overexpression of LINC01055 can inhibit 

the migration and invasion of BRCA cells. 

 

DISCUSSION 
 

We established a prognostic model for BRCA based on 

five ICDRLs, and subsequently successfully confirmed 

the value of this model in guiding prognostic 

stratification. In vitro experiment also showed 

significant expression differences with the same trend in 

comparison to bioinformatics results. 
 

Evidence has shown that ICDRLs can be used to 

characterize the infiltration of immune cells in tumors, 

which are potential targets for cancer therapy and have 

predictive value for survival and prognosis [19]. In 

addition, gene signatures developed by the combination 

of high-throughput sequencing technology and bio-

informatics are widely used in individualized treatment 

and prognosis assessment, and their predictive accuracy 

is better than that of single biomarkers [20]. Therefore, it 

is necessary to establish ICDRLs features for the 

treatment and prognosis of BRCA patients. Among the 5 

ICDRLs screened, AL133467.1, AL451085.2, and 

AC092718.4 were previously reported to be prognostic 

features of BRCA [21–23]. LINC01055 was used as a 

prognostic biomarker for colorectal cancer [24]. 

LINC02511 has not been publicly reported yet. 

 

Tumor immune microenvironment (TME) plays an 

important role in the occurrence, development and 

prognosis of BRCA [25]. Some pathological subgroups 

of breast tumors are rich in tumor-infiltrating 

lymphocytes (TIL), which can be used as reliable 

prognostic biomarkers for BRCA and are associated 

 

 
 

Figure 9. qRT-PCR analysis of 5 ICDRLs in MCF-10A and MCF7. mRNA expressions of AC092718.4 (A) LINC02511 (B) LINC01055 (C) 
AL451085.2 (D) AL133467.1 (E) in both MCF-10A and MCF7 cells. 
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with clinical responsiveness to chemotherapy agents 

such as docetaxel or doxorubicin. A 10% increase in 

TIL was associated with a varying reduction in the risk 

of recurrence and death [26–28]. In particular, 

infiltration of cytotoxic CD8+ T lymphocytes, CD4+ T 

lymphocytes, and tumor-associated macrophages 

(TAM) predicted favorable results [29]. Our results 

showed that the levels of CD8+ T cells and CD4+ T cells 

in the high-risk group were significantly lower than 

those in the low-risk group, suggesting that the high-

risk group may have a lower immunosuppressive 

immune microenvironment of TIL, which may lead to a 

poorer prognosis in the high-risk group. Because 

chemotherapy agents can enhance antitumor immune 

responses by clearing immunosuppressive cells or 

inducing neoantigen release from tumor cells, higher 

levels of TIL can improve tumor response to immune 

checkpoint inhibitors [12]. We also found that the high-

risk group had lower levels of TIL and a poorer 

response to immune checkpoint inhibitors. Among the 

differences in the components of immune infiltrating 

cells in different stratifications, we noticed that the 

high-risk group had lower levels of eosinophils in the 

immune microenvironment. Unforeseen roles for 

eosinophils have been found in a variety of 

environments that go well beyond allergic inflammation, 

Including carcinogenesis [30]. Eosinophils infiltrate 

multiple tumors and can regulate tumor progression 

either directly by interacting with tumor cells or 

indirectly by shaping the TME. Depending on the tumor 

type, eosinophils may exhibit pro-tumor or antitumor 

functions [30]. Activated eosinophils are essential for 

tumor rejection in the presence of tumor-specific CD8+ 

T cells. Tumor homing eosinophils secrete chemo-

attractants that direct T cells into the tumor, leading to 

tumor eradication. At the same time, activated 

eosinophils trigger substantial changes in the tumor 

microenvironment, including macrophage polarization 

and normalization of tumor vasculature [31, 32]. In 

addition, the correlation between eosinophils’ response 

to cancer immunotherapy [30, 33] is of great signifi-

cance for eosinophil in BRCA. 

 

There are still limitations and weaknesses in our study. 

The bioinformatic results only got a preliminary in vitro 

validation, and their biological functions need to be 

further elucidated. Secondly, we described the 

correlation between ICD-related risk model and tumor-

infiltrating immune components. However, due to the 

complexity, we did not further study the causal 

 

 
 

Figure 10. Effects of overexpression of LINC01055 on migration and invasion ability of BRCA cells. (A) Relative expression of 

LINC01055 detected by qRT-PCR in BT549 cells (n = 3). (B, C) Transwell analysis detected the effect of overexpressed LINC01055 on the 
invasion ability of BT549 (n = 3) (×100). (D, E) Scratch assay detected the migration ability of BT549 by 0 and 24 hours (n = 3) (×40). 
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relationship between the two. Third, there may be some 

deviations in case inclusion and data processing in 

retrospective studies since only TCGA cohort was 

involved in study. Clinical sample collection and 

external validation will be implemented in the future. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. The 33 ICD-related genes. 

Gene 

IL17RA 

IL1R1 

PIK3CA 

CD4 

IFNG 

PRF1 

CXCR3 

CD8A 

CD8B 

P2RX7 

NLRP3 

IL10 

TLR4 

ENTPD1 

ATG5 

IFNB1 

IL6 

EIF2AK3 

IL17A 

LY96 

FOXP3 

HMGB1 

HSP90AA1 

BAX 

PDIA3 

CALR 

CASP8 

MYD88 

IFNGR1 

CASP1 

IL1B 

TNF 

NT5E 

 

Supplementary Table 2. The identified ICDRLs genes. 
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Supplementary Table 3. The primer sequences of the lncRNAs. 

 F R 

LINC02511 CAAGCAATGGATGTCGGAGC AGGTCTTGCCCAGACAGGTA 

AL451085.2 AGACGCTACGCCTGAAAACA CTAGCGGAGACGACCCTTTC 

AL133467.1 AGACGCTACGCCTGAAAACA CTAGCGGAGACGACCCTTTC 

AC092718.4 GCCTCTGGATCAGATGAGCG GCCAGTTACTAACCCCGCAT 

LINC01055 CGTGAGTTGATTGGACCCCA GCTCTGCACTGGTTTGTTGG 

 


