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INTRODUCTION 
 

Acute Myocardial Infarction (AMI) is one of the 
leading causes of death in developed countries. 

Globally, the incidence of this disease approaches 3 

million people, posing significant challenges to global 

healthcare. Its etiology involves reduced coronary artery 

blood flow, leading to insufficient oxygen supply and 

subsequent myocardial ischemia. The decrease in 
coronary artery blood flow is multifactorial, potentially 

caused by the rupture of atherosclerotic plaques that 

lead to thrombus formation, coronary artery embolism, 
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ABSTRACT 
 

Background: Globally, Acute Myocardial Infarction (AMI) is a common cause of heart failure (HF), which has 
been a leading cause of mortality resulting from non-communicable diseases. On the other hand, increasing 
evidence suggests that the role of energy production within the mitochondria strongly links to the development 
and progression of heart diseases, while Cuproptosis, a newly identified cell death mechanism, has not yet 
been comprehensively analyzed from the aspect of cardiovascular medicine. 
Materials and Methods: 8 transcriptome profiles curated from the GEO database were integrated, from which a 
diagnostic model based on the Stacking algorithm was established. The efficacy of the model was evaluated in a 
multifaced manner (i.e., by Precision-Recall curve, Receiver Operative Characteristic curve, etc.). We also 
sequenced our animal models at the bulk RNA level and conducted qPCR and immunohistochemical staining, 
with which we further validated the expression of the key contributor gene to the model. Finally, we explored 
the immune implications of the key contributor gene. 
Results: A merged machine learning model containing 4 Cuproptosis-related genes (i.e., PDHB, CDKN2A, GLS, 
and SLC31A1) for robust AMI diagnosis was developed, in which SLC31A1 served as the key contributor. 
Through in vivo modeling, we validated the aberrant overexpression of SLC31A1 in AMI. Besides, further 
transcriptome analysis revealed that its high expression was correlated with significant potential 
immunological implications in the infiltration of many immune cell types, especially monocyte. 
Conclusions: We constructed an AMI diagnostic model based on Cuproptosis-related genes and validated the 
key contributor gene in animal modeling. We also analyzed the effects on the immune system for its 
overexpression in AMI. 
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abuse of cocaine that causes cardiac ischemia, coronary 

artery dissection, and coronary vasospasm. AMI is 

characterized by its sudden onset, rapid progression, 

and grave prognosis. Despite the extensive efforts in 

pharmaceutical and surgical interventions, there has 

been limited improvement in the incidence and 

mortality rates associated with AMI over the past 

decades [1]. Within this context, emphasizing the 

urgency of AMI diagnosis cannot be overstated, as 

timely identification is crucial for patient survival. 

 
Currently, cardiac troponin (encoded by the TNNI3 

gene) and creatine kinase MB isoenzyme (encoded by 

the CKM gene) serve as the gold standard biomarkers 

for AMI diagnosis, although their specificity and 

sensitivity are less satisfactory [2, 3]. Furthermore, 

classic risk factors such as smoking, obesity, and 

hypertension play pivotal roles in prevention and 

clinical management, although they are insufficient  

for immediate diagnosis [4]. As such, the pursuit of 

more precise diagnostic methods and a comprehensive 

understanding of the complex pathogenesis and risk 

factors are crucial for enhancing AMI management and 

outcomes. 

 
Fortunately, thanks to the rapid development in genetic 

engineering, microarray technology was advanced and 

applied in both clinical investigations and academic 

research. Some more new biomarkers with the potential to 

outperform the aforementioned were proposed in recent 

years. For example, Zhang et al. found that ARG1 might 

play a key role in the pathogenesis of AMI, which could 

be a biomarker of AMI and provide a reference for a  

more in-depth study [5]. Chen et al. identified TBX21  

and PRF1 as novel diagnostic biomarkers and potential 

modulatory targets through comprehensive bioinformatic 

analytics [6]. Furthermore, the activation of the immune 

system after the occurrence of AMI is more and more 

aware by scientists and clinicians these days. Immune  

cell types including M2 macrophages, mast cells, and 

eosinophils have been proven to possess certain impacts 

on patients after AMI, providing new insights into  

the immune mechanisms of AMI pathogenesis [7]. 

Meanwhile, the introduction of artificial intelligence  

(AI) into the field of bioinformatics analytics improves 

the robustness of in-silico methods significantly. By 

combining these techniques, the discovery of even more 

reliable biomarkers can be expected in the foreseeable 

future [8]. 

 
Abnormal copper metabolism has been proven to be 

linked with heart ischemia for a long time [9–11]. 

Cuproptosis, a novel cell death mechanism induced by 

an intracellular imbalance of copper ions may also have 

an important role in this regard as copper has been 

proven to coordinate a variety of cellular biological 

processes such as lipolysis, cell proliferation, autophagy, 

and neural activity [12]. 

 

Inspired by the aforementioned, the present study aimed 

to establish a novel diagnostic model for early AMI 

detection based on the Cuproptosis-related gene set.  

In total, the AI for AMI diagnosis was constructed  

on the basis of 4 contributor genes, including PDHB, 

CDKN2A, GLS, and SLC31A1. Then, we performed 

bulk RNA sequencing with our in vivo models to 

assemble our own small cohort. By comparing with  

the public datasets, we determined the central role of 

SLC31A1. Furthermore, we validated the expression of 

SLC31A1 by a series of in vivo assays (i.e., quantitative 

real-time PCR, immunohistochemical staining, and  

their quantitative analyses by the ImageJ software) and 

explored the potential immunological implications of 

SLC31A1 expression. 

 

Figure 1 demonstrates the general design of the present 

study. 

 

MATERIALS AND METHODS 
 

Data curation and processing 

 

In total, 8 datasets (i.e., GSE29111, GSE60993, 

GSE109048, GSE29532, GSE19339, GSE48060, 

GSE66360, GSE97320) were curated from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/) [13–20].  
A total of 318 samples were therefore enrolled in the 

present study. The normalization and calibration were 

done through the “Normalize Between Arrays” function 

of the R package, “limma”. As for the genes set involved 

in the present study, a total of 13 Cuproptosis-related 

genes, including 7 pro-Cuproptosis genes (i.e., FDX1, 

LIAS, LIPT1, DLD, DLAT, PDHA1, and PDHB), 3  

anti-Cuproptosis genes (i.e., MTF1, GLS, and CDKN2A), 

and 3 copper transporter-encoding genes (i.e., ATP7A, 

ATP7B, and SLC31A1) [21, 22]. Of note that some genes 

(i.e., LIPT1, MTF1, ATP7A, and ATP7B) were not 

present in all the datasets and thus were not considered  

in the statistics. The aforementioned analyses were done 

online through the integrative tool set “Xsmart plateform” 

(https://www.xsmartanalysis.com/) by different packages 

embedded in the R studio software and Python (especially 

the Python package “sklearn”). If not specifically 

mentioned, the statistic test used in the analytics is the 

Wilcoxon rank sum test. Notably, within some figures, 

 *, **, and *** may occur, indicative of a P-value less 

than 0.05, 0.01, and 0.001, respectively. 

 

Selection of contributor genes 

 

To avoid linearity problems, we used not only popular 

linear algorithms such as LASSO but also non-linear 
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ones like SVM-RFE, XGBoost-RFE, and Boruta 

algorithms [23–25]. Each algorithm gives a certain  

list of genes that can serve as contributor genes for  

the construction of diagnostic AI, but we intended to 

limit the number of genes involved to make it more 

clinically applicable. Therefore, a Venn diagram was 

drawn to screen the overlapping genes out. Those 

genes were thought as most ideal contributor genes 

for modeling in the next step. 

 

Mainstream machine learning algorithms used in the 

present study 

 

According to the “no free lunch” theorem, if one 

machine learning algorithm outperforms the others on a 

specific assessment, it should sacrifice certain points on 

the other assessment measurements [26]. Therefore, to 

overcome this disadvantage, we first exhaustively tried 

9 mainstream stream algorithms, including XGBoost, 

Logistic, Random Forest, AdaBoost, GNB, LightGBM, 

MLP, KNN, and SVM, to select the most suitable 

algorithms for this task, and then merge them by 

stacking method. The concept of Stacking involves first 

training base learners on the original data. These base 

learners each generate outputs based on the original 

data. These outputs from the multiple models are then 

combined to form new data, which is subsequently fed 

into a second-level model for fitting. This usually 

results in a more accurate output ultimately. In the 

present study, the training set and validation set contain 

a sample ratio of 7:3. In the modulation of stacking, the 

sample allocation ratio of the training set:validation set: 

test set is 7:2:1. All samples involved in the machine 

learning process were randomized first, and then 

allocated. 

 

Decision curve analysis (DCA) 

 

Most of the time, in the case of clinical questions, false 

positives and false negatives are inevitable. To address
 

 
 

Figure 1. Graphical abstract of the present study. 
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this issue, DCA, which is a popular method to compare 

the efficacy of different predictive models under such 

circumstances, was used, so that the clinical benefits are 

maximized [27, 28]. 

 

Calibration of predictions 

 

To further assess the deviation between the predictive 

results and the reality, a calibration curve in which the 

predictive results were plotted against the observed 

reality within a randomly divided subset from the whole 

merged dataset. The ratio of the cases contained by this 

subset to the whole merged dataset is 3:10. The closer 

the curve is situated to the 450 ideal dash line, the more 

accurate prediction is given. 
 

Analysis of the immunological microenvironment 

 

CIBERSORT (https://cibersort.stanford.edu/) was used 

to assess the abundance of various infiltrating immune 

cells [29, 30]. Overall, 22 immune cell types were 

quantified. Correlation analysis between the immune 

cell types and SLC31A1 was done by the Spearman 

method. The visualization was achieved by the R 

package “ggplot2”. 

 

Construction of in vivo model 

 

All experiments were performed on male C57BL/6 J 

mice (6-8 weeks of age, n=6/group). Animals were 

housed in groups in an environment with a 12/ 12 h 

day/night cycle and free access to water and food. 

 

The mice were anesthetized with isoflurane first and 

then opened the chest quickly. Then, the left anterior 

descending coronary artery was ligated together with 

the great cardiac vein. Immediately after the coronary 

artery is lapped, the heart is placed back into the chest 

cavity, where it is gently pressed to expel air from the 

chest cavity while sutures from the skin are closed. The 

mice were evaluated by observing their status after 

surgery. In the healthy control group (Sham group), the 

thoracic cavity was opened without ligation of the left 

anterior descending branch of the coronary artery. The 

observation indexes were the vitality and normal life of 

mice, and the changes in electrocardiogram before and 

after the operation. Finally, the mice were sacrificed by 

neck amputation.  

 

RNA sequencing and data analysis 

 

Whole-genome gene expression analysis was performed 

using the heart tissues of mice from AMI and Sham 
groups (n=3/group) at 24h. The total RNA was 

extracted using Trizol (Vazyme), and cDNA samples 

were sequenced using a sequencing system (Novaseq 

6000; Illumina). The reference Mus musculus  

genome and gene information were downloaded from 

the National Center for Biotechnology Information 

database. Raw reads were filtered to produce high-

quality clean data. All the subsequent analyses were 

performed with clean data. The expression matrixes  

of selected genes involved in the figures were organized 

as tables in Supplementary Table 1. 

 

Quantitative real-time PCR (qPCR) 

 

Total RNA was isolated from tissues or cells using 

Trizol (Vazyme), and RNA concentration and purity 

were measured using spectrophotometry. RNA was 

reverse transcribed using the PrimeScript RT reagent 

Kit (Vazyme) under the manufacturer’s instructions. 

Quantitative PCR was performed using LightCycler 96 

(Roche) and SYBR Mastermix (Vazyme) in accordance 

with the manufacturer’s instructions. The fold difference 

in gene expression was 6 calculated using the 2-ΔΔ Ct 

method and is presented relative to Gapdh mRNA. All 

reactions were performed in triplicate, and specificity 

was monitored using melting curve analysis. 

 

The PCR primer used in the present study was designed 

for the SLC31A1 gene, shown as follows: 

 

Forward 5’-3’: GGAGAAATGGCTGGAGCTTTT 

Reverse 5’-3’: CGGGCTATCTTGAGTCCTTCA 

 

Histological examination 

 

For histological analysis, hearts were fixed overnight 

in 4% paraformaldehyde (pH 7.4), embedded in 

paraffin, and serially sectioned at 5-µm thickness.  

The sections were stained with Hematoxylin and  

Eosin (H&E) for routine histological examination with 

a light microscope. To measure collagen deposits, 

select sections were stained with Masson’s trichrome 

(MT) reagent. For each mouse, 3 random sections 

were quantified using ImageJ software (National 

Institutes of Health). Details can be checked in 

Supplementary Figure 1. 

 

Immunohistochemistry 

 

Serial sections were deparaffinized and blocked with 

phosphate-buffered saline (PBS) containing 5% (v/v) 

normal goat serum and 1% (w/v) BSA; the sections 

were then incubated with anti-GLS1 (Cat. No. bs-

10341R, Bioss) antibody and anti-SLC31a1 (Cat. No. 

bs-10773R, Bioss) overnight, followed by incubation 

with a secondary antibody for 1 hour at room 
temperature. The relative intensity of protein staining 

was analyzed in five random sections, chosen 40× fields 

for each sample and quantified using ImageJ software 
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(National Institutes of Health). Detailed slides can be 

checked in Supplementary Figure 2. 

 

Statistical analysis used in in vivo experiments 

 

The data were analyzed and graphed using GraphPad 

Prism 9.4.1 software and are shown as mean ± SD. 

The Shapiro–Wilk-test was used to detect the normal 

distribution. Student’s t-test or one-way ANOVA 

followed by Tukey’s post-hoc test was used for 

statistical analysis as appropriate. For the Kaplan–Meier 

survival plots, statistical significance was measured by 

the log-rank (Mantel–Cox) test. A P-value < 0.05 was 

deemed statistically significant. All experiments were 

repeated independently 3 times. 

 

RESULTS 
 

Data normalization and the selection of contributor 

genes for machine learning 

 

The expression matrixes of the 8 GEO datasets  

were normalized with a baseline correction and then 

merged. To see if the samples were homogenized, we 

visualized them in the form of UMAP. As shown in 

the figure, the samples involved in the present study 

were well-mixed with one another, indicating a good 

homogeneity (Figure 2A, 2B). 

 

Then, we went on with contributor gene selection. 

Through the SVM-RFE algorithm, 7 genes (i.e., FDX1, 

DLD, PDHA1, PDHB, GLS, CDKN2A, and SLC31A1) 

were thought to be the most suitable for the following 

AI construction (Figure 2C), while the results of 

XGBoost-RFE algorithm recommended LIAS, PDHA1, 

PDHB, GLS, CDKN2A, and SLC31A1 (Figure 2D). In 

the Boruta algorithm, FDX1, DLAT, LIAS, PDHA1, 

PDHB, GLS, CDKN2A, and SLC31A1 were filtered 

out and ranked with specific weights of importance 

(Figure 2E). Besides the aforementioned non-linear 

algorithms, the regularly used linear algorithm in the 

field of bioinformatics, LASSO, was also employed in 

the present study, through which we found FDX1, 

LIAS, DLD, PDHB, GLS, CDKN2A, and SLC31A1 

were the strongest candidates (Figure 2F). To sum up, 

we used a Venn diagram to intersect the overlapping 

genes (Figure 2G), so that the contributor genes for  

AI construction could be determined. As a result, we 

decided to use PDHB, CDKN2A, GLS, and SLC31A1 

in the rest of the study. 
 

Selecting the best algorithms 

 

We exhaustively went through 9 mainstream machine 

learning algorithms (i.e., XGBoost, Logistic, Random 

Forest, AdaBoost, GNB, LightGBM, MLP, KNN, and 

SVM) to identify the ideal machine learning 

algorithms for this task. Consequently, we found that 

regarding the Precision-Recall rate (i.e., the so-called 

“PR” annotated in the figure), XGBoost, AdaBoost, 

and GBN were the most superior algorithms (Figure 

3A, 3B), which was further confirmed by the value of 

Area under Curve (AUC) on the Receiver Operative 

Characteristic (ROC) curve (Figure 3C, 3D). Although 

the AdaBoost algorithm possessed a little bit higher 

bias in the calibration curve (i.e., 0.182) than that of 

the Random Forest algorithm (i.e., 0.116), and was 

located comparatively lower in the plot of DCA, 

comprehensively considering, we believed XGBoost, 

AdaBoost, and GBN were the most ideal options for 

further AI modulation (Figure 3E, 3F). 

 

The stacking of machine learning algorithms 

outperformed the gold standard biomarkers in AMI 

 

As previously described, we found that XGBoost, 

AdaBoost, and GBN were seemingly the best options 

for AI modulation as they possessed relatively high 

PR-AUC and ROC-AUC values. While in terms of the 

stacking method, usually 2 layers of classifying logic 

are set, and the difference between the 2 layers is 

positively associated with the final predictive outcome. 

Therefore, besides placing XGBoost, AdaBoost, and 

GBN into the first layer, we used MLP which 

performed most distinctly from these algorithms as  

a second layer. Subsequently, we found the merged 

version behaved satisfying predictions with a ROC-

AUC value over 0.7 in not only the training set  

but also the validation set and even the test set 

respectively, showcasing its outstanding calculation 

power (Figure 4A–4C). Meanwhile, we examined the 

individual predictive ability of each contributor gene, 

finding that when using these genes as diagnostic 

biomarkers solely, the outcomes were fall out of our 

expectations as PDHB (Figure 4E), SLC31A1 (Figure 

4F), and GLS (Figure 4G) possessed a ROC-AUC 

value of around 0.6 respectively and CDKN2A (Figure 

4D) had only reached 0.54. Gold standard biomarkers 

(i.e., TNNI3 and CKM) on the other hand were not 

playing well either, as they were scored with a ROC-

AUC value of 0.62 and 0.59, respectively (Figure  

4H, 4I). Overall, by combing the 4 contributor genes 

as a genetic signature, with the proper assistance of AI, 

the early diagnosis of AMI would likely reach a new 

level. 

 
In vivo validation of SLC31A1 expression 

 

We modeled the mice with surgical techniques 

described in the methodology section and validated 

them from histological slides with Masson staining. 

Representative images were exhibited within the figure. 
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Figure 2. Homogenization of different samples from various datasets and selection of the contributor genes for the 
construction of AI diagnostic predictor. (A, B) UMAP plot visualizes the sample distribution. As shown, originally the samples were fairly 
separated (A), but they were very well homogenous after normalization (B). (C–F) Determination of suitable contributor genes by SVM-RFE, 
XGBoost-RFE, Boruta, and LASSO, respectively. (G) Venn diagram demonstrated the overlapping genes. 4 genes (i.e., PDHB, CDKN2A, GLS, and 
SLC31A1) were finally selected. 
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Figure 3. Evaluation of the robustness of the 9 mainstream machine algorithms to identify the best ones for AI construction. 
(A, B) Precision-Recall (PR) curve in the training set and validation set, respectively. (C, D) Receiver Operative Characteristic (ROC) curve 
performed in the training set and validation set, respectively. (E) Calibration curve demonstrating the bias between predictive values and 
realistic values for the machine learning algorithms involved in the present study. (F) DCA for the machine learning algorithms involved in the 
present study. 
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In a nutshell, we compared the AMI group and  

the Sham group macroscopically (Figure 5A) and 

under magnification (Figure 5B), both demonstrating 

significant differences regarding the color of staining. 

In the AMI group, within the region of infarction, the 

myocardium was in much deeper purplish, indicating a 

significant pathological status, while in the Sham 

group, normal myocardium could be clearly observed 

in a healthy red color. 

In the GEO datasets, we tested the expression of the 

contributor genes in the manner of violin plots. It was 

found that except for the CDKN2A gene, the rest 

genes had very high statistical significance regarding 

differential expression (Figure 5C). However, it was 

found that in our own bulk sequencing cohort, merely 

the SLC31A1 gene was granted statistical signifi-

cance, and the other genes possessed P-values over  

0.05, although meanwhile, the mean differences were

 

 
 

Figure 4. Evaluation of the stacking-based AI predictor for AMI diagnosis and comparison of its efficacy with individual genes 
involved (i.e., PDHB, CDKN2A, GLS, and SLC31A1) and gold standard biomarkers (i.e., TNNI3 and CKM). (A–C) ROC curve of the 
stacking-based AI predictor in the training set, validation set, and test set, respectively. (D–G) ROC curve of PDHB, CDKN2A, GLS, and 
SLC31A1, respectively. (H, I) ROC curve of TNNI3 and CKM, respectively. 
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Figure 5. In vivo validation of the expression of the contributor genes, with a focus on the SLC31A1 gene. (A) Masson staining 
slides on a macroscopic view, demonstrating the coronal section of the mice’s hearts. The left panel is the AMI sample, and the right panel is 
the Sham sample. RV: right ventricle, LV: left ventricle. (B) Masson staining slides of the coronary heart section of the AMI group and Sham 
group under magnification. The purplish color indicates hypoxia, thus the area of AMI. The deeper the color, the more severe infarction.  
(C, D) Expression analysis of the contributor genes in the form of violin plots in the merged GEO dataset and our own bulk RNA sequencing 
cohort, respectively. (E) qPCR results of the SLC31A1 gene expression. (F) Upper panel: immunohistochemical staining of the SLC31A1 protein 
in the AMI group and Sham group. The more brownish color, the more abundant the SLC31A1 protein. Lower panel: quantitative analysis of 
the immunohistochemical staining for the SLC31A1 protein in the AMI group and Sham group in the manner of bar plot. 
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apparent (Figure 5D). As such, we continued the  

in vivo studies focusing on the SLC31A1 gene. Through 

the qPCR, the expression of the SLC31A1 gene was 

determined at the mRNA level in the AMI group and 

Sham groups. It was found that the SLC31A1 gene  

was expressed at a relatively higher level in the AMI 

group (Figure 5E), which supported our computational 

results. At the protein level, we immunohistochemically 

stained the samples to visualize the abundance of 

SLC31A1 protein (Figure 5F). Subsequently, we found 

the SLC31A1 protein was much more abundant in the 

AMI group than that in the Sham group. 

SLC31A1 expression was potentially positively 

correlated with monocyte infiltration 

 

We first obtained the abundance of various infiltrating 

immune cells in AMI using the CIBERSORT algorithm. 

There are significant differences in multiple immune 

cell types in AMI in comparison with the healthy 

control, including plasma cells, CD4+ memory T cells, 

Gamma-Delta T cells, activated NK cells, monocytes, 

macrophage M2, activated dendritic cells, mast cells, 

eosinophils, and neutrophils (Figure 6A). Such results 

were cross-validated with previous studies which 

 

 
 

Figure 6. Assessment of the infiltration of various immune cell types in both AMI and healthy control and their correlation 
with SLC31A1 expression. (A) Violin plot demonstrating the comparison of abundance of infiltrating immune cell types in the AMI group 
and healthy control. (B) Spearman correlation analysis between the SLC31A1 expression and diverse infiltrating immune cell types. 
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pointed out that the infarction status of the 

myocardium might trigger a diverse immune cell 

activation in which there was a sophisticated interplay 

[31–33]. We further analyzed the association between 

the SLC31A1 expression and cellular immunity. We 

found a significant association between SLC31A1 and 

most of the immune cell types, especially monocytes, 

with a synchronizing trend in Figure 6A, hinting at  

the potentially central role of SLC31A1 among the 

contributor genes in AMI from the immunological 

aspect (Figure 6B). 

 

DISCUSSION 
 

Cardiovascular diseases as one of the most serious 

diseases worldwide, especially AMI, have been 

affecting millions of patients yearly and can recur in 

more than half of the population [34, 35]. Regardless 

of the rapid advancements in the healthcare industry, 

there have been limited improvements in morbidity 

and mortality from AMI over the past few decades, 

particularly in young ages [36]. For a long time, 

cardiac troponin and creatine kinase-MB isoenzyme 

are viewed as gold standard biomarkers for AMI 

diagnosis [37–39], but their real effectiveness and 

sensitivity are questionable. In the present study, their 

predictive performance in our merged GEO dataset 

was indeed less satisfying. Identifying new biomarkers 

for accurate and robust AMI diagnosis remains in 

demand.  

 

In 2022, Tsvetkov and colleagues discovered 

Cuproptosis, a novel cellular demise pathway contingent 

upon mitochondrial respiration [12]. It stands distinct 

from apoptosis by its unique reliance on copper and 

mitochondria interaction, meanwhile, unlike ferroptosis 

(also a result of imbalanced ion hemostasis), which 

involves iron-dependent lipid peroxidation, Cuproptosis 

emphasizes copper homeostasis disruption, unveiling  

a novel avenue in understanding cellular demise with 

implications beyond classical apoptotic pathways. 

Subsequently, extensive research has delved into its 

implications within the realm of oncology [40–42], 

although there remains a conspicuous dearth of studies 

investigating its pertinence to non-neoplastic conditions. 

 

On the other hand, the wide use of high-throughput 

sequencing technique generated a wealth of big data 

that is being analyzed again and again to further explore 

the pathomechanisms of various diseases. However, 

mining valuable knowledge from such overwhelming 

amounts of data is a challenging and vital task in 

modern medicine. In this regard, machine learning, a 

successful methodology to extract valuable knowledge 

under this background, has been applied in order to 

identify novel therapeutic targets and optimize current 

treatment strategies, making early detection of the 

disease of interest and predictions of the corresponding 

prognosis, and so forth more precise and efficient. 

 

Our study is the first to employ up to nine mainstream 

machine learning algorithms, including XGBoost, 

Logistic, Random Forest, AdaBoost, GNB, LightGBM, 

MLP, KNN, and SVM, as well as stacking methods  

to create a powerful AI for AMI diagnosis. By using 

these methods, we identified XGBoost, AdaBoost, 

GBN, and MLP as the most suitable algorithms for  

the task. Using the stacking method, we integrated 

XGBoost, AdaBoost, and GBN into the first layer of the 

AI's logic chain, while MLP served as the second layer. 

This resulted in a highly robust AI with superior 

predictive power compared to any of the single machine 

learning algorithms, the single contributor genes to the 

AI, and even the gold standard biomarkers (i.e., TNNI3 

and CKM). In regard to the evaluation of all the 

aforementioned, we mainly made it based on the AUC 

value. In general, a model that has an AUC of 0.5 does 

no better than random guessing, and an AUC value over 

0.7 is usually seen as a good value. By building the 

highly accurate model for AMI diagnosis, we hope  

that with the help of our model, someday physicians  

can estimate reliably the risk of AMI for patients  

under suspicion, by simply testing the expression of the 

contributor genes of the model. 

 
Among the genes contributing to AMI (PDHB, 

CDKN2A, GLS, and SLC31A1), SLC31A1 was found 

to be of particular importance. In fact, SLC31A1 is a 

gene that encodes for the copper transporter protein 1 

(CTR1) which plays a crucial role in copper homeostasis 

in cells. CTR1 is responsible for the uptake of copper 

from the extracellular environment and its transport into 

cells. The protein is particularly important in cells that 

require copper for their function, such as those involved 

in oxidative phosphorylation, iron metabolism, and 

neurotransmitter synthesis. From this end, it is somehow 

reasonable that SLC31A1 may impact significantly in 

AMI. To validate our hypothesis, we carried out qPCR, 

western blot, and immunohistochemical staining in  

in vivo models. The results showed that SLC31A1 was 

aberrantly overexpressed in cases of AMI, underscoring 

its potential as a diagnostic biomarker. This finding 

supported the previous works done by Zheng et al. and 

Wang et al. in which variations in the SLC31A1 gene 

have been associated with an increased risk of AMI and 

decreased CTR1 expression has been observed in rat 

hearts after myocardial infarction [43, 44]. 

 
Accumulated evidence had suggested that immune cells 

might play a critical role in the development and 

progression of AMI [45–48]. In particular, the infiltration 

of monocytes in the myocardium has been implicated in 
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the development of ventricular remodeling and the 

potentially resulting heart failure [49–51]. Therefore, we 

were also interested in the correlation between SLC31A1 

expression and various immune cell types. It turned out 

that there was a potentially positive association between 

SLC31A1 expression and the infiltration of many immune 

cell populations, especially monocyte. In fact, monocytes 

have been proven to be the versatile cells of the innate 

immune system, indispensable in the initial inflammatory 

response to injuries and subsequent wound healing 

processes in many tissues, including the heart [52]. As 

such, these findings highlighted the possible central role 

of SLC31A1 expression in AMI’s immune landscape and 

its probability in improving heart tissue recovery in the 

post-AMI scenario. 

 

CONCLUSIONS 
 

In summary, the present study established a novel 

diagnostic model for early AMI detection based on the 

Cuproptosis-related gene set, identifying the central role 

of SLC31A1, and validated the aberrant overexpression 

of SLC31A1 in in vivo assays, exploring its potential 

immunological implications, sharing new perspective 

toward alternative AMI biomarker development. 
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Supplementary Figure 1. Supplementary images of Masson staining slides. 

 

 
 

Supplementary Figure 2. IHC slides. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Detailed expression of the contributor genes in our own bulk sequencing cohort. 
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