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INTRODUCTION 
 

Lung cancer is the most common leading cause of 

cancer-related deaths worldwide [1, 2]. Bone is one of 

the most common sites of lung cancer metastasis, and 

the incidence of bone metastasis (BM) in lung cancer is 

about 30–40% [3]. Once BM occurs, the prognosis for 

lung cancer patients is generally very poor [4]. The 

median survival time of patients with BM is only 6–10 
months, and the 1-year survival rate after treatment is 

only 40–50% [5]. Skeletal-related events (SREs) caused 

by BM, such as bone pain, pathological fractures, spinal 

cord compression, hypercalcemia, etc., can significantly 

shorten the survival time of lung cancer patients [6]. 

Some studies have shown that the survival time can  

be even shortened by half [4, 6]. Patients with BM have 

a poor prognosis mostly due to the advanced stage at 

diagnosis [7]. Usually, imaging diagnostic techniques 

such as X-ray, computed tomography, magnetic reso-

nance imaging, technetium 99m-methyl diphosphonate 

(99mTc-MDP) bone scan, and 18F-fluorodeoxyglucose 
positron emission tomography/computed tomography 

are used to confirm the diagnosis of a patient with BM 

[8, 9]. Unfortunately, the low specificity, invasive nature, 

www.aging-us.com AGING 2023, Vol. 15, No. 24 

Research Paper 

Exosomal hsa-miR-151a-3p and hsa-miR-877-5p are potential 
novel biomarkers for predicting bone metastasis in lung cancer 
 

Kun Zhao1, Changji Jia1, Jin Wang1, Weiye Shi1, Xiaoying Wang2, Yan Song3, Changliang Peng1 
 
1Department of Spinal Surgery, The Second Hospital of Shandong University, Jinan 250033, China 
2Department of Pathology, The Second Hospital of Shandong University, Jinan 250033, China 
3Department of Nephrology, The Second Hospital of Shandong University, Jinan 250033, China 
 
Correspondence to: Yan Song, Changliang Peng; email: songyan1581@sdu.edu.cn, pcliang@sdu.edu.cn 
Keywords: lung cancer, bone metastasis, exosome, biomarker, miRNAs 
Received: August 15, 2023 Accepted: November 8, 2023 Published: December 18, 2023 

 
Copyright: © 2023 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 
 

ABSTRACT 
 

Exosomal miRNAs (exo-miRNAs) have arisen as novel diagnostic biomarkers for various cancers. However, few 
reports on exo-miRNAs related to bone metastasis (BM) in lung cancer exist. This study aims to screen out key 
exo-miRNAs and estimate their prognostic values for predicting BM in lung cancer. The differentially expressed 
exo-miRNAs between the highly-metastatic (95D) and lowly-metastatic (A549) human lung cancer cell lines 
were comprehensively analyzed using high-throughput sequencing followed by bioinformatic analyses. 29 
candidate exo-miRNAs were identified, and 101 BM-related target genes were predicted. Enrichment analysis 
revealed that these target genes were mainly involved in regulating transcription and pathways in cancer. An 
exosomal miRNA-mRNA regulatory network consisting of 7 key miRNAs and 10 hub genes was constructed. 
Further function analysis indicated that these 10 hub genes were mainly enriched in regulating cancer’s 
apoptosis and central carbon metabolism. The survival analysis indicated that 7 of 10 hub genes were closely 
related to prognosis. Mutation analysis showed that lung cancer patients presented certain genetic alterations 
in the 7 real hub genes. GSEA for a single hub gene suggested that 6 of 7 real hub genes had close associations 
with lung cancer development. Finally, ROC analysis revealed that hsa-miR-151a-3p and hsa-miR-877-5p 
provided high diagnostic accuracy in discriminating patients with bone metastasis (BM+) from patients without 
bone metastasis (BM-). These findings provided a comprehensive analysis of exo-miRNAs and target genes in 
the regulatory network of BM in lung cancer. In particular, hsa-miR-151a-3p and hsa-miR-877-5p may be novel 
biomarkers for predicting BM in lung cancer. 
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intricate method, and high cost of these procedures  

limit their practical applicability. Several studies have 

demonstrated that bone-specific alkaline phosphatase 

(BAP), parathyroid hormone-related peptide (PTHrP), 

type I collagen cross-linked C-telopeptide (ICTP),  

N-telopeptide (NTx), C-terminal telopeptide (CTx), 

pyridinoline (PYD), and deoxypridinoline (DPD) may 

function as sensitive biomarkers for the early detection 

of BM in lung cancer [10–12]. Nevertheless, these bone 

metabolic markers can also be detected in patients with 

BM resulting from breast [13], prostate [14], or kidney 

cancer [15], and there is currently a lack of specific 

biomarkers for BM in lung cancer. Additionally, there 

are numerous types of reagents and detection tech-

niques, and there is a considerable biological variety  

in bone metabolic markers [16]. To date, a single, 

global standard does not exist. Therefore, finding new 

biomarkers for the early diagnosis of BM in lung cancer 

is crucial to improving the prognosis of lung cancer 

patients. 

 

MicroRNA (miRNA), as an important mediator  

in epigenetic control of gene expression, has been 

increasingly reported to serve as a potential diagnostic 

and prognostic biomarker as well as a therapeutic  

target for a variety of cancers [17]. Emerging evidence 

indicates that miRNAs can regulate diverse biological 

processes and play critical roles in the development  

and progression of many kinds of cancer through post-

transcriptional regulation mechanisms [18]. Recently, 

several dysregulated miRNAs are involved in the patho-

genesis of lung cancer by affecting cell proliferation, 

apoptosis, migration, and metastasis [19]. Through 

genome-wide investigation and analysis, a set of 

miRNAs were found to be deregulated in the tissues of 

lung cancer patients with BM, and a group of miRNAs 

are closely correlated to prognosis and can be used  

as diagnostic biomarkers [20, 21]. Although the role  

of miRNAs in regulating BM has been indicated,  

the underlying molecular mechanism is still poorly 

understood, especially in lung cancer.  

 
Exosomes, secreted by cells, are vesicles with a 

diameter of 30–150 nm, composed of lipid bilayer 

structure, and carry proteins, lipids, DNA, mRNA, and 

miRNAs [22]. Studies have demonstrated that exosomes 

play a fundamental role in cells to communicate with 

neighboring or with distant cells [23, 24]. Due to 

exosomes’ wide distribution in various human body 

fluids (blood, urine, saliva, cerebrospinal fluid, ascites, 

follicular fluid, and joint fluid), exosomes are regarded 

as ideal non-invasive biomarkers for early disease 

diagnosis [25]. 

 
Exosomal miRNAs (exo-miRNAs) in biofluids are 

more stable than free miRNAs in circulation [24]. 

Current studies have shown that exo-miRNAs can be 

used as diagnostic and prognostic biomarkers in human 

malignant tumors, including gliomas, ovarian cancer, 

breast cancer, and so on [26, 27]. Recently, several 

reports have revealed that certain miRNAs have great 

potential to be used as diagnostic, predictive, and 

prognostic biomarkers in BM in lung cancer [28, 29]. 

However, these studies have limitations, either they 

did not combine exosomes or they did not combine 

receiver operating characteristics (ROC) analysis to 

evaluate the diagnostic value of miRNAs, so their 

research conclusions are not fully convincing. More-

over, there is a lack of comprehensive and systematic 

research on the biological role of exo-miRNAs as  

BM mediators in lung cancer, which warrants further 

investigations. 

 

In this study, we compared the differentially expressed 

miRNAs (DE-miRNAs) of highly-metastatic lung cancer 

cell-derived exosomes and lowly-metastatic lung cancer 

cell-derived exosomes by high-throughput sequencing. 

In addition, we used integrated bioinformatics analysis 

to reveal the miRNA-mRNA interaction network, the 

potential biological functions, and the key pathways of 

these common differential miRNAs. We recognized 

hsa-miR-151a-3p and hsa-miR-877-5p as novel bio-

markers for early detection of BM in lung cancer, which 

helps screen the patients at high risk of BM for early 

intervention, thereby improving patient outcomes and 

reducing treatment costs. 

 

MATERIALS AND METHODS 
 

Cell lines and cell culture 

 

The highly-metastatic human lung cancer cell line 95D 

and the lowly-metastatic human lung cancer cell line 

A549 were purchased from the American Type Culture 

Collection (ATCC, USA). Both cell lines were cultured 

in DMEM medium supplemented with 10% exosome-

depleted fetal bovine serum (FBS, Gibco, USA), and 

incubated at 37°C in a humidified atmosphere with 

5% CO2. 

 

Exosome isolation 

 

Exosome isolation from the cell culture medium  

was performed as described previously [30]. Briefly,  

cells were maintained in a 10% exosome-depleted  

FBS medium until the confluency was 70–80%, cells 

were subsequently washed three times with phosphate-

buffered saline (PBS) and starved with serum-free 

medium for another 24 h. Then the supernatant was 

harvested and centrifuged at 2000 g for 15 min to 

remove dead cells. Next, the supernatant was collected 

again and centrifuged at 10000 g for 30 min at 4°C to 
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remove cell debris. Finally, after centrifuging the 

supernatant at 120000 g for 70 min at 4°C with the 

Optima XPN-100 ultracentrifuge (Beckman Coulter, 

USA) followed by washing with PBS, the precipitation 

was collected and the final pellet containing exosome 

was resuspended in PBS. 

 

Transmission electron microscopy (TEM) 

 

10 μL exosome suspension was added to a carbon-

coated copper grid for 20 min. Then the grid was 

placed onto a drop with 1% glutaraldehyde for 5 min 

and further contrasted with 2% uranyl acetate for 

another 5 min. The grid was subsequently placed  

onto a drop with methylcellulose-uranyl acetate for 

10 min and this step was completed on ice. A thin 

layer of methylcellulose membrane remained after 

gently sucking off the excess liquid with the filter 

paper. The copper grid was dried for several minutes 

and observed by using an HT7800 TEM (Hitachi, 

Japan) at 80 kV. 

 

Nanoparticle tracking analysis (NTA) 

 

Exosome isolated from the supernatant was diluted in 

PBS, and to detect the particle size distribution and 

concentration of the exosomes, NTA was performed 

using the ZetaView PMX 110 (Particle Metrix, 

Germany) and ZetaView 8.04.02 software according to 

the manufacturer’s instructions. 

 

Western blot analysis 

 

To measure exosomal surface markers, western blot 

analysis was conducted. Briefly, the exosome super-

natant was denatured in sodium dodecyl sulfonate 

(SDS) buffer and then incubated with anti-CD81 

(66866-1-Ig; Proteintech, USA), anti-TSG101 (14497-

1-AP; Proteintech), and anti-HSP70 (66183-1-Ig; 

Proteintech). 

 

Exosomal RNA extraction, small RNA sequencing, 

and differential expression analysis 

 

Total RNA, including miRNA, was extracted from 

exosomal samples using TRIzol Reagent (Invitrogen, 

USA) following the manufacturer’s protocol. The 

quality of RNA was analyzed by a NanoDrop 2000 

(Thermo Fisher Scientific, USA) and Agilent Bio-

analyzer 2100 (Agilent Technologies, USA). Library 

construction and sequencing of exo-miRNA were 

performed by Beijing Genomics Institute (BGI, China) 

as described previously [31]. The package DEGseq, a 
free R package, was used to identify DE-miRNAs 

from RNA-seq data. P-value < 0.05 and |log2FC (fold 

change)|>1 were chosen to identify DE-miRNAs as  

the cut-off criteria. A volcano plot was generated  

using the EnhancedVolcano (1.4.0) R package, and a 

heatmap of the DE-miRNAs was produced using the 

‘heatmap’ package in R. 

 

Identification of the candidate exo-miRNAs  

 

The database of exo-miRNAs related to BM in lung 

cancer was obtained from the published article 

published by Xiao-Rong Yang in 2021 with a total of 

30 non-small cell lung cancer (NSCLC) patients 

including 16 BM+ patients and 14 BM- patients in  

this research [29]. The intersection of exosomal 

DE-miRNAs from the above-acquired database and 

our identified database from RNA-seq data was 

performed by the Venny 2.1 online web tool. The  

two databases identified the commonly shared DE-

miRNAs as the candidate exo-miRNAs that were 

closely related to BM in lung cancer. 

 

Prediction of target mRNAs for the candidate exo-

miRNAs 

 

Three filters of miRWalk 2.0 database (http://mirwalk. 

umm.uni-heidelberg.de/), including TargetScan, miRDB, 

and miRTarbase, were used to predict the target 

mRNAs for the candidate exo-miRNAs. Only genes 

predicted by all three tools (TargetScan, miRDB, and 

miRTarbase) were needed for further analysis. The 

overlapped mRNAs by the three tools were considered 

as the candidate BM-associated target genes. 

 

Functional annotation and pathway enrichment 

analysis of the candidate exo-miRNAs 

 

Based on the Kyoto Encyclopedia of Gene and 

Genome (KEGG) and Gene ontology (GO), the terms 

and pathway enrichment were then analyzed using the 

Database for Annotation, Visualization and Integrated 

Discovery (DAVID) online tools (https://david.ncifcrf. 

gov/tools.jsp). GO terms enrichment analysis was 

distributed into biological process (BP), cellular 

component (CC), and molecular function (MF), 

respectively. p < 0.05 was deemed as significant 

enrichment. 

 

Establishment of PPI network and module analysis 

 

Search Tool for the Retrieval of Interacting Genes 

(STRING) online tool (https://www.stringdb.org/) was 

used to acquire the PPI network for the candidate 

mRNAs and only the interactions with a combined 

score >0.4 were considered to indicate a significant 
interaction. Subsequently, the PPI network was 

visualized with Cytoscape software (Version 3.9.1) 

[32]. Furthermore, the module analysis was carried out 

https://www.stringdb.org/
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by the plug-in Molecular Complex Detection 

(MCODE, version 2.0.2). The criteria were defined as 

follows: degree cutoff = 2, node score cutoff = 0.2, 

k-core = 2, and max depth = 100. 

 

Hub gene identification, functional enrichment 

analysis, and miRNA-mRNA network construction 

 

The hub genes were analyzed from the above key 

module network using the Cytohubba plug-in of 

Cytoscape (version 0.1) [33]. Genes with the cut-off 

criteria of degree ≥5 were regarded as hub genes [34]. 

Here, the top 10 genes with the largest degrees were 

considered as real hub genes. In addition, GO and 

KEGG pathway enrichment analysis of hub genes  

was carried out using the WebGestalt online tool 

(https://www.webgestalt.org/) with a threshold of false 

discovery rate (FDR) ≤0.05 [35]. Finally, the miRNA-

hub mRNA regulatory network was constructed via 

Cytoscape software.  

 

Verification of the expression pattern of hub genes 

 

The Sangerbox website (http://sangerbox.com/Tool)  

is a newly developed interactive web server, that 

provides interactive customizable analysis tools, 

including various kinds of expression analysis, 

pathway enrichment analysis, weighted correlation 

network analysis, and other common tools and 

functions, and offers a platform for researchers to 

analyze the RNA expression data from GEO, TCGA, 

ICGC, and other databases [36]. 

 

Human protein atlas analysis 

 

The Human Protein Atlas (http://www.proteinatlas.org) 

is an open-access website containing immunohisto-

chemistry (IHC) data to allow researchers to investigate 

the expression patterns of different proteins expressed 

in various human tumors [37]. Patient information, 

staining intensity, staining location, and sample number 

of each type of cancer can be obtained. After screening, 

the expression of representative proteins in lung cancer 

and control normal tissues of the selected hub genes 

was evaluated by using IHC images. 

 
The cBioPortal for cancer genomics analysis 

 

The cBioPortal for Cancer Genomics (cBioPortal, 

https://www.cbioportal.org/, version 5.0) is an open 

source for exploring, visualizing, and analyzing 

multidimensional cancer genomics data [38]. The 

frequency of genetic alterations in the identified  

hub genes in patients with lung cancer and their 

relationship to patient survival was examined by using 

cBioPortal. 

Gene set enrichment analysis (GSEA) of real hub 

genes 
 

The GSEA analysis of real hub genes was further 

performed using the microarray dataset GSE175601 

which was downloaded from the Gene Expression 

Omnibus (GEO) database of the NCBI database 

(https://www.ncbi.nlm.nih.gov/). The GSE175601 

dataset was performed on the GPL21185 platform 

(Agilent-072363 SurePrint G3 Human GE v3 8x60K 

Microarray 039494), including three tumor tissues 

with bone metastases and three tumor tissues without 

bone metastases from patients with NSCLC [39].  

The Sangerbox website was used to perform GSEA 

analysis to predict potential hallmarks [36]. A permu-

tation test with 1,000 permutations was employed to 

screen the significantly changed pathways as previously 

described [40]. Thresholds of |NES| > 1 and Benjamini-

Hochberg FDR <25% were considered statistically 

significant. 
 

Survival analysis 
 

The Kaplan-Meier plotter online tool (https://kmplot. 

com/analysis/), a publicly available database, was used 

to evaluate the association between the identified hub 

genes expression and lung cancer patient survival. The 

overall survival (OS) curves were then generated, and 

the hazard ratio (HR) and its associated 95% confidence 

intervals (CI) and log-rank test P value were calculated. 

Log-rank test results with a p-value less than 0.05 were 

considered statistically significant. 
 

Statistical analysis 
 

Statistical analyses were conducted using GraphPad 

Prism software (version 8.0; USA). According to  

each miRNA expression value, the receiver-operating 

characteristic (ROC) curve and the area under the ROC 

curve (AUC) were performed to estimate the sensitivity 

and specificity of each identified key exo-miRNA for 

the discriminating BM+ group from BM- group and the 

healthy controls. The AUC was calculated with 95% 

confidence intervals. p < 0.05 was considered significant. 
 

Availability of data and materials 
 

Authors can provide all of the datasets on reasonable 

request. 
 

RESULTS 
 

Identification of candidate exo-miRNAs as 

biomarkers for BM in lung cancer 
 

We used TEM, NTA, and western blot to characterize 

the isolated exosomes to determine the quality of 

https://www.webgestalt.org/
http://sangerbox.com/Tool
http://www.proteinatlas.org/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/
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exosomes from cell culture supernatants. TEM showed 

that the isolated exosomes were typically saucer-

shaped vesicles with lipid bilayer membranes (Figure 

1A). The NTA results revealed that the diameter  

of exosomes varied from 30 nm to 150 nm, and  

the exosomes from cell culture supernatants had a 

similar particle size distribution and peak area (Figure 

1B). Western blot was used to detect the molecular 

markers for exosomes. As shown in Figure 1C, the 

exosomes from cell culture supernatants were found to 

be positive for exosome-associated markers such as 

CD81, TSG101, and HSP70. These results indicated 

that exosomes were successfully isolated from the cell 

culture supernatants. 

 
We performed high-throughput sequencing to detect  

the miRNA expression of exosomes and screen DE-

miRNAs between the highly-metastatic and lowly-

metastatic groups. The results showed that a total of 

556 known miRNAs and 1016 novel miRNAs  

were identified, and 537 miRNAs were found to be 

differentially expressed, among which 181 miRNAs 

were significantly upregulated and 356 downregulated 

(Figure 2A). Among the 556 known miRNAs, 144 

miRNAs were significantly upregulated while 57 

miRNAs were downregulated in the highly-metastatic 

group compared with the lowly-metastatic group. The 

volcano plots and heatmap of DE-miRNAs between 

the two groups were displayed in Figure 2B, 2C, 

respectively. Moreover, as shown in Supplementary 

Table 1, the top 10 DE-miRNAs were screened with a 

p-value less than 0.05. 

 
To identify candidate exo-miRNAs related to BM in 

lung cancer, we intersected the data published by 

Xiao-Rong Yang in 2021 and our data obtained from 

small RNA sequencing. In total, we screened out 29 

overlapping exo-miRNAs (Figure 2D and Table 1). 

These 29 miRNAs were considered as candidate exo-

miRNAs. 

 
Investigation of potential target genes of candidate 

exo-miRNAs 

 

To elucidate the function of candidate miRNAs  

on the BM in lung cancer, the prediction of their  

target genes was performed using the miRWalk 2.0 

database. To identify reliable target genes, the genes 

predicted by the 3 programs (TargetScan, miRDB,  

and miRTarbase) were identified as potential target 

genes of the 29 candidate exo-miRNAs. Finally, a total 

of 101 target genes of the 29 candidate exo-miRNAs 

were predicted (Supplementary Table 2). 
 

To explore the biological functions of the 101 identi-

fied BM-associated target genes, we performed GO 

 

 

 
Figure 1. Analysis of precipitated exosomes isolated from supernatants of cultured tumor cells. (A) The morphology of 

exosomes was observed by TEM. (B) The exosomes were measured by NTA. (C) CD81, TSG101, and HSP70 were determined by western 
blot. Abbreviations: TEM: transmission electron microscopy; NTA: nanoparticle tracking analysis. 
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Table 1. The 29 overlapping exosomal miRNAs identified in the study. 

miRNA ID miRNA ID miRNA ID 

hsa-miR-877-5p hsa-miR-199a-5p hsa-miR-1-3p 

hsa-miR-505-3p hsa-miR-197-3p hsa-miR-23b-5p 

hsa-miR-744-5p hsa-miR-221-3p hsa-miR-224-5p 

hsa-miR-148b-3p hsa-miR-23a-3p hsa-let-7d-3p 

hsa-miR-584-5p hsa-miR-151a-3p hsa-miR-133b 

hsa-miR-641 hsa-miR-199a-3p hsa-miR-340-3p 

hsa-miR-340-5p hsa-miR-199b-3p hsa-miR-223-3p 

hsa-miR-330-3p hsa-miR-1307-3p hsa-miR-222-3p 

hsa-miR-425-3p hsa-miR-937-3p hsa-miR-21-5p 

hsa-miR-28-5p hsa-miR-133a-3p  

 

 
 

Figure 2. Analysis of the DE-exo-miRNAs. (A) Histogram showing the upregulated and downregulated DE-exo-miRNAs between the 
A549 and 95D cells. Red represented upregulated DE-exo-miRNAs; blue represented downregulated DE-exo-miRNAs. (B) The volcano map 
shows the distribution of DE-exo-miRNAs between A549 and 95D cells according to their P values and fold changes. Red dots represented 
upregulated DE-exo-miRNAs; blue dots represented downregulated DE-exo-miRNAs; black dots represented non-differentially-expressed 
miRNAs. (C) Heatmap showing DE-exo-miRNAs from A549 and 95D cells. The colors in the heatmap represented normalized gene 
expression values, with high expression values being colored in red and low expression values being colored in green. (D) The Venn diagram 
representing the 29 overlapping exo-miRNAs. Abbreviations: DE-exo-miRNAs: differentially expressed exosomal miRNAs; BM+: patients 
with bone metastasis; BM-: patients without bone metastasis. 
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annotation and KEGG pathway enrichment analysis. 

Results showed that for the target genes of 29 

candidate exo-miRNAs, according to BP, the top  

five main categories were positive regulation of 

transcription, DNA-templated, positive regulation of 

transcription from RNA polymerase II promoter, 

regulation of transcription from RNA polymerase II 

promoter, positive regulation of nitric-oxide synthase 

activity, and neural crest cell migration (Figure 3A  

and Supplementary Table 3). In terms of CC, the top 

five main categories were chromatin, nucleoplasm, 

cytosol, nucleus, and euchromatin (Figure 3B and 

Supplementary Table 3). For MF, the most represented 

categories were transcription factor binding, sequence-

specific DNA binding, transcriptional activator activity, 

RNA polymerase II transcription regulatory region 

sequence-specific binding, protein binding, and RNA 

strand annealing activity (Figure 3C and Supplementary 

Table 3). 

 

KEGG enrichment analysis was performed to identify 

pathways involved in BM in lung cancer. Results 

showed that for the target genes of the 29 candidate 

exo-miRNAs, KEGG pathways were mainly involved 

in pathways in cancer, renal cell carcinoma, prolactin 

signaling pathway, ErbB signaling pathway, and colo-

rectal cancer (Figure 3D and Supplementary Table 3). 

Taken together, the above results collectively imply 

that the DE-exo-miRNAs may play key functional 

roles in the initiation and progression of BM in lung 

cancer by targeting their mRNAs. 

Construction of the exosomal miRNA-mRNA 

network and investigation of the network’s 

functional enrichment 

 

The PPI network of BM-related target genes was 

constructed using the STRING database. The results 

showed that a relevant PPI network was successfully 

constructed, which contained 100 nodes and 122 edges 

(Figure 4A). Next, this PPI network was visualized 

using the Cytoscape software (Figure 4B). Based on  

the entire network, the module analysis was further 

explored using the MCODE plug-in of Cytoscape. The 

results revealed that a significant module with a score 

≥5 was identified from the network, which contained  

14 nodes and 41 edges (Figure 4C). Subsequently, we 

applied the Cytohubba plug-in of Cytoscape to screen 

out the top 10 hub genes of the network using the 

degree method. In the PPI network, the hub genes were 

ESR1, KRAS, BCL2L11, MCL1, HIF1A, FOXO1, KIT, 

FXR1, MAPK10, and DDX3X (Figure 4D and Table 2). 

Finally, the miRNA-hub gene network was established 

by Cytoscape software. As shown in Figure 4E and Table 

3, an exosomal miRNA-mRNA network consisted of  

7 key miRNAs (hsa-miR-221-3p, hsa-miR-222-3p, hsa-

miR-199a-5p, hsa-miR-133b, hsa-miR-223-3p, hsa-miR-

151a-3p, and hsa-miR-877-5p) and 10 hub mRNAs 

(ESR1, KIT, MAPK10, BCL2L11, HIF1A, DDX3X, 

MCL1, FOXO1, FXR1, and KRAS) was constructed. 

These miRNAs and mRNAs were respectively regarded 

as key exo-miRNAs and hub mRNAs that may play 

crucial roles in BM of lung cancer via exosomes. 

 

 
 

Figure 3. GO and KEGG pathway enrichment analysis of the target genes of 29 exo-miRNAs using the DAVID database. Top 10 

significant terms of GO BP (A), CC (B), MF (C), and KEGG pathway (D) enrichment analysis of the target genes. Abbreviations: exo-miRNAs: 
exosomal miRNAs; BP: biological process; CC: cellular component; MF: molecular function. 
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Table 2. Ten hub genes identified in the key module using the degree method. 

Rank Genes Description Score 

1 ESR1 Estrogen Receptor 1 9 

2 KRAS KRAS Proto-Oncogene, GTPase 8 

2 BCL2L11 BCL2 Like 11 8 

4 MCL1 MCL1 Apoptosis Regulator, BCL2 Family Member 7 

4 HIF1A Hypoxia Inducible Factor 1 Subunit Alpha 7 

6 FOXO1 Forkhead Box O1 6 

6 KIT KIT Proto-Oncogene, Receptor Tyrosine Kinase 6 

8 FXR1 FMR1 Autosomal Homolog 1 5 

8 MAPK10 Mitogen-Activated Protein Kinase 10 5 

8 DDX3X DEAD-Box Helicase 3 X-Linked 5 

 

 
 

Figure 4. PPI network, modular analysis, and miRNA-mRNA network construction. The PPI network of 101 target genes of the 
29 exo-miRNAs was analyzed using the STRING database (A) and Cytoscape software (B). (C) The key module was identified from the PPI 
network using the MCODE plug-in of Cytoscape. (D) The hub genes (degree: top 10) identified by the Cytohubba plug-in. (E) miRNA-hub 
gene network. In the miRNA-hub mRNA network, the pink ellipses represented hub genes, and the green triangles represented key 
miRNAs. 
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Table 3. The list of the 7 hub exosomal miRNAs. 

miRNA mRNA Count mRNA 

hsa-miR-221-3p 4 ESR1, MAPK10, KIT, BCL2L11 

hsa-miR-199a-5p 2 HIF1A, DDX3X 

hsa-miR-222-3p 1 ESR1 

hsa-miR-133b 1 MCL1 

hsa-miR-223-3p 1 FOXO1 

hsa-miR-151a-3p 1 FXR1 

hsa-miR-877-5p 1 KRAS 

 
GO and KEGG pathway analyses for the identified 10 

hub genes were then performed using the Webgestalt 

database. The results indicated that in terms of BP, the 

top 5 were regulation of the intrinsic apoptotic signaling 

pathway, regulation of the apoptotic process, regulation 

of programmed cell death, positive regulation of signal 

transduction, and regulation of intracellular signal trans-

duction (Figure 5A). According to CC, the top 5 were 

the Bcl-2 family protein complex, mitochondrial outer 

membrane, organelle outer membrane, outer membrane, 

and mitochondrion (Figure 5B). For the analysis of  

MF, the identified 10 hub genes were enriched in  

RNA strand annealing activity, annealing activity, and 

transcription coactivator binding (Figure 5C). KEGG 

analysis revealed that the top 5 pathways identified 

were central carbon metabolism in cancer, mitophagy, 

prolactin signaling pathway, colorectal cancer, and 

thyroid hormone signaling pathway (Figure 5D). 

 

Validation of the hub genes and survival analysis 

 

To confirm the expression level of the identified 10 

hub genes in lung cancer, we used mRNA expression 

data from the Sangerbox website database. The  

results showed that the mRNA expression levels of 

ESR1 (Figure 6A), DDX3X (Figure 6C), MAPK10 

(Figure 6D), KIT (Figure 6F), FOXO1 (Figure 6I), and 

MCL1 (Figure 6J) were significantly lower in both 

lung adenocarcinoma (LUAD) and lung squamous cell 

carcinoma (LUSC) tissues (p < 0.001) than normal 

lung tissues. The mRNA expression levels of KRAS 

(Figure 6E), FXR1 (Figure 6G), and BCL2L11 (Figure 

6H) were markedly upregulated in both LUAD and 

LUSC tissues (p < 0.001) compared with those in 

normal lung tissues. Interestingly, the HIF1A mRNA 

expression level of LUAD tissues was significantly 

lower than that of normal lung tissues (p < 0.001) 

(Figure 6B). In contrast, the mRNA expression level of 

HIF1A was markedly increased in LUSC tissues, 

compared with the normal lung tissues (p < 0.001) 

(Figure 6B). Next, we used the Human Protein Atlas to 

assess the protein expression levels of the identified 

10 hub genes in lung cancer. The results showed that 

the protein expression levels of the identified 10 hub 

genes (ESR1, HIF1A, DDX3X, MAPK10, KRAS, 

KIT, FXR1, BCL2L11, FOXO1, and MCL1) displayed 

 

 
 

Figure 5. GO and KEGG analysis of hub genes using the WebGestalt database. Top 10 significant terms of GO BP (A), CC (B), 
MF (C), and KEGG pathway (D) enrichment analysis. Abbreviations: BP: biological process; CC: cellular component; MF: 
molecular function. 
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similar patterns of changes as the mRNA expression 

levels (Figure 7A–7J). 

 

To further validate the 10 hub genes, their prognostic 

significance in lung cancer patients was subsequently 

analyzed by the Kaplan-Meier plotter online database. 

The survival analysis included a total of 513 LUAD 

patients and 501 LUSC patients. As shown in  

Figure 8A, among 10 hub genes, a higher expression  

of FXR1 and KRAS was related to a worse overall 

survival (OS) in LUAD patients. Interestingly, a higher 

KIT expression was significantly associated with better 

OS (p = 0.00074) in LUAD patients. However, there 

was no statistically significant difference in OS between 

 

 
 

Figure 6. Validation of the mRNA expression level of 10 hub genes in lung cancer using the Sangerbox website database. 

(A) ESR1. (B) HIF1A. (C) DDX3X. (D) MAPK10. (E) KRAS. (F) KIT. (G) FXR1. (H) BCL2L11. (I) FOXO1. (J) MCL1. *p < 0.05; **p < 0.01; ***p < 0.0001. 



www.aging-us.com 14874 AGING 

high-expression and low-expression of ESR1, HIF1A, 

DDX3X, MAPK10, BCL2L11, FOXO1, and MCL1 in 

LUAD patients (Supplementary Figure 1A). For LUSC 

patients, increased expression of ESR1, KIT, and MCL1 

predicted a poorer OS, while increased expression of 

BCL2L11, FXR1, HIF1A, and KRAS was associated 

with a favorable OS (Figure 8B). Nevertheless,  

there was no statistically significant difference in  

OS between high-expression and low-expression of 

DDX3X, MAPK10, and FOXO1 in LUSC patients 

(Supplementary Figure 1B). These data imply that  

high expression of the identified seven real hub genes

 

 
 

Figure 7. Validation of the protein expression level of screened 10 hub genes in lung cancer samples according to the IHC 
images in The Human Protein Atlas database. (A) ESR1. (B) HIF1A. (C) DDX3X. (D) MAPK10. (E) KRAS. (F) KIT. (G) FXR1. (H) BCL2L11. 
(I) FOXO1. (J) MCL1. Abbreviation: IHC: Immunohistochemistry. 
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(FXR1, KRAS, ESR1, KIT, MCL1, BCL2L11, and 

HIF1A) may play important roles in the carcinogenesis 

or progression of lung cancer. 

 

Genetic alterations and GSEA of real hub genes 

 

To analyze the genetic alterations of the 7 real hub 

genes in lung cancer in the cBioPortal online database, 

the LUAD (TCGA, PanCancer Atlas) and LUSC 

(TCGA, PanCancer Atlas) databases were used. Results 

showed that the percentages of genetic alterations in  

the two datasets were 44.88% (254/566) and 50.72% 

(247/487), respectively (Figure 9A). The predominant 

alterations were mutations for LUAD, however, for 

LUSC, the predominant alterations were amplifications 

instead of mutations (Figure 9A). Specific to lung 

cancer, the alteration frequency of the seven hub genes 

was 20% for FXR1, 19% for KRAS, 2.7% for ESR1, 

6% for KIT, 8% for MCL1, 0.8% for BCL2L11, and 

1.7% for HIF1A (Figure 9B). Besides, the analysis of 

the correlation between cases with hub gene alterations 

and survival outcomes was also performed. However, 

results showed that cases with hub gene alterations were 

not statistically significant (p = 0.809 for OS and  

p = 0.472 for disease-free survival) (Figure 9C, 9D).  

 

To further investigate the potential function of the seven 

real hub genes involved in the progression of lung 

cancer, GSEA analysis was performed based on the 

microarray dataset GSE175601. GSEA was employed 

to perform a hallmark gene sets analysis for FXR1, 

KRAS, ESR1, KIT, MCL1, BCL2L11, and HIF1A. 

FXR1 (Figure 10A), ESR1 (Figure 10B), BCL2L11 

(Figure 10E), and HIF1A (Figure 10F) were all 

enriched in DNA repair. KIT (Figure 10C), MCL1 

(Figure 10D), and HIF1A (Figure 10F) were all 

enriched in IL6/JAK/STAT3 signaling. ESR1 (Figure 

10B) and BCL2L11 (Figure 10E) were all enriched  

in the G2/M checkpoint, mitotic spindle, and MYC 

targets v1. KIT (Figure 10C) and MCL1 (Figure 10D) 

were all enriched in MYC targets v2 and unfolded 

protein response. FXR1 and KIT were all enriched  

in PI3K/AKT/ mTOR signaling. FXR1 (Figure 10A) 

and MCL1 (Figure 10D) were all enriched in TNFα 

signaling via NF-kB. FXR1 (Figure 10A) and BCL2L11 

(Figure 10E) were all enriched in mTORC1 signaling. 

 

 
 

Figure 8. Results for the OS analysis of the hub mRNAs in lung cancer patients based on the Kaplan -Meier plotter 
online database. (A) LUAD. (B) LUSC. Abbreviations: OS: overall survival; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell 
carcinoma. 
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ESR1 (Figure 10B) and HIF1A (Figure 10F) were all 

enriched in oxidative phosphorylation. MCL1 (Figure 

10D) and HIF1A (Figure 10F) were all enriched in 

hypoxia. However, GSEA analysis of KRAS showed 

that there was no statistical significance according to  

the values of |NES| and FDR (Supplementary Figure  

2). Some of the above-mentioned pathways have been 

demonstrated to be closely related to BM of lung 

cancer. Noticeably, these pathways were significantly 

involved in bone metastatic samples. 

 

Assessment of the diagnostic significance of the key 

exosomal miRNAs in the BM of lung cancer 

 

ROC curve analysis was performed using the GraphPad 

Prism software to estimate the accuracy of identified 

seven key exo-miRNAs in discriminating the BM+ 

group from the BM- group and healthy controls. The 

AUCs, sensitivity, and specificity were calculated. hsa-

miR-222-3p (Figure 11A), hsa-miR-221-3p (Figure 

11B), hsa-miR-199a-5p (Figure 11C), and hsa-miR-

223-3p (Figure 11D) could be potential biomarkers to 

either distinguish the BM- group from healthy controls, 

with the AUCs of 0.7679 (p = 0.0126), 0.8839 (p = 

0.0004), 0.7946 (p = 0.0061), and 0.9107 (p = 0.0001) 

or distinguish the BM+ group from healthy controls, 

with the AUCs of 0.8043 (p = 0.0014), 0.9266 (p < 

0.0001), 0.8614 (p = 0.0001), and 0.9158 (p < 0.0001). 

Importantly, among the identified 7 key exo-miRNAs, 

only hsa-miR-151a-3p (Figure 11E) and hsa-miR-877-

5p (Figure 11F) could distinguish the BM+ group from 

the BM- group, with AUCs of 0.6988 (p = 0.045) and 

0.8602 (p = 0.0003), respectively. hsa-miR-133b could 

only distinguish the BM+ group from healthy controls,

 

 
 

Figure 9. Genetic alterations linked to 7 real hub genes in lung cancer in cBioPortal online database. (A) Seven hub gene 

alterations in LUAD (TCGA, PanCancer Atlas) and LUSC (TCGA, PanCancer Atlas). (B) Alteration frequencies of seven hub genes based on the 
LUAD (TCGA, PanCancer Atlas) and LUSC (TCGA, PanCancer Atlas). Kaplan-Meier plots showing OS (C) and DFS (D) in cases with and without 
hub gene alterations. Abbreviations: LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; OS: overall survival; DFS: disease-
free survival. 
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with AUCs of 0.7364 (p = 0.013) (Supplementary 

Figure 3). These data indicated that exosomal hsa- 

miR-151a-3p and hsa-miR-877-5p have relatively high 

diagnostic accuracy in discriminating the BM+ group 

from the BM- group and can serve as the non-invasive 

novel biomarkers for detecting BM in lung cancer. 

DISCUSSION 
 

Lung cancer is one of the most common malignancies 

in the world and the main cause of cancer-related deaths 

[1, 2]. Lung cancer frequently metastasizes to bone 

resulting in severe SREs, which greatly decrease the 

 

 
 

Figure 10. Significant genes related to six real hub genes and hallmark pathways in lung cancers were obtained by GSEA 
based on the Sangerbox website database using GSE175601. Top five gene sets according to a GSEA enrichment score for FXR1 (A), 
ESR1 (B), KIT (C), MCL1 (D), BCL2L11 (E), and HIF1A (F). Abbreviation: GSEA: Gene set enrichment analysis. 

 

 

 
 

Figure 11. ROC curve analysis of the six key exo-miRNAs. (A) hsa-miR-222-3p. (B) hsa-miR-221-3p. (C) hsa-miR-199a-5p. (D) hsa-miR-

223-3p. (E) hsa-miR-151a-3p. (F) hsa-miR-877-5p. The ROC curves to discriminate the BM- group from healthy controls (H) in the validation 
set are marked by red lines; the ROC curves to differentiate the BM+ group from the BM- group in the validation set are marked by blue 
lines; the ROC curves to differentiate the BM+ group from H in the validation set are marked by green lines. Abbreviations: ROC: receiver 
operator characteristic curve; BM+: patients with bone metastasis; BM−: patients without bone metastasis. 
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quality of life and OS rate of the patients [3].  

Although the treatment of BM in lung cancer has  

made great progress over recent years, patients’ 

prognosis remains poor [7, 41]. Hence, early diagnosis 

of BM in lung cancer may be an effective method  

to reduce the morbidity and mortality related to  

the disease. Accumulating evidence has shown that 

exosomes play crucial roles in the metastasis of lung 

cancer cells [42–44]. Therefore, exosomes have the 

potential to be explored for diagnostic, prognostic,  

and therapeutic applications [26]. Recently, in several 

studies, exo-miRNAs were found to be new biomarkers 

of BM in lung cancer [45, 46]. However, the underlying 

mechanism of exosome-regulated lung cancer prog-

ression has not been fully revealed. Here, we aimed  

to explore exo-miRNAs as potential early diagnostic 

biomarkers for predicting BM in lung cancer and 

uncover the underlying mechanism involved in BM of 

lung cancer by performing bioinformatical analysis.  

 

In this study, we first investigated the exo-miRNA 

profiles derived from highly-metastatic and lowly-

metastatic lung cancer cell lines by small RNA 

sequencing. Combined with a comprehensive analysis 

of the open-access exo-miRNA data for BM in lung 

cancer, as a result, we identified 29 candidate exo-

miRNAs that were considered to be closely related to 

BM in lung cancer. Using the miRWalk 2.0 database, 

we identified 101 target genes of the 29 candidate 

exo-miRNAs. Additionally, GO and KEGG analysis 

indicated that the screened target genes are related to  

the pathogenesis of BM in lung cancer. A relevant  

PPI network consisting of 100 nodes and 122 edges  

was constructed and visualized via the STRING 

database and Cytoscape software. A significant module 

was screened by the MCODE plug-in of Cytoscape 

software. Furthermore, based on the module, 10 hub 

genes with degrees ≥10 were identified. Finally,  

we constructed an exosomal miRNA-mRNA network, 

including 7 key miRNAs (hsa-miR-221-3p, hsa-miR-

222-3p, hsa-miR-199a-5p, hsa-miR-133b, hsa-miR-223-

3p, hsa-miR-151a-3p, and hsa-miR-877-5p) and 10 hub 

mRNAs (ESR1, KIT, MAPK10, BCL2L11, HIF1A, 

DDX3X, MCL1, FOXO1, FXR1, and KRAS). It is 

worth noticing that the results of most previous  

studies on the above-mentioned 7 key miRNAs are 

consistent with our analysis. For instance, Yin et al. 

found that hsa-miR-221-3p promoted the cell growth  

of NSCLC by targeting p27 [47]. Chen et al. found that 

hsa-miR-222-3p promoted cell proliferation and 

inhibited apoptosis by targeting PUMA (BBC3) in 

NSCLC [48]. Several studies have reported that hsa-

miR-199a-5p is involved in the progression of lung 
cancer [49–51]. It was confirmed that hsa-miR-133b 

targeted NCAPH to promote β-catenin degradation and 

reduced cancer stem cell maintenance in NSCLC [52]. 

Luo et al. found hsa-miR-223-3p functioned as a  

tumor suppressor in LUSC by miR-223-3p-mutant  

p53 regulatory feedback loop [53]. It was reported that 

altered expression of hsa-miR-151a-3p was related to 

activation of divergent biological pathways in lung 

cancer cells [54]. hsa-miR-877-5p was reported to be 

involved in the carcinogenesis of lung cancer [55, 56]. 

Taken together, these results suggest that the identified 

7 key exo-miRNAs may play important roles in the 

development of lung cancer. 

 

The 10 hub genes including ESR1, KIT, MAPK10, 

BCL2L11, HIF1A, DDX3X, MCL1, FOXO1, FXR1, 

and KRAS were screened from PPI network analysis. 

According to the Sangerbox platform and the Human 

Protein Atlas database, abnormal expressions of the 

above-mentioned hub genes were found in lung cancer 

tissues. Functional annotation analysis showed that  

the 10 hub genes significantly enriched in GO terms 

were related to apoptosis and RNA transcription, such 

as regulation of intrinsic apoptotic signaling pathway, 

regulation of apoptotic process, regulation of pro-

grammed cell death, Bcl-2 family protein complex, and 

RNA strand annealing activity, which are implicated in 

the regulation of cell growth in lung cancer [57, 58]. 

Additionally, the KEGG pathway enrichment analysis 

revealed that the 10 hub genes were mainly enriched  

in central carbon metabolism in cancer, mitophagy, 

prolactin signaling pathway, colorectal cancer, and 

thyroid hormone signaling pathway, which were involved 

in tumorigenesis and tumor progression of many 

cancers, including lung cancer [59, 60]. 

 

Subsequently, to further evaluate the prognostic 

significance of the 10 hub genes in lung cancer, we 

conducted a Kaplan-Meier survival analysis. As a 

result, 7 real hub genes came out of this analysis: FXR1, 

KRAS, ESR1, KIT, MCL1, BCL2L11, and HIF1A. 

This finding suggests that the 7 real hub genes can be 

used to predict the prognosis of patients with lung 

cancer. Further gene mutation analysis confirmed that 

the percentages of gene alterations of the 7 real hub 

genes were 44.88% in LUAD and 50.72% in LUSC, 

respectively. Almost every hub gene had different types 

of genetic alterations, and we found that amplification, 

missense mutation, and deep deletion were the three 

most common types of aberrations. These findings 

imply that genetic alterations of the 7 real hub genes 

may play important roles in lung cancer initiation and 

progression. 

 

As reported before, Qian et al. found that FXR1  

is a key regulator of tumor progression, and its 
overexpression is critical to the growth of NSCLC cells 

[61]. Multiple studies have shown that KRAS is the 

most common mutant oncogene in NSCLC, and KRAS 
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mutant lung cancer has a poor prognosis and is resistant 

to chemotherapy; in addition, in the presence of this 

mutation, patients are more likely to have liver and 

brain metastasis [62–64]. It has been suggested that 

higher ESR1 expression is correlated with worse OS in 

lung cancer patients [65]. Several studies have indicated 

that KIT is associated with the development of lung 

cancer. For example, Funkhouser et al. found KIT 

mutation is more likely to cause brain metastasis in 

NSCLC [66]. Zhou et al. found targeting c-KIT can 

inhibit the growth and invasion of gefitinib-resistant 

NSCLC cells by reducing cancer stemness, EMT, and 

acquired drug resistance [67]. In lung cancer, MCL1  

has been suggested to play a key role in cancer stem 

cells, including invasion, chemotherapy resistance, and 

tumorigenesis [68]. In NSCLC patients with EGFR 

mutations, the BIM deletion polymorphism results in an 

inherent resistance or reduced sensitivity to EGFR TKIs 

[69]. Evidence suggests that HIF1A drives tumor 

progression via regulating glycolysis, angiogenesis, and 

cell cycle progression in lung cancer [70–72]. In 

summary, these findings were consistent with our 

results, indicating that these 7 real hub genes may play 

critical roles in the pathogenesis and progression of lung 

cancer. Therefore, these 7 real hub genes have potential 

as candidate diagnostic biomarkers and prognostic 

predictors for lung cancer. 

 
Moreover, GSEA was used to further investigate the 

biological functions of the 7 real hub genes in lung 

cancer and the results indicated that the high expression 

groups of FXR1, ESR1, KIT, MCL1, BCL2L11, and 

HIF1A were significantly enriched in the pathways 

associated with cell proliferation, such as IL6/JAK/ 

STAT3 and PI3K/AKT/mTOR signaling pathway. Since 

the specific functions of these hub genes in lung cancer 

are not yet clear, the potential molecular mechanisms 

need to be further studied. 

 
In addition, among the 7 key exo-miRNAs, ROC analysis 

showed that only hsa-miR-151a-3p and hsa-miR-877-5p 

have good predictive ability to distinguish between 

BM+ group and BM- group, with the corresponding 

AUCs were 0.6988 (p = 0.045) and 0.8602 (p = 0.0003), 

respectively. To the best of our knowledge, there are no 

reports for the diagnostic value of the two miRNAs in 

the predicting BM in lung cancer, suggesting hsa-miR-

151a-3p and hsa-miR-877-5p may serve as novel non-

invasive diagnostic markers for predicting BM in lung 

cancer. 

 
Our current research has several limitations. Firstly,  

the sample size obtained from the publicly available 

data was small. Therefore, the study findings need to be 

further confirmed in large clinical samples. Secondly, 

the expressions of screened 7 key exo-miRNAs and 

7 real hub genes have not been further validated with 

RT-qPCR experiments. Thirdly, the present study is 

chiefly concerned with assessing the diagnostic value of 

hsa-miR-151a-3p and hsa-miR-877-5p. Nevertheless, in 

the future, we need to carry out in vitro and in vivo 

experiments to verify the functions and mechanisms of 

the two miRNAs in BM in lung cancer. 

 

CONCLUSIONS 
 

The study identified DE-exo-miRNAs and mRNAs 

linked to BM in lung cancer, constructing an exosomal 

miRNA-mRNA network. Key miRNAs and hub genes 

involved in BM were identified, with exosomal hsa-

miR-151a-3p and hsa-miR-877-5p being the most 

promising biomarkers. These findings provide new 

insights for diagnosing and treating BM in lung 

cancer. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Kaplan-Meier curves for hub mRNAs in lung cancer derived from TCGA data in the Kaplan-Meier 
plotter database. OS was not substantially linked with any of the seven hub genes (ESR1, HIF1A, DDX3X, MAPK10, BCL2L11, FOXO1, and 

MCL1). The red line shows individuals with high expression, whereas the black line shows those with low expression. (A) LUAD. (B) LUSC. 
Abbreviations: OS: overall survival; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma. 
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Supplementary Figure 2. GSEA analysis of KRAS showed that no significant gene sets were enriched based on GSE175601. 
Abbreviation: GSEA: Gene set enrichment analysis. 

 

 
 

Supplementary Figure 3. ROC curves analysis shows that hsa-miR-133b could only significantly distinguish the BM+ group 
from healthy controls (H). ROC curve analysis of hsa-miR-133b. The ROC curves to discriminate the BM- group from H in the validation 

set are marked by red lines; the ROC curves to differentiate the BM+ group from the BM- group in the validation set are marked by blue 
lines; the ROC curves to differentiate the BM+ group from H in the validation set are marked by green lines. Abbreviations: ROC: receiver 
operator characteristic curve; BM+: patients with bone metastasis; BM-: patients without bone metastasis. 
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Supplementary Tables 
 

Supplementary Table 1. The small RNA sequencing results of the top 10 differentially expressed miRNAs. 

miRNA ID 
Exo-A549-
expression 

Exo-95 
D-expression 

log2Ratio  
(Exo-95D/Exo-

A549) 
P-value Regulation 

hsa-miR-146b-5p 0.1 739.7681 12.85286 6.01E-45 Up 

hsa-miR-376c-3p 0.1 616.4734 12.58982 1.37E-37 Up 

hsa-miR-3180 0.1 487.014 12.24975 7.33E-30 Up 

hsa-miR-3180-3p 0.1 487.014 12.24975 7.33E-30 Up 

hsa-miR-495-3p 0.1 314.4014 11.61839 1.47E-19 Up 

hsa-miR-154-5p 0.1 295.9072 11.53093 1.87E-18 Up 

hsa-miR-654-3p 0.1 271.2483 11.4054 5.54E-17 Up 

hsa-miR-200a-3p 0.1 265.0836 11.37223 1.29E-16 Up 

hsa-miR-381-3p 0.1 240.4246 11.23137 3.83E-15 Up 

hsa-miR-302d-3p 221.952 0.1 −11.116 2.46E-12 Down 

 

 

Supplementary Table 2. 101 predicted target genes of the 29 candidate exosomal miRNAs. 

Gene symbol Gene symbol Gene symbol Gene symbol 

ANKRD29 CUL5 PCDHAC1 SCARB1 

ANKRD29 SOS2 BMF DIO1 

POGK AP4E1 BRWD1 DPYSL2 

SLC25A22 AGO1 BCL2L11 PPARGC1A 

E2F5 PHACTR2 ARID1A TMEM170A 

SOX5 KLF6 POGZ SDHD 

PTBP2 BMP3 UBN2 SEMA6D 

TAGLN2 FXR1 ZNF652 MMGT1 

CNN2 DDX3X FBXO28 STT3B 

SP1 CCNL1 PANK3 RNF38 

MCL1 ZNF544 ERBB4 SOCS6 

FOXL2 RAB21 MIDN FUT4 

CPNE3 ETS1 ESR1 UQCRFS1 

SUPT16H PODXL KIT TMEM64 

KPNA6 HIF1A STMN1 TEX261 

FOXC1 TSPAN3 FMR1 N4BP1 

ARL6IP1 PAK4 ZFYVE16 JPH1 

DDX6 RALGPS2 STOX2 TGFBR3 

C1GALT1 PAN3 TLE3 PCMT1 

SLC7A11 GID4 HIPK2 HCFC2 

ZDHHC17 SATB1 PHACTR4 MAP3K2 

LEPROTL1 NFIA PPP2R2A SH3BGRL3 

MTMR10 TRPS1 DCAF7 KRAS 

RCC2 MAPK10 GNAI3  

OSBPL11 NDFIP1 BBC3  

CEBPG PCDHA3 FOXO1  
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Supplementary Table 3. The top 5 enriched GO terms and KEGG pathways of 101 predicted target genes of the 
29 candidate exosomal miRNAs. 

Category Term ID Term description Count P-value 

BP GO:0045893 positive regulation of transcription, DNA-templated 15 1.21E-05 

BP GO: 0045944 
positive regulation of transcription from RNA polymerase II 
promoter 

18 8.36E-05 

BP GO: 0006357 regulation of transcription from RNA polymerase II promoter 21 2.72E-04 

BP GO:0051000 positive regulation of nitric-oxide synthase activity 4 2.87E-04 

BP GO:0001755 neural crest cell migration 4 0.00166 

CC GO: 0000785 chromatin 17 4.52E-05 

CC GO: 0005654 nucleoplasm 37 4.86E-05 

CC GO: 0005829 cytosol 43 5.23E-04 

CC GO:0005634 nucleus 45 7.39E-04 

CC GO:0000791 euchromatin 4 0.00353 

MF GO:0008134 transcription factor binding 10 1.12E-06 

MF GO:0043565 sequence-specific DNA binding 11 6.17E-06 

MF GO:0001228 
transcriptional activator activity, RNA polymerase II transcription 
regulatory region sequence-specific binding 

12 2.64E-05 

MF GO:0005515 protein binding 80 2.46E-04 

MF GO:0033592 RNA strand annealing activity 3 2.50E-04 

KEGG hsa05200 Pathways in cancer 12 1.63E-04 

KEGG hsa05211 Renal cell carcinoma 5 6.36E-04 

KEGG hsa04917 Prolactin signaling pathway 5 6.72E-04 

KEGG hsa04012 ErbB signaling pathway 5 0.00139 

KEGG hsa05210 Colorectal cancer 5 0.00145 

 


