
www.aging-us.com 14900 AGING 

www.aging-us.com AGING 2023, Vol. 15, No. 24 

Research Paper 

Acetylshikonin induces necroptosis via the RIPK1/RIPK3-dependent 
pathway in lung cancer 
 

Shih-Sen Lin1, Tsung-Ming Chang2,8, Augusta I-Chin Wei2, Chiang-Wen Lee3,4,5, Zih-Chan Lin4,  
Yao-Chang Chiang4, Miao-Ching Chi4,6,7, Ju-Fang Liu2,8,9 

 
1Division of Chest Medicine, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 
11101, Taiwan 
2Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan 
3Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City 613016, Taiwan 
4Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research 
Center, Chang Gung University of Science and Technology, Puzi City 613016, Taiwan 
5Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 
243303, Taiwan 
6Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 613016, Taiwan 
7Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 613016, Taiwan 
8School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan 
9Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404328, 
Taiwan 
 
Correspondence to: Ju-Fang Liu; email: jufangliu@tmu.edu.tw 
Keywords: human lung cancer, acetylshikonin, ROS, necroptosis 
Received: August 11, 2023 Accepted: November 6, 2023 Published: December 19, 2023 

 
Copyright: © 2023 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Despite advances in therapeutic strategies, lung cancer remains the leading cause of cancer-related death 
worldwide. Acetylshikonin is a derivative of the traditional Chinese medicine Zicao and presents a variety of 
anticancer properties. However, the effects of acetylshikonin on lung cancer have not been fully understood yet. 
This study explored the mechanisms underlying acetylshikonin-induced cell death in non-small cell lung cancer 
(NSCLC). Treating NSCLC cells with acetylshikonin significantly reduced cell viability, as evidenced by chromatin 
condensation and the appearance of cell debris. Acetylshikonin has also been shown to increase cell membrane 
permeability and induce cell swelling, leading to an increase in the population of necrotic cells. When 
investigating the mechanisms underlying acetylshikonin-induced cell death, we discovered that acetylshikonin 
promoted oxidative stress, decreased mitochondrial membrane potential, and promoted G2/M phase arrest in 
lung cancer cells. The damage to NSCLC cells induced by acetylshikonin resembled results involving alterations in 
the cell membrane and mitochondrial morphology. Our analysis of oxidative stress revealed that acetylshikonin 
induced lipid oxidation and down-regulated the expression of glutathione peroxidase 4 (GPX4), which has been 
associated with necroptosis. We also determined that acetylshikonin induces the phosphorylation of receptor-
interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3 and mixed lineage kinase domain-like kinase 
(MLKL). Treatment with RIPK1 inhibitors (necrostatin-1 or 7-Cl-O-Nec-1) significantly reversed acetylshikonin-
induced MLKL phosphorylation and NSCLC cell death. These results indicate that acetylshikonin activated the 
RIPK1/RIPK3/MLKL cascade, leading to necroptosis in NSCLC cells. Our findings indicate that acetylshikonin 
reduces lung cancer cells by promoting G2/M phase arrest and necroptosis. 

mailto:jufangliu@tmu.edu.tw
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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INTRODUCTION 
 

Lung cancer is a highly lethal disease with a poor 

prognosis [1]. Conventional treatments for lung cancer 

include surgery, chemotherapy, targeted therapy, and 

radiation therapy [2, 3]. Even though multiple tyrosine 

kinase inhibitors and immune checkpoint inhibitors 

have improved the situation of patients with NSCLC, 

these medicines still have drawbacks that make them 

effective for patients without specific target protein 

expression therapeutic potential is limited [3–5]. It  

is well known that the occurrence of tumors is related to 

the dysregulation of apoptosis or anti-apoptotic properties 

of cells. Many studies are devoted to the development 

of alternative mechanisms to promote cell death as 

targets for anticancer drug development [6]. Current 

studies have found that various forms of non-apoptotic 

programmed cell death (PCD), including necroptosis, 

can regulate cancer cell proliferation and tumor meta-

stasis. This process is crucial to the efficacy of cancer 

therapy [7]. 

 

Necroptosis is a type of programmed cell death (PCD) 

that is activated by tumor necrosis factor, endoplasmic 

reticulum stress, DNA damage, and anticancer drugs. 

Necroptosis is initiated by the inhibition or inactivation 

of caspases [8–12]. Reactive oxygen species (ROS)-

induced lipid peroxide production has also been shown 

to contribute to organelle membrane permeabilization 

and necroptosis signaling pathways [13]. Necroptosis 

activation is associated with a complex composed of 

receptor-interacting serine/threonine protein kinase 1 

(RIPK1) and RIPK3, which results in the phosphory-

lation of mixed lineage kinase domain-like kinase 

(MLKL) [14]. The activation of MLKL increases the 

permeability of the cell membrane [15]. Several natural 

extracts, including β-lapachone and staurosporine,  

have been shown to induce necroptosis in cancer cells 

[16–19]. Shikonin has also been shown to induce ROS 

production, which leads to necroptosis in myeloid 

leukemia cells, lymphoma cells, and breast cancer cells 

[18, 20, 21]. 

 

Zicao (Lithospermum erythrorhizon) is a traditional 

Chinese medicine that has been used for centuries  

to treat local wounds [22]. Acetylshikonin is a nap-

hthoquinone compound extracted from Zicao, which 

exhibits antioxidant, anti-inflammatory, and anti-

cancer effects [23–31]. Research has shown that 

acetylshikonin induces apoptosis in hepatocellular 

carcinoma and oral squamous cell carcinoma by 

triggering the production of intracellular reactive 

oxygen species [32, 33]. Acetylshikonin treatment has 

also been shown to promote cell cycle arrest in the 

G2/M and S phases in chondrosarcoma and leukemia 

cells [34, 35]. Functional kinetics analysis suggests 

that the blockading of cellular drug transporters can be 

attributed to acetylshikonin increasing the sensitivity 

of multidrug-resistant human gastric and breast cancer 

cells to chemotherapy drugs [36]. Acetylshikonin also 

inhibits cell migration and invasion by reversing the 

epithelial-mesenchymal transition in triple-negative 

breast cancer cells [37]. Interestingly, in murine micro-

glial cells and human neuroblastoma, acetylshikonin 

has been shown to protect against cell damage,  

induce the expression of antioxidant proteins, and 

suppress apoptosis [38, 39]. These results suggest that 

acetylshikonin exhibits a variety of pharmacological 

properties depending on the type of cell. This study 

explored the mechanisms underlying the effects of 

acetylshikonin on lung cancer cells. 

 

In the current study, we examined the feasibility  

of using acetylshikonin for the treatment of lung  

cancer and explored the mechanisms underlying the 

observed effects. Acetylshikonin treatment was shown 

to significantly decrease the survival of lung cancer 

cells and increase membrane permeability. Treating 

lung cancer cells with acetylshikonin was also shown 

to promote cell death and cell cycle arrest by increasing 

intracellular ROS levels. Acetylshikonin-induced ROS 

production was associated with lipid peroxidation and 

inhibited glutathione peroxidase 4 (GPX4) expression. 

Increased phosphorylation of RIPK1/RIPK3 and MLKL 

activity indicates that acetylshikonin promoted necrop-

tosis in lung cancer cells. Taken together, these results 

suggest the possibility of developing novel small-

molecule drugs leveraging the effects of acetylshikonin 

on lung cancer cells. 

 

RESULTS 
 

Acetylshikonin suppressed cell growth and 

promoted cell death in lung cancer cells 

 

We first analyzed the effects of acetylshikonin ((R)-1-

(5,8-Dihydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-

4-methylpent-3-en-1-yl acetate; Figure 1A) on the 

viability of normal lung fibroblast cells (MRC-5) and 

lung cancer cells (H1299 and A549) using a CCK- 

8 assay. Acetylshikonin treatment resulted in IC50 

values of 2.34 μM and 3.26 μM in H1299 and A549 

cells, respectively (Figure 1B). This suggests that 

acetylshikonin could conceivably be used to treat  

cancer without causing significant damage to normal 

cells when administered in appropriate doses. Unlike 

classical apoptosis, DAPI staining results revealed  

that acetylshikonin treatment simultaneously led to 

chromatin condensation, the shrinkage of lung cancer 

cells, and an increase in observed cell debris (Figure 

1C, 1D). These results indicate that acetylshikonin 

causes NSCLC cell death. 
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Acetylshikonin promoted DNA fragmentation and 

cell cycle arrest in lung cancer cells in the G2/M 

phase 

 

We then examined the mechanisms underlying  

the inhibition of NSCLC cell proliferation by 

acetylshikonin. We hypothesized that acetylshikonin 

could induce cell cycle arrest and apoptosis. First,  

we analyzed the cell cycle in the acetylshikonin-

treated A549 and H1299 cells using flow cytometry. 

Acetylshikonin was shown to significantly increase  

the proportion of NSCLC cells in the subG1 and  

G2/M phase, indicating that DNA strands were broken 

in NSCLC cells with cell cycle progression was  

arrested in G2/M phase (Figure 2A, 2B). Furthermore, 

we analyzed the cell cycle checkpoint proteins CDK1 

and cyclin B1 (cell cycle regulator proteins) in  

the acetylshikonin-treated A549 and H1299 cells  

using western blotting. We found that acetylshikonin 

inhibited the expression of CDK1 and cyclin B1, 

which was consistent with our flow cytometry results 

(Figure 2C, 2D). These results highlight the role of 

acetylshikonin by promoting cell death and cell cycle 

arrest to inhibit cancer cell proliferation in the lung 

cancer therapy. 

 

Acetylshikonin promoted cell death by increasing 

membrane permeability resulting in NSCLC cells 

with swollen morphology 

 

The mechanism underlying acetylshikonin-induced lung 

cancer cell death was examined by performing Annexin 

 

 
 

Figure 1. Acetylshikonin decreased cancer cell viability and induced chromatin condensation and nuclear debris formation. 

(A) Chemical structure of acetylshikonin. (B) CCK-8 assay results of MRC-5 cells and H1299 and A549 cells following incubation with 

acetylshikonin (0.5–10 M) for 24 h (n = 4). (C, D) Fluorescence microscope images showing DAPI staining results and cell morphology of 

H1299 and A549 cells following treatment with acetylshikonin (0.5–10 M). Red arrows indicated nuclear debris. Scale bar = 50 m. MRC-5 
cells and untreated cells were used as controls. Results are shown as means ± SD. *p < 0.05 compared to untreated control. 
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V/PI staining followed by flow cytometry. Our results 

revealed that acetylshikonin increased the population 

of cells positive for Annexin V and PI in lung cancer 

cells (Figure 3A, 3B). In addition to necrosis, the 

increase in cell population positive for PI may be 

related to the increase in cell membrane permeability. 

This result prompted us to further observe the effect  

of acetylshikonin on the morphology and membrane 

permeability of cells. After treating lung cancer  

cells with acetylshikonin at indicated concentrations 

 

 

 

Figure 2. Acetylshikonin promoted DNA fragmentation and cell cycle arrest in G2/M phase. (A, B) Flow cytometry image results 

indicating cell cycle progression in H1299 and A549 cells following treatment with acetylshikonin (0.5–10 M) for 24 h and PI staining for 
30 min (n = 4). (C, D) Western blot analysis showing CDK1 and cyclin B1 protein expression in H1299 and A549 cells treated with 

acetylshikonin (0.5–10 M) for 6 h (n = 4). Untreated cells were used as controls. Results are shown as means ± SD. *p < 0.05 compared to 
untreated control. 
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(0–10 μM) for 24 h, we observed swelling and bleb 

formation in NSCLC cells, with the number of blebs 

increasing in a dose-dependent manner (Figure 3C).  

PI staining was then used to observe the membrane 

permeability in cells. The intracellular fluorescence 

signal of PI gradually accumulated throughout the 4 h 

incubation period (Figure 3D, 3E), indicating a dose-

dependent increase in the membrane permeability of 

 

 
 

Figure 3. Acetylshikonin increased the membrane permeability of NSCLC cells and the proportion of necrotic NSCLC cells.  
(A, B) Flow cytometry results for Annexin V/PI showing the incidence of cell death among H1299 and A549 cells following treatment with 

acetylshikonin (0.5–10 M) for 24 h (n = 4). (C) Phase microscope images of NSCLC cells following incubation with acetylshikonin  

(0.5–10 M) for 24 h. Red arrows indicate swollen blebs. Scale bar = 50 m. (D, E) PI staining results of H1299 and A549 cells following 

treatment with acetylshikonin (0.5–10 M) for 4 h. Scale bar = 200 m. Untreated cells were used as controls. Results are shown as means 
± SD. *p < 0.05 compared to untreated control. 
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NSCLC cells. These results suggest that the mechanism 

by which acetylshikonin causes lung cancer cell death 

may be related to altered membrane permeability. 

 

Acetylshikonin caused oxidative stress and 

mitochondrial depolarization in lung cancer cells 

 

ROS is involved in the initiation of various types  

of PCD, including apoptosis and necroptosis [40].  

In the current study, we investigated the effects of 

acetylshikonin on ROS production by measuring ROS 

levels using H2DCFDA in lung cancer cells. Our results 

revealed that acetylshikonin significantly increased 

ROS levels in lung cancer cells (Figure 4A, 4B). 

Furthermore, mitochondrial dysfunction is associated 

with altered intracellular ROS homeostasis and reduced 

MMP [41]. Our results using JC-1 staining to examine 

MMP revealed a reduction in aggregate JC-1 levels, 

 

 
 

Figure 4. Acetylshikonin induced intracellular ROS production and depolarization of mitochondrial membrane potential.  

(A, B) Flow cytometry results indicating ROS production in H1299 and A549 cells following incubation with acetylshikonin (0.5–10 M) and 
H2DCFDA for 30 min (n = 4). (C) Fluorescence microscope images used to analyze the MMP of NSCLC cells following incubation with 

acetylshikonin (0.5–10 M) for 24 h and JC-1 staining for 30 min (n = 4). Scale bar = 50 m. Untreated cells were used as controls. Results 
are shown as means ± SD. *p < 0.05 compared to untreated control. 
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indicating that acetylshikonin induced the depolarization 

of the mitochondrial membrane (Figure 4C). Taken 

together, these data suggest that acetylshikonin induces 

the death of lung cancer cells by increasing intracellular 

ROS levels and impairing mitochondrial function. 

 
Acetylshikonin caused lipid peroxidation and 

inhibited GPX4 expression in lung cancer cells 

 

Cells use GPX enzymes to maintain homeostasis,  

resist lipid peroxidation, and prevent damage caused by 

oxidative stress [42]. Previous studies have reported that 

ROS-induced lipid peroxidation and the inhibition of 

GPX enzymes lead to necroptosis in colon cancer cells 

and neutrophils [43, 44]. In the current study, we sought 

to confirm whether acetylshikonin promotes ROS-

induced intracellular lipid oxidation or inhibits GPX4 

expression by analyzing cell morphology and protein 

expression. Transmission electron microscopy results 

revealed that acetylshikonin treatment caused cells to 

rupture, increased the number of lysosomes, and altered 

mitochondrial morphology (Figure 5A). C11-BODIPY 

staining revealed that acetylshikonin treatment led  

to the quenching of red fluorescence, indicating the 

oxidation of lipids in lung cancer cells (Figure 5B– 

5D). Consistent with these findings, we observed a  

decrease in GPX4 expression in NSCLC cells following 

treatment with acetylshikonin (Figure 5E, 5F). Taken 

together, these results suggest that acetylshikonin-

induced lung cancer cell death is related to lipid 

peroxidation. 

 
Acetylshikonin-induced necroptosis via RIP kinases 

and MLKL in lung cancer cells 

 

Necroptosis is mediated by the RIPK1 and RIPK3 

complex, which promotes MLKL phosphorylation, 

leading to increased membrane permeability and cell 

swelling resulting in cell death [45]. In the current 

study, we sought to determine whether the mechanism 

by which acetylshikonin induces lung cancer cell death 

is related to necroptosis by observing the phosphory-

lation of MLKL via immunofluorescence staining at 

various time intervals after treating cells with 2.5 μM 

acetylshikonin. Our results revealed that acetylshikonin 

increased MLKL phosphorylation (Figure 6A), which 

was further confirmed by Western blot analysis. We 

also determined that acetylshikonin activated RIPK1, 

RIPK3, and MLKL in NSCLC cells (Figure 6B,  

6C). Furthermore, pretreatment with RIPK1 inhibitors 

(necrostatin-1, 20 nM, and 7-Cl-O-Nec-1, 30 nM) 

attenuated acetylshikonin-induced MLKL phosphory-

lation (Figure 6D). These results prompted the use of 

RIPK1 inhibitors to confirm whether acetylshikonin 

caused NSCLC cell death by inducing necroptosis. 

Indeed, pretreatment with RIPK1 inhibitors significantly 

reversed the viability of acetylshikonin-suppressed 

NSCLC cells (Figure 6E, 6F). Taken together, these 

results suggest that acetylshikonin activates the necrop-

tosis pathway via the RIPK1/RIPK3/MLKL axis in lung 

cancer cells. 

 

DISCUSSION 
 

Apoptosis is a cell death program that regulates cell 

numbers during normal physiology and disease. Defects 

in apoptosis are the basis of tumorigenesis and are more 

related to the failure of chemotherapy [46]. Therefore, 

resistance to cell death is one of the hallmarks of tumor 

cells [47]. In addition to conventional chemotherapy 

and targeted anticancer agents, researchers are trying  

to find small molecule drugs to induce cancer cell  

death through alternative apoptotic pathways as a novel 

therapeutic mechanism [7, 48]. 

 

The extraction of bioactive compounds from natural 

products has been the conventional approach for 

treating diseases, including cancer [49]. Nonetheless, 

despite the development of numerous antitumor drugs, 

cancer remains a leading cause of death in humans  

[50]. The absence of adverse side effects in numerous 

traditional Chinese medicines has made them a major 

focus of anticancer research [51]. This study highlighted 

the anticancer effects of acetylshikonin in suppressing 

cell proliferation, promoting cell cycle arrest, increasing 

ROS levels leading to an imbalance of mitochondrial 

membrane potential, and inducing necroptosis in NSCLC 

cells. 

 

Acetylshikonin has been shown to induce apoptosis  

in oral cancer cells, leukemia cells, and colorectal 

cancer cells [33, 35, 52]. In the current study, DAPI 

staining revealed acetylshikonin-induced morphological 

changes in NSCLC cells, including shrinkage, chromatin 

condensation, and the formation of debris. Annexin 

V/PI staining also revealed an increase in the number  

of PI-positive and partial Annexin V-positive cell 

populations, leading us to speculate that acetylshikonin-

induced cancer cell death may be associated with other 

forms of PCD. Phase-contrast microscopy revealed  

that after exposure to acetylshikonin, NSCLC cells 

underwent swelling and bleb formation. As shown in 

Figure 2D, PI staining of cells revealed the dose-

dependent accumulation of PI-positive NSCLC cells. 

The fact that PI cannot enter healthy live cells implies 

that acetylshikonin compromised the integrity of the 

cell membrane to allow PI uptake. These findings are 

consistent with previous reports of increased swelling 

and permeability characteristics on necroptosis [53]. 

These results that prompted our investigation of whether 

the anticancer effects of acetylshikonin were related to 

necroptosis. 
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We also investigated the effects of acetylshikonin on the 

viability and proliferation of NSCLC cells. Following 

treatment with acetylshikonin, the viability of NSCLC 

cells was significantly lower than that of normal lung 

cells. Acetylshikonin was also shown to cause cell cycle 

arrest in the G2/M phase. Note that this was confirmed 

by assessing the expression of cell cycle regulatory 

proteins via western blot analysis. Interestingly, these 

findings are consistent with those in previous studies  

on chondrosarcoma cells [34], but not in studies on 

 

 
 

Figure 5. Acetylshikonin induced necroptotic lipid peroxidation in NSCLC cells. (A) Transmission electron microscopy analysis 

showing impaired membrane integrity (blue arrow) after treating H1299 cells with acetylshikonin for 6 h. The red arrow indicates 
mitochondria, and the white arrow indicates lysosomes. 5,000×: Scale bar = 2 μm. 20,000×: Scale bar = 0.5 μm. (B–D) Fluorescence 
microscope images and flow cytometry results indicating lipid peroxidation in H1299 and A549 cells incubated with acetylshikonin  

(0.5–10 M) and BODIPY™ 581/591 C11 for 30 min (n = 4). Scale bar = 200 m. (E, F) Western blot analysis showing GPX4 protein expression 

in H1299 and A549 cells following treatment with acetylshikonin (0.5–10 M) for 24 h (n = 4). Untreated cells were used as controls. Results 
are shown as means ± SD. *p < 0.05 compared to untreated control. 
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colorectal cancer, in which cell cycle arrest occurred in 

the G1 phase [52]. These inconsistencies pertaining to 

the anticancer effects of acetylshikonin deserve further 

consideration in the context of lung cancer. 

Excessive ROS production has been shown to cause 

PCD, including necroptosis [13, 54, 55]. ROS levels 

have been implicated in various forms of necroptosis  

is characterized by a decrease in the expression and 

 

 
 

Figure 6. Acetylshikonin promoted cell death via necroptotic RIPK1, RIPK3, and MLKL signaling activation.  (A) Fluorescence 

microscope images showing MLKL phosphorylation in H1299 and A549 cells following incubation with acetylshikonin (2.5 M) for 0–4 h. 
Scale bar = 50 nm. (B, C) Western blot analysis showing RIPK1, RIPK3, and MLKL protein phosphorylation levels in NSCLC cells treated with 

acetylshikonin (2.5 M) for 0–4 h (n = 4). (D) Fluorescence microscope images showing MLKL phosphorylation in H1299 and A549 cells 

preincubated with necrostatin-1 (20 nM) and 7-Cl-O-Nec-1 (30 nM) for 1 h and then incubated with acetylshikonin (2.5 M) for a further 
4 h. Scale bar = 50 nm. (E, F) CCK-8 assays indicating the viability of H1299 and A549 cells preincubated with necrostatin-1 (20 nM) and  

7-Cl-O-Nec-1 (30 nM) for 1 h and then incubated with acetylshikonin (2.5 M) for a further 24 h (n = 4). Untreated cells were used as 
controls. Results are shown as means ± SD. *p < 0.05 compared to untreated control. #p < 0.05 compared to acetylshikonin alone group. 
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activity of GPX enzymes and lipid peroxidation [56]. 

Studies on leukemia cells and oral squamous cell 

carcinoma have reported that acetylshikonin treatment 

can lead to elevated ROS levels resulting in cell  

death [33, 35]. We observed an acetylshikonin-induced 

increase in ROS levels in NSCLC cells. BODIPY™ 

581/591 C11 staining also revealed that acetylshikonin 

induced lipid peroxidation, as indicated by a shift in  

the excitation and emission spectra from 581/591 nm  

to 488/510 nm. Western blot analysis revealed that 

acetylshikonin negatively regulated the expression of 

GPX4 enzyme. Taken together, we hypothesize that 

acetylshikonin initiates necroptosis by inducing oxidative 

stress in NSCLC cells. 

 
Apoptotic evasion of cancer cells is a major  

challenge in cancer treatment [57], at least partially 

attributable to the treatment resistance and recurrence. 

This has prompted alternative approaches to induce 

cancer cell death, i.e., not involving apoptotic path-

ways [58]. In the current study on NSCLC cells, 

acetylshikonin treatment led to RIPK1/RIPK3/MLKL 

phosphorylation, which is a crucial step in triggering 

the necroptosis signaling pathway [53, 59]. We  

also determined that acetylshikonin promoted the 

distribution of activated MLKL to the cytoplasm and  

was associated with increased membrane permea- 

bility [15]. These findings suggest that acetylshikonin 

induces necroptosis in NSCLC cells by activating  

the RIPK1/RIPK3/MLKL signaling pathway. In the 

current study, immunofluorescence staining revealed 

that acetylshikonin-induced MLKL phosphorylation 

was suppressed in cells pretreated with necrostatin-1 

and 7-Cl-O-Nec-1. These inhibitors also significantly 

attenuated the acetylshikonin-induced decrease in  

cell viability. These results provide further evidence 

that in NSCLC cells, the anticancer effects of 

acetylshikonin involve the induction of necroptosis. 

 
This study demonstrated the anticancer effects  

of acetylshikonin in NSCLC cells. We determined  

that even low doses of acetylshikonin reduced the 

viability of lung cancer cells without significantly 

affecting normal cells. When used to treat lung cancer, 

acetylshikonin was shown to promote cell death  

and arrest cell cycle progression in the G2/M phase. 

Incubation with acetylshikonin was also shown to 

increase ROS levels, which led to MMP dysfunction 

and lipid peroxidation. Finally, acetylshikonin was 

found to increase membrane permeability and induce 

necroptosis by downregulating GPX4 expression and 

promoting the phosphorylation of RIPK1, RIPK3,  

and MLKL. Our findings suggest that acetylshikonin-

based ability to induce necroptosis may facilitate the 

development of small molecule compounds for cancer 

therapy. 

MATERIALS AND METHODS 
 

Chemicals 

 

Primary antibodies specific to the following proteins 

were purchased from Genetex (Irvine, CA, USA): 

receptor-interacting protein kinase 1 (RIPK1), phospho-

RIPK1 (phospho Tyr384), RIPK3, phospho-RIPK3 

(phospho Ser232), mixed lineage kinase domain- 

like pseudokinase (MLKL), phospho-MLKL (phos- 

pho Ser358), glutathione peroxidase 4 (GPX4), and 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

Cyclin-dependent kinase 1 (CDK1) and cyclin B1 were 

purchased from Merck Millipore (Burlington, MA, 

USA). Anti-rabbit polyclonal antibodies and anti- 

mouse monoclonal antibodies were purchased from 

Santa Cruz Biotechnology (Dallas, TX, USA). 7-Cl-O-

Nec1 was purchased from Abcam (Cambridge, MA, 

USA). All other chemicals were purchased from Sigma-

Aldrich (St. Louis, MO, USA). 

 

Cell culture 

 

The human non-small cell lung cancer (NSCLC)  

cell line H1299 was obtained from the American  

Type Culture Collection (Manassas, VA, USA). The 

NSCLC cell line A549 and normal lung fibroblast  

cell line MRC-5 were obtained from the Bioresource 

Collection and Research Center (Hsinchu, Taiwan).  

All cells were cultured in accordance with suppliers’ 

recommendations. H1299 cells were cultured in Roswell 

Park Memorial Institute 1640 medium supplemented 

with 10% fetal bovine serum, 100 U/mL penicillin, and 

100 μg/mL streptomycin. A549 cells were cultured in 

Ham’s F-12 nutrient mixture supplemented with the 

above-mentioned supplements, whereas MRC-5 cells 

were cultured in Eagle’s minimum essential medium 

with the same supplements. Cells were incubated in an 

incubator under 5% CO2 in air at 37°C. 

 

Cell viability assay 

 

Cells were seeded at a density of 1 × 104 cells per well in 

48-well plates and allowed to attach overnight. The cells 

were then treated with the indicated concentrations of 

acetylshikonin for 24 h. Cell viability was evaluated using 

a cell counting kit-8 (CCK-8; Sigma-Aldrich, St. Louis, 

MO, USA) after incubating the cells at 37°C for 4 h. The 

optical density was measured using a spectrophotometer 

at 450 nm (BioTek, Winooski, VT, USA). 

 

Chromatin condensation analysis 

 

Chromatin condensation was monitored using  

4,6-diamidino-2-phenylindol (DAPI; Merck Millipore, 

Burlington, MA, USA). This involved treating cells 
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with various doses of acetylshikonin (0.5, 1, 2.5, 5, and 

10 μM) for 24 h. Fixed cells were then incubated with 

DAPI solution (1 μg/mL) for 5 min, after which the 

nuclear morphology was observed using an Eclipse Ti 

fluorescence microscope (Nikon, Tokyo, Japan). 

 

Analysis of apoptotic and necrotic cells 

 

After treatment with acetylshikonin for 24 h, apop- 

totic and necrotic cells were identified by performing 

Annexin V/propidium iodide (PI) assays (Sigma-Aldrich, 

St. Louis, MO, USA). This involved harvesting and 

staining live cells in accordance with the manufacturer’s 

instructions using 1 μg/mL PI and 0.025 μg/mL FITC-

conjugated Annexin V. Staining was performed in the 

dark at room temperature for 15 min, after which the 

cells were analyzed using a flow cytometer (Accuri C5, 

BD, East Rutherford, NJ, USA). 

 

Analysis of cell membrane permeability 

 

Following adhesion, cells (5 × 104) were treated with 

the indicated concentrations of acetylshikonin for 4 h, 

after which PI uptake analysis was performed to 

identify changes in the membrane permeability of cells. 

Alterations were examined using a Nikon Eclipse Ti 

fluorescence microscope (Nikon, Japan). 

 

Cellular ROS assay 

 

Intracellular ROS production was examined by  

treating cells (5 × 105) with acetylshikonin at various 

concentrations, followed by the addition of H2DCFDA 

(Thermo Fisher Scientific, Waltham, MA, USA) at a 

concentration of 1 μM. The mixture was then incubated 

at 37°C for 30 min, and intracellular ROS production 

was measured by using a flow cytometer (Accuri C5, 

BD, East Rutherford, NJ, USA). 

 

Analysis of mitochondrial membrane potential 

 

The mitochondrial membrane potential (MMP) and 

polarity transition (both of which are related to cell 

damage and apoptosis) were assessed using JC-1  

dye (Thermo Fisher, Waltham, MA, USA). Cells were 

treated with acetylshikonin for 24 h and then incubated 

with JC-1 (5 μg/mL) for 30 min. Fluorescence images 

were captured using a fluorescence microscope (Nikon, 

Japan). 

 

Cell cycle analysis 

 

Cell cycle progression was observed by seeding cells 
(5 × 105) in 6-well plates followed by treatment with 

acetylshikonin at various concentrations for 24 h. The 

cells were then harvested and stained using a PI solution 

(0.1% Triton X-100, RNase A 0.2 mg/ml, PI 10 μg/ 

mL; Sigma-Aldrich, St. Louis, MO, USA) which were 

analyzed using a flow cytometer (Accuri C5, BD, East 

Rutherford, NJ, USA). 

 

Immunoblotting analysis 

 

Proteins separated using sodium dodecyl sulfate-

polyacrylamide gel electrophoresis were transferred to 

Immobilon polyvinylidene difluoride membranes (Merck 

Millipore, Burlington, MA, USA). The membranes were 

blocked using 5% non-fat milk in Tris-buffered saline 

with Tween 20 (TBST) and incubated with primary 

antibodies (diluted 1:1,000) overnight at 4°C. The blots 

were then washed using TBST and incubated with  

anti-rabbit peroxidase-conjugated secondary antibodies 

(diluted 1:10,000) at room temperature for 1 h. Protein 

signals were detected using enhanced chemiluminescence 

and visualized using a UVP chemiluminescence detec-

tion system (Analytik Jena US, Upland, CA, USA). 

 

Transmission electron microscopy analysis 

 

After treatment with acetylshikonin for 6 h, H1299  

cells (5 × 105) were trypsinized after washing to remove 

residual medium. The suspended cells were immediately 

fixed in 70% Karnovsky fixative at 4°C until embedding 

and then observed under a JEOL JEM-1400 transmission 

electron microscope (Tokyo, Japan) to examine ultra-

structural changes. 

 

Analysis of lipid peroxidation 

 

Adhered cells (5 × 104) were incubated with 

acetylshikonin and BODIPY™ 581/591 C11 (Thermo 

Fisher Scientific, Waltham, MA, USA) at 37°C for 30 

min. In a reduced state, the excitation and emission 

wavelengths of BODIPY™ 581/591 dye were 581/591 

nm. Following oxidation, the excitation and emission 

wavelengths of the dye shifted to 488/510 nm. After  

30 min, the cell culture medium was removed, and the 

cells were washed twice using PBS. Lipid peroxidation 

was examined via fluorescence microscopy and flow 

cytometer. 

 

Immunofluorescence analysis 

 

After treatment, cells were fixed and incubated with a 

specific primary antibody (1:200) specific for phospho-

MLKL at 4°C overnight. After the primary antibody 

was removed, the cells were washed and incubated with 

a secondary goat anti-rabbit IgG antibody (DyLight488, 

Genetex, Irvine, CA, USA) for 1 h at room temperature. 
Cells were then incubated with a DAPI solution for 5 

min and examined using a fluorescence microscope 

(Nikon, Japan). 
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Statistical analysis 

 

Results are expressed as mean ± standard deviation 

(SD). Statistical analysis for multiple groups was 

conducted using one-way ANOVA followed by the 

Fisher-LSD post-hoc test. A p-value of less than 0.05 

was considered statistically significant. 

 

Data availability 

 

The datasets generated for this study can be accessed 

upon request to the corresponding author. 
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