
www.aging-us.com 14957 AGING 

www.aging-us.com AGING 2023, Vol. 15, No. 24 

Research Paper 

A novel oxidative stress-related gene signature as an indicator of 
prognosis and immunotherapy responses in HNSCC 
 

Zhuoqi Li1,2,*, Chunning Zheng3,*, Hongtao Liu4,*, Jiling Lv5,*, Yuanyuan Wang6, Kai Zhang7, 
Shuai Kong3, Feng Chen8, Yongmei Kong1,2, Xiaowei Yang9, Yuxia Cheng4, Zhensong Yang10, 
Chi Zhang11, Yuan Tian1,2 
 
1Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, 
Jinan, Shandong 250299, P.R. China 
2Radiotherapy Department, Shandong Second Provincial General Hospital, Shandong University, Jinan, Shandong 
250299, P.R. China 
3Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical 
University, Jinan, Shandong 250021, P.R. China 
4Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong 
Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Clinical Pathology, Shandong 
Lung Cancer Institute, Shandong Institute of Nephrology, Jinan, Shandong 250014, P.R. China 
5Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan, 
Shandong 250299, P.R. China 
6Department of Oncology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, 
Jinan, Shandong 250299, P.R. China 
7Generalsurgery Department, Wenshang County People’s Hospital, Wenshang, Shandong 272500, P.R. China 
8Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and 
Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China 
9Department of Hepatobiliary Intervention, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, 
Tsinghua University, Beijing 102218, P.R. China 
10Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 
264000, P.R. China 
11Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 
Shandong 250033, P.R. China 
*Equal contribution 
 
Correspondence to: Yuan Tian; email: tytytianyuan@bjmu.edu.cn 
Keywords: oxidative stress, HNSCC, OSRS, scRNA-seq, RNA-seq, prognosis 
Received: June 5, 2023 Accepted: November 2, 2023 Published: December 28, 2023 

 
Copyright: © 2023 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Purpose: To identify molecular subtypes of oxidative stress-related genes in head and neck squamous cell 
carcinoma (HNSCC) and to construct a scoring model of oxidative stress-related genes. 
Methods: R language based scRNA-seq and bulk RNA-seq analyses were used to identify molecular isoforms of 
oxidative stress-related genes in HNSCC. An oxidative stress-related gene scoring (OSRS) model was 
constructed, which were verified through online data and immunohistochemical staining of clinical samples. 
Results: Using TCGA-HNSCC datasets, nine predictive genes for overall patient survival, rarely reported in 

mailto:tytytianyuan@bjmu.edu.cn
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INTRODUCTION 
 

Head and neck squamous cell carcinoma (HNSCC)  

are the most common malignancy in the head  

and neck, developing from the mucosal epithelium in 

the oral cavity, pharynx and larynx [1]. GLOBOCAN 

cancer statistics estimated that 467,125 HNSCC- 

related deaths occurred in 2020 alone [2]. HNSCC  

treatment included surgery, radiation, chemotherapy and 

immunotherapy [1, 3]. Local recurrence and metastasis, 

particularly for advanced stages were common, with 5-

year overall survival (OS) rates of less than 50% [3, 4]. 

Understanding the molecular mechanisms of HNSCC, a 

novel and reliable model for prognosis and treatment 

responses predicting was needed. 

 

The composition of the tumor microenvironment (TME) 

was complex and diverse [5, 6]. The TME could be 

either tumor-suppressive or supporting dependent on the 

stage of tumor progression and the associated organ  

[7, 8]. Components of the TME could suppress anti-

tumoral responses, including tumor-associated macro-

phages (TAM), MDSCs, Tregs, PD-1 and PD-L1. The 

TME also affected therapeutic responses, particularly  

to ICI immunotherapy [5–8]. In HNSCC, oxidative 

stress activated NF-κB and STAT3 in CAFs, resulting 

in CCL2 expression and a cytokine-rich TME increased 

[9]. Cigarette smoke increased oxidative stress in  

the TME of HNSCC and induces the expression of 

MCT4 in fibroblasts, promoting CCL2 expression and 

macrophage migration [10]. Reversing pro-tumoral M2 

to anti-tumoral M1 macrophages could be achieved 

through targeting oxidative stress-related factors, as  

M1 macrophages presented significantly higher ROS 

levels than M2 in HNSCC TME [11]. Therefore,  

we speculate that there may be a certain correlation 

between oxidative stress related genes and TME that 

needs to be revealed. 

 

To reveal the impact of oxidative stress related genes 

on TME and patient prognosis, this study was 

designed and put into practice. Relevant indicators 

would be validated using online data and clinical 

sample data. 

MATERIALS AND METHODS 
 

Data collection and processing 

 

The analysis data packages related to the R language 

used in this study were downloaded from online  

website (https://cloud.r-project.org). FPKM (fragments  

per kilobase of exon per million fragments mapped) 

expression profiles of TCGA-HNSCC were downloaded 

using the R package “TCGAbiolinks”. Overall survival 

(OS) and clinical characteristics (including age, stage 

and gender) were also obtained (Table 1) [12]. In  

total, 494 tumor samples were collected and analyzed. 

Expression profiles and clinical information of the 

GSE41613 dataset were downloaded from the GEO 

database (https://www.ncbi.nlm.nih.gov/geo/). A total  

of 97 tumor samples were assessed for expression  

and survival information as validation for the cohort 

(Table 1). GSE103322 involving single-cell datasets 

were downloaded from the GEO database (https://www. 

ncbi.nlm.nih.gov/geo/), which contained 18 primary 

tumor samples and a single-cell transcriptome of 5902 

cells after initial quality control. A total of 2205 cells 

were classified as malignancy. 

 

The PRJEB23709 relating to immunotherapy cohort 

was downloaded from the BioProject database and  

used to assess the predictive efficacy of the signatures 

for immunotherapy [13]. Seventy-seven oxidative 

stress-related genes were retrieved from the website 

Harmonizome (https://maayanlab.cloud/Harmonizome/ 

dataset/Biocarta+Pathways), of which 74 were expressed 

in the training cohort. Subsequent analyses were per-

formed based on those genes. 

 

Consensus clustering analysis  

 

Unsupervised clustering analysis was applied to 

identify different oxidative stress gene expression 

patterns using the R package “ConsensusClusterPlus”. 

The distance used for clustering was Euclidean.  

The clustering method was “km”. A total of 1000 

replications were performed to ensure the stability of 

clustering. 

previous similar studies, were screened. AREG and CES1 were identified as prognostic risk factors. CSTA, FDCSP, 
JCHAIN, IFFO2, PGLYRP4, SPOCK2 and SPINK6 were identified as prognostic factors. Collectively, all genes 
formed a prognostic risk signature model for oxidative stress in HNSCC, which were validated in GSE41613, 
GSE103322 and PRJEB23709 datasets. Immunohistochemical staining of SPINK6 in nasopharyngeal cancer 
samples validated the gene panel. Subsequent analysis indicated that subgroups of the oxidative stress 
prognostic signature played important roles during cellular communication, the immune microenvironment, 
the differential activation of transcription factors, oxidative stress and immunotherapeutic responses. 
Conclusions: The risk model might predict HNSCC prognosis and immunotherapeutic responses. 

https://cloud.r-project.org/
https://www.ncbi.nlm.nih.gov/geo/
https://maayanlab.cloud/Harmonizome/%20dataset/Biocarta+Pathways
https://maayanlab.cloud/Harmonizome/%20dataset/Biocarta+Pathways
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Table 1. The clinical information of the samples in TCGA and GSE41613. 

Characteristic value 
TCGA-HNSCC GSE41613 

sample_num sample_num 

Age, n (%) 
≥60 216 47 

<60 278 50 

Gender, n (%) 
Female 132 – 

Male 362 – 

Pathological Stage, n (%) 

I/II 93 41 

III/IV 334 56 

unknown 67 – 

 
 

Using the R package “survminer” and “survival”, 

survival curves for prognostic analysis were generated 

using the Kaplan-Meier method. Log-rank tests were 

used to determine significant differences and to identify 

the correlation between expression patterns and OS. 

 

DEGs 

 

The R package “limma” was used to identify DEGs. 

Genes with different multiplicities |log2FC|≥1 (difference 

multiplicity greater than or equal to 2) and FDR <0.05 

were screened and included. 

 

Prognostic signatures 
 

One-way Cox regression analysis was used to determine 

the hazard ratio (HR) and prognostic significance of  

the DEGs. Genes with p < 0.05 were screened as the 

prognostic genes. Key prognostic factors were further 

screened through LASSO regression analysis using  

the R package “glmnet”. A risk scoring model for 

patient survival was established through weighting the 

expression of each key prognostic factor with the 

LASSO regression coefficient (“χi” represents gene 

expression level and “βi” represents LASSO regression 

coefficient) [14, 15]: 
 

 Score βi × iX=  

 

Samples were divided into high- and low- score groups 

according to the median values. Survival curves for 

prognostic analyses were generated using the Kaplan-

Meier method. Significant differences were calculated 

using log-rank tests to reveal the correlations between 

samples and OS. Reliability was evaluated using the 

receiver operating characteristic (ROC) curve. The area 

under the curve (AUC) was visualized using the R 

package “timeROC”. Univariate and Multivariate Cox 

analyses were performed to explore the independent 

prognostic values of the oxidative stress-related Score 

(OSRS). 

GSVA (Gene set variation analysis) and functional 

enrichment analysis 

 
The R package “clusterProfiler” was used to perform 

GO and KEGG pathway enrichment analyses 

(parameters pvalueCutoff = 0.05, pAdjustMethod  

= “BH”). The R package “GSVA” was used to  

annotate the potential functions of key genes.  

GSVA is a non-parametric, unsupervised method 

primarily used to estimate alterations in pathways  

and biological processes in samples. Gene sets were 

downloaded from three sub libraries of HALLMARK, 

KEGG, and GOBP in the MSigDB database for GSVA 

analyses. 

 
Tumor immune microenvironment assessment 

 
Immune cell infiltration was compared in  

different oxidative stress-related groups using the 

“Wilcoxon” test. The ssGSEA (single-sample gene-

set enrichment analysis) was used to estimate the 

relative abundance of each cell infiltrating in the 

TME. Gene sets were used to evaluate the infiltrating 

fraction of each immune cell type in the TME,  

which contained 28 human immune cell types, 

including activated CD8+ T cells, dendritic cells and 

macrophages [16]. Enrichment analyses calculated 

using the ssGSEA were used to indicate the relative 

abundance of TME-infiltrating cells in each sample. 

CIBERSORT combined with LM22 feature matrix 

were used to estimate the proportion of immune cell 

types in each sample. The sum of the proportions of 

all estimated immune cell types for each sample was 

equal to 1. 

 
The proportion of 64 immune cells were calculated 

based on the “xCell” method in the R package 

“IOBR”. Immune, stromal, and purity scores were 

calculated for each tumor sample using the 

“ESTIMATE” algorithm. The “Wilcoxon” test was 

used for inter-group comparisons. 
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Drug sensitivity prediction 

 

IC50 values in the training cohort were evaluated  

using the calcPhenotype algorithm of R package 

“oncoPredict” based on the GDSC (Genomics of Drug 

Sensitivity in Cancer) (https://www.cancerrxgene.org/) 

and CTRP (Cancer Therapeutics Response Portal) 

(https://portals.broadinstitute.org/ctrp/) cancer genomics 

drug sensi-tivity database. Spearman’s correlation 

analyses were performed between the OSRS and  

IC50 values to determine the correlation between  

drug sensitivity and oxidative stress-related signatures. 

Differences were compared between high- and low- 

scoring groups. 

 
Quality control for the single-cell transcriptome data 

 

A total of 18 primary tumor samples and 5902 single-

cell transcriptome analyses were retained from the 

following quality control. Clear annotations of all cell 

types were provided. Data were normalized using the 

“NormalizeData” function. The top 3000 highly variable 

genes were identified using the “FindVariableFeatures” 

function. Batch correction was performed using the  

R package “Harmony”. Scale transformations and 

principal component analyses were performed to reduce 

dimensions. The top 50 principal components were 

selected for downstream analyses. 

 
Delineating subgroups for malignant cells 

 

Malignant epithelial cells were extracted. Following the 

normalization and uniformization, the top 3000 highly 

variable genes were obtained. The top 50 principal 

components were selected. Resolution was set at  

0.05. Clustering analyses were performed to identify 

malignant subgroups. Differentially characterized genes 

amongst screened subgroups were identified using 

“FindAllMarkers” (avg_log2fc > 0.25, p_val_adj < 

0.05). 

 
Trajectory and cell communication analyses 

 

The R package “monocle2” was used for trajectory  

and pseudotime analyses of malignant cells. The 

transformations of malignant tumor cells were mapped 

according to states. Communication analyses between 

immune and malignant tumor cells were performed 

using the R package “CellChat”. 

 
Construction of the transcription factor regulatory 

network 

 
The motif annotations of human transcription  

factors and motifs corresponding to gene ranks  

were downloaded from the “RcisTarget” database 

(https://resources.aertslab.org/cistarget/). Lists of human 

transcription factors were downloaded from the fol-

lowing website (https://github.com/aertslab/pySCENIC/ 

tree/master/resources). Transcription factor regulatory 

networks were constructed based on the R package 

“SCENIC”. The “AUCell” algorithm was used to 

calculate the activity of each transcription Factor. 

Regulatory modules (regulon modules) were identified 

based on the Connection Specificity Index (CSI). 

Overall activity scores of regulatory modules were 

defined as the mean value of all TF activities. 

 
Sample collection and immunohistochemistry 

 

Nasopharyngeal squamous cell carcinoma samples 

were collected from the First Affiliated Hospital  

of Shandong First Medical University from 2013  

to 2021 (Table 2). Written informed consents were 

provided by all participants. Tumor tissues were 

obtained from biopsy excision, formalin fixed and 

paraffin embedded (FFPE) for histological evaluation. 

After paraffin wax removal and rehydration, the 

sections were placed in blocking buffer (0.5% Triton 

X-100 and 5% natural goat serum, 0.1 M PBS) for 1 

hour at room temperature. Then antigen retrieval was 

performed with EDTA (pH = 8.0) for 30 minutes. 

Sections were then placed on the primary antibody 

(rabbit anti-human SPINK6 polyclonal antibody, 

1:400, CSB-PA744263LA01HU, Cusabio Technology 

LLC, USA) at 1 hour at room temperature. After  

3 × 3-minute 0.1 M PBS washes, the sections were 

incubated in biotinylated secondary antibody at room 

temperature for 30 min, followed by subsequent 

washes (3 × 3 min in 0.1 M PBS). After immuno-

staining, sections were visualized using an HRP 

conjugated SP system using Leica Bond™ System 

according to the manufacturer’s protocol. Slides  

were examined by two experienced pathologists 

independently according to WHO criteria. 

 
Statistical analysis 

 

Analyses were performed using R software (version 

4.1.2). Individual group analyses were performed  

using a Wilcoxon rank sum test. A Kruskal-Wallis test 

was used to compare differences between multiple 

groups. 

 
OS curves were determined using Kaplan–Meier 

analysis. Univariate and Multivariate Cox proportional 

hazard regression models were constructed based on 

the analysis of prognostic data. Nomogram and 

Calibration models were further constructed. For plot 
presentation, where ns indicates p > 0.05, *p < 0.05, 
**stands for p < 0.01, ***means p < 0.001, and 
****indicates p < 0.0001. 

https://www.cancerrxgene.org/
https://portals.broadinstitute.org/ctrp/
https://resources.aertslab.org/cistarget/
https://github.com/aertslab/pySCENIC/%20tree/master/resources
https://github.com/aertslab/pySCENIC/%20tree/master/resources
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Table 2. The characteristics of patients with nasopharyngeal squamous cell carcinoma. 

Characteristics Overall 

Gender, n (%) 

Female 3 (30%) 

Male 7 (70%) 

Age, mean ± SD 65.2 ± 12.917 

Smoker, n (%) 

No 6 (60%) 

Yes 4 (40%) 

Alcohol history, n (%) 

No 6 (60%) 

Yes 4 (40%) 

SPINK6 IHC Score, n (%) 

60 1 (10%) 

140 1 (10%) 

160 5 (50%) 

180 1 (10%) 

120 1 (10%) 

170 1 (10%) 

 
RESULTS 
 

Sample subgroups by consensus clustering analysis and 

constructing an oxidative stress-related scoring model 

 

Consensus clustering of oxidative stress genes to 

identify sample subgroups 

The analysis flow chart was shown in (Supplementary 

Figure 1). Based on the expression of 74 oxidative 

stress-related genes in the TCGA-HNSCC dataset, 

consensus clustering analysis was performed using 

“ConsensusClusterPlus”. We finally identified three 

oxidative stress-related subgroups, termed Cluster1, 

Cluster2 and Cluster3 (n = 197/140/157, Figure 1A–

1C). The three subgroups significantly differed in terms 

of prognosis, with Cluster1 having poorer OS (Figure 

1D). Three distinct oxidative stress patterns were 

identified through analyses of the expression profile of 

oxidative stress-related genes (Figure 1E). Significant 

differences in tumor staging between distinct subgroups 

of patients were observed (p < 0.05, Figure 1F). 

 

Construction of the oxidative stress-related prognostic 

signature 

To evaluate the oxidative stress-related patterns of 

individual patients, we constructed an oxidative stress-

related signature to predict the prognosis of HNSCC 

patients based on the DEGs between oxidative stress 

expression patterns. 

 

We initially screened 216 DEGs among the three 

oxidative stress expression patterns using R package 

“limma” (Supplementary Figure 2A–2C). We then 

conducted GO and KEGG enrichment analyses for the 

DEGs using the “clusterProfiler” package. Genes were 

significantly enriched in biological processes including 

epidermal development, epidermal cell differentiation 

and humoral immunity (Supplementary Figure 2D–2G). 

 
We next performed univariate Cox regression analysis. 

In total, 22 of the DEGs were significantly associated 

with OS in the TCGA-HNSCC cohort, including 

SPOCK2, JCHAIN, CSTA, CD79A (Figure 2A, top20 

genes were shown in order of hazard ratio from low to 

high). 

 
Although identified genes with prognostic efficacy  

in HNSCC patients were identified by univariate Cox 

regression analysis and log-rank tests, redundant factors 

were removed to control the risk of overfitting and 

LASSO-Cox regression analysis was performed based 

on the 22 genes. A 10-fold cross-validation was per-

formed under optimal conditions to determine the 

penalty parameter (λ) of the model. The nine most 

predictive factors affecting OS were screened out 

(Figure 2B, 2C). Among those, AREG and CES1 were 

retained as valid risk factors for prognosis, whilst 

CSTA, FDCSP, JCHAIN, IFFO2, PGLYRP4, SPOCK2 

and SPINK6 were retained as protective prognostic 

factors (Figure 2D–2M). All factors constituted a 

prognostic risk model that was related to oxidative 

stress in HNSCC. Based on the expression levels  

of those genes and the linear combination of their 

corresponding weights, we assessed the prognostic risk 
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score related to oxidative stress for each patient. The 

specific computational formula was listed as follows 

[14, 15]: 

 

Score = -SPOCK2 × 0.096-JCHAIN × 0.044-CSTA × 

0.0004-SPINK6 × 0.106 + AREG × 0.123-FDCSP × 

0.025-IFFO2 × 0.053 + CES1 × 0.023-PGLYRP4 × 

0.058. 

 

Based on the oxidative stress-related prognostic 

signature, we calculated the risk score of each patient in 

the TCGA-HNSCC cohort and divided patients into 

high- and low- risk groups according to the median 

values. Kaplan-Meier curve analysis and log-rank tests 

indicated that the OS of patients in the high-risk group 

were significantly shorter (log-rank p-value < 0.001, 

Figure 3A). The AUCs of the patients at 1, 3, and 5 years 

were 0.694, 0.692, and 0.673 (Figure 3B), respectively, 

indicating an accurate characterization of OS. 

We next explored the independence of the prognostic 

signature in patients with HNSCC in TCGA (Figure 

3C–3G). A multivariate Cox regression model was 

constructed jointly based on prognostic risk score and 

clinical characteristics. The results indicated that the 

prognostic risk score was an independent prognostic 

factor (HR = 2.55, p-value < 0.001, Figure 3G). 

 

Validation of the prognostic signature in an 

independent dataset 

To assess the robustness and generalizability of  

the oxidative stress-related prognostic signature, we 

adopted GSE41613 as an independent validation cohort. 

Patients were divided into high- and low-risk groups 

based on the signature. The OS of patients in the high-

risk group was significantly shorter than the low-risk 

group (Figure 4A). The AUCs of the patients at 1, 3, 

and 5 years were 0.739, 0.692, and 0.681, respectively 

(Figure 4B). A multivariate Cox regression model was 

 

 
 

Figure 1. Unsupervised clustering analysis for the head and neck squamous carcinoma samples based on the expression of 
oxidative stress-related genes. (A) Consensus matrices of the TCGA-HNSC cohort with k = 3; 1, 2 and 3 denote the three subgroups. (B) 

The CDF plot of unsupervised clustering analysis. (C) Relative change in area under CDF curve for k = 2–5. (D) OS survival curves of the three 
oxidative stress-related subgroups. (E) Visualization of the results of the PCA analysis for the oxidative stress-related genes. (F) Heat map of 
the expression of the oxidative stress-related genes in the three subgroups. 
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Figure 2. Univariate Cox and LASSO regression analysis of the DEGs. (A) Forest plot of the top 20 prognostic genes. (B) Confidence 

interval of each Lambda in the LASSO regression analysis. (C) Trajectory change of LASSO regression independent variables, the abscissa 
axis indicates the logarithm of the independent variable Lambda, and the vertical axis indicates the coefficient of the independent variable. 
(D) LASSO regression coefficient of key prognostic genes. The abscissa axis represents coefficients; The vertical axis represents different 
gene names. (E) Kaplan-Meier curve of SPOCK2 involved in the oxidative stress-related prognostic signatures. (F) Kaplan-Meier curve of 
SPINK6 involved in the oxidative stress-related prognostic signatures. (G) Kaplan-Meier curve of IFFO2 involved in the oxidative stress-
related prognostic signatures. (H) Kaplan-Meier curve of JCHAIN involved in the oxidative stress-related prognostic signatures. (I) Kaplan-
Meier curve of AREG involved in the oxidative stress-related prognostic signatures. (J) Kaplan-Meier curve of CES1 involved in the oxidative 
stress-related prognostic signatures. (K) Kaplan-Meier curve of CSTA involved in the oxidative stress-related prognostic signatures. (L) 
Kaplan-Meier curve of FDCSP involved in the oxidative stress-related prognostic signatures. (M) Kaplan-Meier curve of PGLYRP4 involved in 
the oxidative stress-related prognostic signatures. 
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constructed based on the prognostic risk score and 

clinical characteristics. The results were consistent with 

the training cohort, which validated the risk score as an 

independent prognostic factor (Figure 4C–4G). 

 

 
 

Figure 3. The performance of the model in the training cohort. (A) The survival curve of patients in high- and low-Score groups. The 
abscissa axis represents the overall survival days; The vertical axis represents survival probability; Different colors represent different 
subgroups. (B) The ROC curve for predicting the 1-, 3-, and 5-year survival of HNSCC patients according to the Score. The abscissa axis 
represents specificity; The vertical axis represents sensitivity; Different colors represent different time subgroups. (C) The distribution of the 
Score in HNSCC patients. The abscissa axis represents time; The vertical axis represents cumulative score; Different colors represent 
different score subgroups. (D) The survival status of HNSCC patients. The abscissa axis represents time; The vertical axis represents overall 
survival days; Different colors represent different survival status. (E) The expression profiles of the nine genes involved in the model of each 
sample, the Score increasing gradually from left to right. (F) Forest plots show the results of univariate Cox regression analyses performed 
on clinical characteristics. (G) Forest plots show the results of multivariate Cox regression analyses performed on clinical characteristics. 
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Figure 4. The performance of the model in the validation cohort (GSE41613). (A) The survival curve of patients in high- and low-

Score groups. The abscissa axis represents the overall survival days; The vertical axis represents survival probability; Different colors 
represent different subgroups. (B) The ROC curve for predicting the 1-, 3-, and 5-year survival of HNSCC patients according to the Score. The 
abscissa axis represents specificity; The vertical axis represents sensitivity; Different colors represent different time subgroups. (C) The 
distribution of the Score in HNSCC patients. The abscissa axis represents time; The vertical axis represents cumulative score; Different 
colors represent different score subgroups. (D) The survival status of HNSCC patients. The abscissa axis represents time; The vertical axis 
represents overall survival days; Different colors represent different survival status. (E) The expression profiles of the nine genes involved in 
the model of each sample, the Score increasing gradually from left to right. (F) Forest plots show the results of univariate Cox regression 
analyses performed on clinical characteristics. (G) Forest plots show the results of multivariate Cox regression analyses performed on 
clinical characteristics. 
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Oxidative stress expression patterns resolved by 

single-cell transcriptomics 

 

To further investigate the role of oxidative stress in 

HNSCC at the single-cell level, published single-cell 

sequencing datasets of HNSCC patients were analyzed 

in the GEO database (GSE103322). Based on the 2205 

malignant cells extracted, two malignant subgroups 

were identified, termed CellType 0 and CellType 1 

(Supplementary Figure 3A). CellType 0 contained 1328 

cells and CellType 1 contained 877 cells. Malignant 

cells were divided into CellGroups according to the 

median CellScore. The results indicated that the pro-

portion of cells with high CellScores exceeded that of 

CellType 1. A higher number of low CellScores were 

observed in CellType 0 (Supplementary Figure 3B–3D). 

 

To explore the biological significance of the prognostic 

signature in tumor cells, we performed trajectory analysis 

based on 2215 malignant cells. Three differentiation 

states were observed (Supplementary Figure 3E).  

To determine the starting point of the trajectory and 

pseudotime analysis, the tumor cell stemness index was 

used to identify the starting point. The results showed 

that cells with a high stemness index were mainly 

distributed into differentiation state 3 (Supplementary 

Figure 3G), consistent with the trend of the trajectory 

plot of pseudotime analysis in (Supplementary Figure 

3F). Differentiation state 3 was therefore established as 

the starting point. The stemness of tumor cells gradually 

decreased along the pseudotime sequence. CellType 1 

cells that transformed to CellType 0 were shown in 

(Supplementary Figure 3H). Cells with high scores are 

mainly distributed to differentiation state 3, corres-

ponding to cells with high stemness (Supplementary 

Figure 3I, 3J). 

 

Differential activation of transcription factors 

between high and low CellScore groups related to 

OSPS 

 

We next investigated the activation of transcription 

factors in high and low CellScore groups. Seven 

regulon modules (M1~M7) were identified according  

to the linkage specificity index between different 

transcription factors (Supplementary Figure 4A). The 

average activity of M3 in the CellScore high group 

exceeded that of the low group. In contrast, the  

average activity of M7 in the CellScore high group  

was lower than that of the low group (Supplementary 

Figure 4B). This reflected differences in activated TF  

in different malignant cell subgroups. Through mapping 

the activity of the transcription factors to UMAP 
(Uniform Manifold Approximation and Projection) and 

trajectory analysis, we observed significant differences 

in the distribution of M3 and M7 mean activity in 

different subgroups in addition to differentiation  

states (Supplementary Figure 4D, 4E). We calculated 

RSS (Regulon Specificity Score) for each regulon in 

CellScore high- and low-groups, which were ranked 

from high to low. The rank of regulons in each 

CellGroup and the distribution of RSS are shown in 

Supplementary Figure 4C. The regulon with high RSS 

correlated with cell specificity (Supplementary Figure 

4C). The RSS distribution of the top 2 regulons in the 

CellScore high group of malignant cells is shown in 

Supplementary Figure 4F, 4G. The RSS distribution of 

the top 2 regulons in the CellScore low group is shown 

in Supplementary Figure 4H, 4I. The RSS distribution 

of the remaining regulons in the Low group are shown 

in Supplementary Figure 2. The functional enrichment 

results of each regulon are shown in Supplementary 

Figure 3. 

 

Relationship between OSPS and the tumor 

microenvironment 

 

Based on the bulk RNA-seq data, we calculated  

both pathway and biological processes through KEGG 

and GOBP analyses using the “GSVA” algorithm. 

Differences in activities between subgroups were 

compared through rank sum tests. The results indicated 

significant differences in T cell differentiation involving 

immune responses, T cell-mediated cytotoxicity and 

cytokine-cytokine receptor interactions (Figure 5A). 

 

Based on the scRNA data, we then analyzed 

differentially characterized genes between high and low 

CellGroups and performed GO and KEGG enrichment 

analyses using “clusterProfiler”. The results indicated 

that the genes were significantly enriched in immune-

related biological processes such as the regulation  

of T cell activation, and KEGG pathways including 

phagosome and antigen processing and presentation 

(Figure 5B, 5C). These results were consistent with 

those of the bulk dataset. 

 

GSEA analysis was performed to investigate differences 

in biological processes between high- and low score 

groups for both bulk and scRNA data. The results 

indicated that the low-risk group was significantly 

enriched in immune-related pathways including T- 

cell activation in both the bulk and scRNA datasets 

(Figure 5D, 5E). 

 

Based on the bulk RNA-seq data, the percentage of 

immune cell infiltration in each tumor samples were 

estimated. The OSRS was found to be negatively 

correlated with immune and stromal score but positively 
correlated with tumor purity (Supplementary Figure 

5A–5D). Significant differences in the infiltration of T 

cells CD8, T cells CD4 memory activated, T helper 
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Figure 5. Functional enrichment analysis for different groups in bulk data and scRNA data. (A) GOBP and KEGG pathway 

enrichment analysis of the bulk data calculated by GSVA. (B) GO enrichment analysis of the scRNA data by the “clusterProfiler”. (C) KEGG 
pathway enrichment analysis of the scRNA data by the “clusterProfiler”. The left column represents the name of the enrichment pathway, 
the balloon in the middle column represents the weight of the corresponding pathway, and the right column represents the corresponding 
annotation. (D) GSEA analysis results based on the bulk data. The abscissa axis represents the high and low grouping; The vertical axis 
represents the Running Enrichment Score. Curves of different colors represent different pathways. (E) GSEA analysis based on the scRNA 
data. The abscissa axis represents the high and low grouping; The vertical axis represents the Running Enrichment Score. Curves of different 
colors represent different pathways. 
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cells, naïve B cells, dendritic cells and NK cells 

between different OSRS groups were observed 

(Supplementary Figure 5E). 

 

Differences in cellular communication between high 

and low Score groups of OSPS 

 

We performed cellular communication analyses 

between immune and tumor cells using the “CellChat” 

package. Extensive cellular communications amongst 

all cell subgroups were observed (Supplementary Figure 

6A, 6B). When both incoming and outgoing signals 

were distinguished, malignant tumor cells and dendritic 

cells were outgoing signaling cells, whilst T cells,  

B cells, mast cells and macrophages were incoming 

signal receivers (Supplementary Figure 6C). 

 

Using the relationship between Cophenetic and pattern 

number, we identified 2 patterns of cell subgroups, in 

which high neoplastic and low neoplastic belonged  

to Pattern 2, with corresponding pathways including 

LAMININ, MK and other pathways related to tumor 

malignant progression (Supplementary Figure 6D, 6E). 

T cells, B cells, Mast cells, macrophages and dendritic 

cells belonged to Pattern 1, which included immune-

related pathways such as MHC-I (Supplementary Figure 

6F). 

 
Value of the OSPS in predicting immunotherapy 

efficacy and drug sensitivity 

 

We further explored the predictive value of the OSPS in 

the prognosis of patients in the immunotherapy cohort 

PRJEB23709. We found that patients with a low OSRS 

had an improved prognosis (Supplementary Figure 7A). 

Patients in the immunotherapy response group had 

significantly lower OSRS scores than the non-responder 

group (Supplementary Figure 7B). Significant diffe-

rences in the proportion of patients responding or not 

responding to immunotherapy amongst the high- and 

low- score groups were observed (p < 0.05), with more 

than 75% of patients in the low score group responding 

to immunotherapy (Supplementary Figure 7C). These 

results suggested that the low score group is likely to 

benefit from immunotherapy. 

 
The IC50 values of drugs in the training cohort were 

predicted using R package “oncoPredict” and drug 

information in GDSC and CTRP databases combined 

with the expression profile of the training cohort. We 

compared “Spearman” correlation values between the 

OSRS and log2(IC50) values of each drug. Drugs were 

ranked according to the absolute value of correlation 

coefficient from the largest to the smallest. We selected 

the top 6 drugs with the most significant positive and 

negative correlation, respectively (Supplementary Figure 

7D, 7F; p < 0.05). Significant differences in drug 

log2(IC50) were observed between high- and low-  

score groups (Supplementary Figure 7E–7G). CTRP 

results are shown in (Supplementary Figure 4). 

 

Prognostic significance of SPINK6 expression in 

nasopharyngeal squamous cell carcinoma 

 

IHC was performed on clinical pathological sections of 

41 patients. The staining intensity of SPINK6 in tumor 

cells was scored negative (0), weak (1+), moderate (2+) 

or strong (3+) (Figure 6A–6D). SPINK6 expression 

analysis was performed using the IHC score (ranging 

from 0 to 300), which involved multiplying the 

percentage of positive cells by the staining intensity. 

Using the median SPINK6 IHC Score as the cut-off, 

patients were divided into the high and low SPINK6 

expression groups. A total of 20 patients had an IHC 

score ≥60. Ten patients died and were used for final 

survival analysis. Survival curves indicated that patients 

with low SPINK6 IHC scores had poorer survival (log-

rank p = 0.019; Figure 6E, 6F). 

 

Validating the expression of the genes involved in the 

prognostic signature through IHC staining results 

 

To further prove the reliability of the results in  

this study, we validated the protein expression levels  

of the genes involved in the prognostic signature using 

the IHC staining images in the Human Protein Atlas 

(HPA) database (https://www.proteinatlas.org/). First, 

we compared the RNA expression levels of the genes 

between normal and tumor tissues in TCGA by GEPIA 

2 database (http://gepia2.cancer-pku.cn/). Then the  

IHC staining images of three genes that showed 

significantly differential expression in TCGA were 

obtained. Compared with normal head and neck tissues 

such as thyroid gland, nasopharynx, oral tissue or 

salivary gland, the protein expression levels of CES1, 

CSTA and FDCSP genes were decreased in HNSCC 

(Supplementary Figure 8B–8F, 8H–8J, 8L, 8M), which 

is consistent with the RNA expression levels in TCGA 

(Supplementary Figure 8A, 8G and 8K).  

 

DISCUSSION 
 

Studies had demonstrated that oxidative stress was 

aberrant in HNSCC [9–11, 17–20]. The relationships 

between oxidative stress and the patients’ prognosis, 

TME, responses to immunotherapy and drugs were 

however poorly understood. 

 

In this study, we performed consensus clustering 

analysis based on the expression profiles of genes 

related to oxidative stress. Patients were classified into 

three distinct oxidative stress expression patterns with 

https://www.proteinatlas.org/
http://gepia2.cancer-pku.cn/
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varying prognosis (Figure 1). To further explore the 

mechanisms leading to the differences in prognosis,  

we identified DEGs between the three oxidative stress 

patterns and performed KEGG and GO enrichment 

analyses (Supplementary Figure 2). The results 

indicated the DEGs were enriched in antimicrobial 

 

 
 

Figure 6. Prognostic significance of SPINK6 protein expression in nasopharyngeal squamous cell carcinoma. (A–D) 

Representative photomicrographs of SPINK6 protein expression by IHC magnified 200 times under a light microscope. (A) Staining intensity 
of SPINK6 protein was negative (0). (B) Staining intensity of SPINK6 protein was weak (1+). (C) Staining intensity of SPINK6 protein was 
moderate (2+). (D) Staining intensity of SPINK6 protein was strong (3+). (E) Comparison of high and low SPINK6 IHC Score groups in 
validation cohort. (F) KM survival curves of high and low SPINK6 IHC Score groups in validation cohort. 
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humoral immune responses (Supplementary Figure 2E) 

[21]. 

 
We then performed a prognostic analysis for the DEGs. 

An oxidative stress-related gene scoring model was 

designed through univariate and multivariate Cox 

regression analyses, identifying a prognostic signature 

that could predict the patients’ survival (Figure 2). This 

signature was robust and independently predictive  

in both training and validation cohorts (Figures 3, 4). 

The prognostic signature was composed of nine genes, 

including AREG and CES1 identified as risk factors, 

and CSTA, FDCSP, JCHAIN, IFFO2, PGLYRP4, 

SPOCK2 and SPINK6 identified as protective factors 

(Figures 2E and 6). AREG is a ligand of EGFR, which 

is usually overexpressed in tumors and associated  

with poor prognosis and resistance to chemo- and 

radiotherapy [22]. It had also been reported to be an 

adverse factor for the prognosis of patients with 

HNSCC [22–25]. High expression of AREG was also 

related to chemotherapy resistance in HNSCC [26,  

27]. Low CSTA expression could promote lymphatic 

metastasis and was associated with poor OS in HNSCC 

patients [28, 29]. FDCSP expression was reported to be 

related to TP53 mutational status and chemokine 

pathways. High expression of this gene was favorable 

for the prognosis of patients with HPV+ HNSCC [30]. 

JCHAIN, PGLYRP4 and SPINK6 had been reported  

as protective factors for HNSCC patients, consistent 

with the results in this study [31–33]. 

 
For CES1, IFFO2 and SPOCK2, reported in other 

diseases [34–36], were rarely brought to notice in 

HNSCC. In this study, CES1 was a risk factor, whilst 

IFFO2 and SPOCK2 were protective factors for 

HNSCC patients. These three genes might therefore 

represent prognostic markers for HNSCC and the 

oxidative stress-related signature composed of nine 

genes might represent a novel potential tool to predict 

the HNSCC patients’ survival. 

 
Given that single-cell sequencing was an advanced  

and robust method for TME information in HNSCC,  

we further analyzed the scRNA-seq data [37–39].  

We identified two subgroups of malignant cells  

and calculated the oxidative stress-related CellScores 

based on the expression of the nine gene prognostic 

signature (Supplementary Figure 3A–3D). We then 

performed trajectory and pseudotime analyses using the 

stemness index of tumor cells as the starting point 

(Supplementary Figure 3E–3J). The results suggested 

that a high CellScore was associated with a high 

stemness index. Cancer stem cells (CSCs) played a 

critical role in the initiation, relapse, metastasis, and 

chemoresistance of multiple types of cancers including 

HNSCC [40, 41]. Malignant cells with high CellScores 

might be more difficult to target through anti-humoral 

immune responses and treatment. Patients with high 

oxidative stress-related scores had a poorer prognosis. 

Significant differences in the activation of transcription 

factors between CellScore high- and low groups were 

also observed (Supplementary Figure 4). 

 
SP3 and ATF2 were the most highly expressed 

transcription factor in the CellScore high group. TP53 

and CD59 were most highly expressed in the CellScore 

low group (Supplementary Figure 4F–4I). SP3 was a 

member of SP-family and was an oncogene that played 

a pivotal role in cell proliferation and metastasis of 

various tumors [42–46]. ATF2 was also an oncogene 

that is associated with the progression and resistance to 

anti-tumor therapy, including HNSCC [47–51]. TP53 

was a tumor suppressor that was frequently mutated and 

inactivated in HNSCC [17, 52–55]. CD59 could inhibit 

complement and CD8+ T cell activation, leading to 

immune evasion and immune checkpoint blockade [56], 

which was also overexpressed in HNSCC and regulated 

tumor metastasis and prognosis [57–59]. We speculated 

that the high expression of pro-humoral transcription 

factors and the low expression of anti-humoral TP53 

results in a poorer prognosis of HNSCC patients with 

high scores. 

 
The temporal and spatial heterogeneity of tumor 

samples were common [60, 61], which affected the 

detection of tumor biomarkers in varying degrees. By 

comparing the results of mixed sample (TCGA) and 

single cell sequencing analyses, it was found that our 

analysis results had a certain degree of universality and 

were weakly affected by the heterogeneity of tumor 

samples, which would facilitate clinical applications 

(Figures 1–4 and Supplementary Figures 3, 4). This 

universality might also increase the potential for clinical 

conversion of our research results. 

 
We subsequently investigated the relationship between 

oxidative stress-related prognostic signatures and the 

TME. The results indicated that biological processes or 

pathways related to anti-tumoral immune responses 

were significantly activated in the low score group, 

including T cell activation, T cell mediated immunity 

and T cell receptor signaling. Some pro-humoral 

pathways such as WNT signaling were inactivated in 

the low Score group (Figure 5A–5C). GSEA analysis 

showed that the DEGs between the high- and low- score 

groups were enriched in immune activation associated 

biological processes in both bulk RNA and scRNA 

datasets (Figure 5D, 5E). Following the analysis of 

immune cell infiltration in the bulk datasets, we  

found that the oxidative stress-related score negatively 

correlated with the ImmuneScore, T cells CD8, T cell 

CD4 memory activated cells and M1 macrophages 
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(Supplementary Figure 5), confirming that a low OSRS 

was related to anti-humoral immune activation, as 

CD8+ T cells, CD4+ T cells and M1 macrophages 

played essential roles in tumor suppression in the  

TME [62–64]. Further analyses showed significant 

differences in cellular communication between high- 

and low- OSRS groups (Figure 5 and Supplementary 

Figure 6). We therefore speculated that the activation  

of anti-humoral responses in patients with low OSRS 

might be an important indicator of prognosis. 

 
Immunotherapy by immune checkpoint inhibitors  

(ICIs) was a major breakthrough in cancer treatment.  

Its efficacy was however variable and limited to subsets 

of patients [65]. The TME landscape including the 

infiltration of CD8+ T cells, CD4+ T cells and macro-

phages was closely related to ICI immunotherapy [63, 

66, 67]. Those cells displayed significant differences in 

low- and high score groups, with the low score group 

showing superior clinical outcomes to immunotherapy 

(Supplementary Figure 7A–7C). The efficacy of some 

anti-cancer agents also differed between high- and  

low- score groups of tumor cells (Supplementary Figure  

7D–7G). These results demonstrated how the oxida- 

tive stress-related gene scoring model held value for 

prediction of the clinical outcomes of immunotherapy in 

HNSCC patients. The subsequent immunohistochemical 

results further verified the authenticity of the genes 

included in the scoring prediction model (Figure 6 and 

Supplementary Figure 8). Consistency between online 

data analysis results and clinical validation results 

further suggested that the predictive model might have  

a better clinical conversion potential. 

 
Though plenty of work had been made, the lack of 

specific functional validation of the 9 signature genes 

was still the major limitation of the study. Therefore, 

the conclusion on the predictive performance of this 

prediction model was only based on the current analysis 

results and partially validations. The conclusion still  

had some degree of hypothesis. In the future, it is still 

necessary for us to conduct a large number of basic 

experiments and clinical cohort studies to further verify 

the above conclusions. 

 
In summary, we constructed an oxidative stress- 

related prognostic signature to evaluate the oxidative 

stress patterns of individual patients. Based on the 

signature, patients were divided into high- and low-  

risk groups. The prognosis of the high score patients  

was poor. Univariate and multivariate Cox analysis 

indicated that the oxidative stress-related signature was 
an independent prognostic factor, which was confirmed 

in an independent validation cohort and clinical samples. 

Immunotherapy data confirmed that our prognostic 

signature also held predictive value for the clinical 

outcomes of immunotherapy. 

 
CONCLUSIONS 
 
As an independent prognostic factor, the described  

risk prediction model based on oxidative stress genes 

showed good predictive value for the prognosis of 

HNSCC and immunotherapeutic responses. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The analysis flow chart of the study. 
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Supplementary Figure 2. Molecular differences between oxidative stress expression patterns. (A–C) The volcano plots and heat 

maps for the DEGs. (D) KEGG functional enrichment analysis for the DEGs. (E) GOBP functional enrichment analysis for the DEGs. (F) GOMF 
functional enrichment analysis for the DEGs. (G) GOCC functional enrichment analysis for the DEGs. 
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Supplementary Figure 3. Identification of malignant epithelial cell subgroups. (A) Distribution of malignant cell subgroups 

constructed by Uniform Manifold Approximation and Projection (UMAP); Different colors represent different cell types. A point within each 
group represents a cell. (B) CellScore distribution of malignant epithelial cells constructed by UMAP; Different colors represent different 
CellScores. (C) CellGroup distribution of malignant epithelial cells constructed by UMAP; Different colors represent different CellGroups. (D) 
The ratios of cells with high and low CellScore in different CellTypes. (E) The results of trajectory analysis for the tumor malignant cells based 
on different cell states; Different colors represent different states. (F) The results of trajectory analysis for the tumor malignant cells based on 
different pseudotime; Different colors represent different pseudotime. (G) The results of trajectory analysis for the tumor malignant cells 
based on different cell stemness groups; Different colors represent different cell stemness groups. (H) The results of trajectory analysis for 
the tumor malignant cells based on different cell types; Different colors represent different cell types. (I) CellScore; The results of trajectory 
analysis for the tumor malignant cells based on different cell scores; Different colors represent different cell scores. (J) The results of 
trajectory analysis for the tumor malignant cells based on different cell groups; Different colors represent different cell groups. 
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Supplementary Figure 4. Transcription factor regulatory network. (A) Transcription factors were divided into 7 regulon modules 

according to the synergistic effect of different transcription factors. (B) The association between CellGroup and regulon modules. (C) The 
distribution of each regulon’s rank and RSS in CellScore high and low groups. (D) The distribution of mean activity of the regulon modules 
(M1-M7) constructed by UMAP. (E) The distribution of mean activity of the regulon modules (M1-M7) constructed by trajectory analysis. (F) 
The RSS distribution of the top 2 regulons (SP3) in CellScore high group constructed by UMAP. (G) The RSS distribution of the top 2 regulons 
(ATF2) in CellScore high group constructed by UMAP. (H) The RSS distribution of the top 2 regulons (TP53) in CellScore low group 
constructed by UMAP. (I) The RSS distribution of the top 2 regulons (CD59) in CellScore low group constructed by UMAP. 
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Supplementary Figure 5. Immune landscape of different subgroups based on bulk data. (A) Correlation analysis results between 
the proportion of immune infiltration and stromal score. (B) Correlation analysis results between the proportion of immune infiltration and 
ImmuneScore. (C) Correlation analysis results between the proportion of immune infiltration and ESTIMATEScore. (D) Correlation analysis 
results between the proportion of immune infiltration and tumor purity. (E) The fraction of various immune cell infiltration in high and low 
OSRS. The abscissa axis represents different immune cell names; The vertical axis represents the infiltration ratio; Different colors represent 
different subgroups. 
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Supplementary Figure 6. Results of the cellular communication analysis. (A) The graph of all the cell–cell communications and 

cell–cell interaction network. (B) The statistical heat map of the signaling dominant of top 30 significant pathways. (C) The statistical point 
map of the signaling dominant. The abscissa axis represents outgoing interaction strength; The vertical axis represents incoming interaction 
strength; Different colors represent different immune cells. (D) The graph of the cell–cell communications and cell–cell interaction network 
of LAMININ signaling pathway. (E) The graph of the cell–cell communications and cell–cell interaction network of MK signaling pathway. (F) 
The graph of the cell–cell communications and cell–cell interaction network of MHC-I signaling pathway. 
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Supplementary Figure 7. The oxidative stress-related prognostic signature predicts the therapeutic outcomes of patients 
with HNSCC. (A) KM survival curves of high and low Score groups in PRJEB23709 cohort. The abscissa axis represents the survival time; 

The vertical axis represents the survival probability; Different colors represent different risk subgroups. (B) The OSRS distribution of 
different response groups in PRJEB23709 cohort. The abscissa axis represents different treatment responses; The vertical axis represents 
the risk score; Different colors represent different subgroups. (C) The percent of patients with response or no response to immunotherapy 
in the low Score and high Score groups. The abscissa axis represents different score groupings (low or high); The vertical axis represents the 
percentage; Different colors represent different subgroups of immunotherapy responses. (D) The correlation between the top six 
negatively correlated drugs and the Score.  The abscissa axis represents the value of the correlation coefficient; The vertical represents six 
different drugs. (E) The logIC50 value of the top six negatively correlated drugs in low and high Score groups. The abscissa axis represents 
six different drug names; The vertical axis represents the logIC50 value; Different colors represent different risk score subgroups. (F) The 
correlation between the top six positively correlated drugs and the Score; The abscissa axis represents the value of the correlation 
coefficient; The vertical represents six different drugs. (G) The logIC50 value of the top six positively correlated drugs in low and high Score 
groups. The abscissa axis represents six different drug names; The vertical axis represents the logIC50 value; Different colors represent 
different risk score subgroups. 
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Supplementary Figure 8. IHC staining images of the genes involved in the prognostic signature. (A) The RNA expression level of 
CES1 in normal head and neck and HNSCC tumor tissues. (B–F) The IHC images showing the protein expression levels of CES1 in thyroid 
gland (B), nasopharynx (C), oral tissue (D), salivary gland (E) and HNSCC tumor tissue (F). (G) The RNA expression level of CSTA in normal 
head and neck and HNSCC tumor tissues. (H–J) The IHC images showing the protein expression levels of CSTA in nasopharynx (H), oral 
tissue (I) and HNSCC tumor tissue (J). (K) The RNA expression level of FDCSP in normal head and neck and HNSCC tumor tissues. (L, M) The 
IHC images showing the protein expression levels of FDCSP in salivary gland (L) and HNSCC tumor tissue (M). 

 

 


