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INTRODUCTION 
 

Osteosarcoma (OS) develops from the mesenchymal 

cell line and is the most common primary bone 

malignancy in adolescents [1]. The main clinical 

manifestations of OS contain fever, discomfort, weight 

loss, anemia and organ failure [1]. Generally, OS is 

characterized with low survival rate, poor general 

condition, and non-ideal treatment effects [1, 2]. The 

growth rate of individual patients with OS is very fast, 

which comes with the possible occurrence of early lung 

metastasis, eventually leading to systemic deterioration 

[3]. Even after amputation and chemotherapy, about 

40% of OS patients still die of lung metastasis [4]. 
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ABSTRACT 
 

Background: It is of great clinical significance to find out the ideal tumor biomarkers and therapeutic targets to 
improve the prognosis of patients with osteosarcoma (OS). Oxidative stress (OXS) can directly target 
intracellular macromolecules and exhibit dual effects of tumor promotion and suppression. 
Methods: OXS-related genes (OXRGs) were extracted from public databases, including TARGET and GEO. 
Univariate Cox regression analysis, Random Survival Forest algorithm, and LASSO regression were performed to 
identify prognostic genes and establish the OXS-signature. The efficacy of the OXS-signature was further 
evaluated by Kaplan-Meier curves and timeROC package. Evaluation of immunological characteristics was 
achieved based on ESTIMATE algorithm and ssGSEA. Submap algorithm was used to explore the response to 
anti-PD1 and anti-CTLA4 therapy for OS. Drug response prediction was conducted by using pRRophetic package. 
The expression values of related genes in the OXS-signature were detected with PCR assays. 
Results: Two OXS-clusters were identified for OS, with remarkable differences of clusters presented in 
prognosis. Kyoto Encyclopedia of Genes Genomes (KEGG) analysis showed that differentially expressed genes 
(DEGs) between the OXS-clusters were significantly enriched in several immune-related pathways. Patients 
with lower OS-scores attained better clinical outcomes, and presented more sensitivity to ICB therapy. By 
contrast, OS patients with higher OS-scores revealed more sensitivity to certain drugs. Furthermore, critical 
genes, RHBDL2 and CGREF1 from the model, were significantly higher expressed in OS cell lines. 
Conclusions: Our study identified the clusters and signature based on OXS, which would lay the foundation for 
molecular experimental research, disease prevention and treatment of OS. 
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According to the WHO classification of bone 

neoplasms in 2020, the histological classification of  

OS includes conventional osteosarcoma, telangiectatic 

osteosarcoma, small cell osteosarcoma, parosteal osteo-

sarcoma, periosteal osteosarcoma, high-grade surface 

osteosarcoma, and secondary osteosarcoma [5]. Despite 

the development of new treatment methods for OS  

with the advancement of medical technology, the five-

year survival rate of clinical patients has not improved 

significantly [6]. Therefore, it is of great clinical 

significance to figure out the ideal tumor biomarkers 

and therapeutic targets to improve the prognosis and 

prolong the survival of patients with OS. 

 
Bioinformatics analysis is a discipline that can store, 

classify, refine and analyze biological information in 

large databases with the aid of computers in scientific 

research in the field of biology. As an interdisciplinary 

subject between biomedical field and computer field, it 

is one of the frontier fields at present, and also the core 

field of life science in the 21st century. Bioinformatics 

analysis focuses on genomics and proteomics, which 

aims to analyze the biological information related to 

gene expression as well as protein structure and function 

based on nucleic acid and amino acid sequences. With 

the rapid development of gene chip technology to 

further promote the fast progress of the bioinformatics 

technique, through relying on large databases, it has 

provided the advantageous support for life science data 

research, realized data collection, screening, editing and 

management through research tools (computer), and 

facilitated calculation and analysis of corresponding 

results, and visualization. Bioinformatics analysis can 

contribute to analyzing and identifying key target genes 

more conveniently, accurately and intuitively in massive 

gene data, and predicting the impact of important genes 

on signaling pathways or target molecules in biological 

behaviors. In the field of cancer research, the Gene 

Expression Omnibus (GEO) database, Surveillance, 

Epidemiology, and End Results (SEER) database, the 

cancer genome atlas (TCGA) database and the Database 

for Annotation, Visualization and Integrated Discovery 

(DAVID) database have been established. Whether  

it is the differential expression prediction of tumor-

related genes, the enrichment of key signaling pathway 

molecules, or the survival analysis of clinical relevance, 

the importance and potential of bioinformatics for cancer 

research become evident. 

 
Oxidative stress (OXS) is a common stress state in 

tumors, which refers to the imbalance between oxidation 

and anti-oxidation in the body, and the tendency to 

oxidation, thus resulting in abnormal oxidative signal 

regulation mechanism and macromolecular oxidative 

damage [7]. The increase of reactive oxygen species 

(ROS) level is the primary factor leading to cellular 

OXS [8]. OXS is the main culprit of cell damage,  

which can directly target intracellular macromolecules 

and demonstrate dual effects of tumor promotion and 

tumor suppression [7, 9–11]. The regulation of redox 

homeostasis of tumor cells can significantly affect  

the therapeutic effect of tumor, which is considered  

as a potential clinical treatment strategy. However,  

the regulation of tumor cell fate by OXS is highly 

complex and closely related to tumor types and tumor 

pathogenesis. This suggests how to accurately control 

the anti-tumor effect of OXS and avoid the tumor-

promoting effect is still the key to subsequent research. 

With the continuous application of bioinformatics and 

other disciplines related to big data analysis, it is 

expected to further analyze the heterogeneity of OXS  

in tumors, and then discover and investigate more 

therapeutic targets. 

 

In this study, based on multiple bioinformatics 

databases, the clusters and signature based on OXS 

were established using data from Therapeutically 

Applicable Research to Generate Effective Treatments 

(TARGET), OXS-related genes (OXRGs), Gene 

Ontology (GO) enrichment analysis, Kyoto Encyclopedia 

of Genes and Genomes (KEGG) enrichment analysis, 

survival analysis, Least Absolute Shrinkage and 

Selection Operator (LASSO) analysis. Furthermore,  

the prognosis, treatment strategy and immunological 

characteristics of the OXS-signature were also explored. 

The expression values of related genes in the OXS-

signature were detected by PCR assays. Our study 

would lay the foundation for molecular experimental 

research, disease prevention and treatment of OS. 

 

MATERIALS AND METHODS 
 

Data collection and preprocessing for osteosarcoma 

 

Since it was not possible to combine gene expression 

and clinical prognosis analysis due to the lack  

of clinical data of OS in TCGA database, RNA 

expression information and clinical data involved in 

OS were obtained from TARGET (https://ocg. 

cancer.gov/programs/target) [12], containing a total of 

85 samples with OS. The data forms of fragments per 

kilobase of transcript per million fragments mapped 

(FPKM) were transformed to transcripts per kilobase 

million (TPM) [13]. In the meantime, to validate the 

analysis results, necessary data were also included 

from the GEO (https://www.ncbi.nlm.nih.gov/geo/). 

GeneCards (https://www.genecards.org) is a com-

prehensive database of human genes, collating data 

from more than 100 websites to provide concise 

information on all known and predicted human genes 

in genome, proteome, transcription, genetics, and 

function [14, 15]. Finally, a total of 80 OXRGs were 

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
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extracted by setting the threshold of relevance score  

to be greater than 20 [16]. The processed data was 

shown in Supplementary File 1. 

 

Establishing the OXS-clusters and OXS-signature  

 

Univariate Cox regression analysis was  

conducted on the 80 OXRGs (Supplementary  

Table 1) extracted to acquire prognostic OXRGs 

(P<0.05) [17]. Subsequently, clustering analysis was 

performed on the prognostic OXRGs obtained utilizing 

ConsensusClusterPlus package in R to identify OXS-

related patterns [18].  

 

Differentially expressed genes (DEGs) between OXS-

clusters were screened out via limma package 

(V3.57.11) in R (logFC>1, FDR<0.01) [19] and Uni-

variate Cox regression analysis was carried out on 

filtrated DEGs to search prognostic DEGs preliminarily 

(P<0.01) [17]. In order to filtrate DEGs with more 

valuable prognosis, Random Survival Forest model was 

necessarily constructed through randomForestSRC 

(V3.2.2) package in R (variable importance>0.3) [20, 

21]. Based on LASSO analysis [22], the regression 

coefficients of the above genes were estimated and 

weighted, and OS-score was calculated for each OS 

sample by combining the expression values of the 

genes, thus establishing the OXS-signature. Further,  

the model was created using genes and coefficients 

corresponding to lambda.min values. 

 

Evaluating the efficacy of the OXS-signature 

 

After computing the OS-score of each OS, OS patients 

were distinguished into two subgroups (OS patients 

with higher OS-scores and OS patients with lower OS-

scores) according to the best optimal cutoff. Using 

Kaplan-Meier curves, differences in prognosis between 

the two subgroups were assessed by survminer (V0.4.9) 

package in R, which was verified by an OS cohort  

from GEO database (GSE21257). To further investigate  

the efficiency and accuracy of the OXS-signature for 

prognostic prediction, timeROC (V0.4) package was 

employed to plot the 1-, 2-, 3-, 4-, and 5-year survival 

receiver operating characteristic (ROC) curves. 

 

Analysis of immunological characteristics of OXS-

signature 

 

The ESTIMATE score, immune score, and stromal 

score of each OS patient were calculated by the 

ESTIMATE algorithm (The Estimation of Stromal  

and Immune cells in Malignant Tumor tissues using 
Expression) [23] and the differences between the  

two subgroups were then compared. The enrichment 

scores computed by single sample gene set enrichment 

analysis (ssGSEA) from Gene Set Variation Analysis 

(GSVA) (GSVA, V1.49.8) package in R [24, 25] were 

utilized to reflect the infiltration level of 28 immune 

cells. Submap algorithm was used to explore the 

response to anti-PD1 and anti-CTLA4 therapy for OS 

[26–28]. 

 

Enrichment analysis 

 

For human genes, numerous gene sets have been 

constructed from the perspectives of position, function, 

metabolic pathway, target combination and so on. A 

gene set consists of many genes with similar positions 

or similar functions. MSigDB database stores a large 

number of gene sets [29]. The gene sets used for  

KEGG and GO analyses were downloaded from 

MSigDB [29]. Over Representation Analysis (ORA) 

and Gene Set Enrichment Analysis (GSEA) analyses 

were implemented by clusterProfiler package [30]. 

 

Response prediction for chemotherapeutic agents 

 

Data of chemotherapeutic agents used in our study were 

acquired from the Genomics of Drug Sensitivity in 

Cancer (GDSC, https://www.cancerrxgene.org/) [31]. 

The half maximal inhibitory concentration (IC50) 

values of these chemotherapeutic agents were computed 

by pRRophetic (V0.5) package in order to assess the 

response prediction [32]. 

 

Cell culture 

 

The hFOB1.19 cell line was purchased from the 

American Type Culture Collection (ATCC; Manassas, 

VA, USA) and was cultured in DMEM/F12 + 0.3mg/ml 

G418 + 10% FBS (fetal bovine serum) + 1% P/S 

(penicillin-streptomycin). The OS cell lines U-2 and 

Saos-2 were purchased from National Collection  

of Authenticated Cell Cultures (Shanghai, China). 

Specifically, U-2 was cultured in 90% McCoy’s 5A 

medium supplemented with 10% FBS while Saos-2 was 

cultured in 85% McCoy’s 5A medium supplemented 

with 15% FBS. The mediums needed to be replaced 

every other day.  

 

Quantitative real-time PCR 

 

Total RNA from the cell lines was extracted applying 

RNAsimple Total RNA Kit (Tiangen, Beijing, China). 

Following RNA extraction, total RNA was reversely 

transcribed using PrimeScript RT reagent Kit (Takara, 

Otsu, Japan) to obtain cDNA. Using 2 μL cDNA with 

SYBR Premix Ex Taq (Takara, Otsu, Japan) and 
primers, target gene expression was determined by  

the Applied Biosystems StepOne Plus Real-Time PCR 

system (Life Technologies, Grand Island, NY, USA). 

https://www.cancerrxgene.org/
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The primers of the target gene were purchased from 

Sangon Biotech (Shanghai, China). Table 1 lists the 

sequences. 

 

Western blot assay 

 

Osteosarcoma cell lines Saos2, U2OS and normal 

osteoblast cell line hFob1.19 cells were washed with 

PBS and lysed for 30 min in radioimmunoprecipita- 

tion assay buffer (Beyotime Biotechnology, Shanghai, 

China). Cells were subsequently centrifuged at 12,000  

× g for 30 min at 4° C, to collect the supernatant.  

The protein concentration was measured using the 

bicinchoninic acid method. Approximately 30 μg of 

protein was taken and separated by 10% sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis and 

further transferred to nitrocellulose filter membranes 

(General Electric, Chicago, IL, USA). The primary 

antibodies (RHBDL2 (1:1000, ab236185, Abcam, UK) 

and β-actin (1:1500, ab8226, Abcam)) purchased from 

the Abcam were used in the assay. Notably, three 

independent repeated assays were performed. 

 

Immunofluorescence 

 

Cells (2.5 × 105) in good condition were fixed with  

4% paraformaldehyde at 25° C for 30 min, followed by 

PBS washing. Afterwards, cells were permeated using 

0.3% Triton X-100 at 25° C for 10 min, and then sealed 

with 3% bovine serum albumin after being washed at 

37° C for 30 min. Further, cells were incubated with the 

primary antibodies RHBDL2 (1:200, ab236185, Abcam) 

at 37° C for 1 h. After washing, secondary antibodies 

were added for 1-hour incubation at 37° C. Finally, 

DAPI was adopted for cell counterstaining, and the 

images were observed using a fluorescence microscope 

(Olympus) at 100 × 10 magnification. 

 
Statistical analysis 

 

Non-normal and normal distribution data should be 

compared by Wilcoxon and T test, respectively. All 

heatmaps in this study were drawn by pheatmap 

(V1.0.12) package in R and ggplot2 (V4.1.2) package in 

R was employed for visualization. The statistical 

methods used in the other analyses were mentioned  

in the corresponding sections above. P<0.05 was 

considered statistically significant. The code script was 

shown in Supplementary File 2. 

 
Data availability  

 

The RNA sequencing profiles are able to be  

gained from The Cancer Genome Atlas (TCGA) 

(https://toil.xenahubs.net). Further inquiries can be 

directed to the corresponding author. 

RESULTS 
 

Characteristics of OXS-clusters in TARGET-OS 

 

The Univariate Cox regression analysis was performed 

on the 80 OXRGs filtrated by the threshold value 

(relevance score>20) aforementioned, thus identifying 

ten prognostic OXRGs (Figure 1A), encompassing  

two potential oncogenes (HR>1; ACADVL, and ATF4)  

and eight potential suppressor genes (HR<1; HMOX1, 

GPX1, CCL2, MAPK1, MAPK14, MAP3K5, G6PD, 

and CAT). With clustering analysis completed based on 

ConsensusClusterPlus, the optimal number of clusters 

(k=2) was determined and two OXS-clusters were 

generated (OS-cluster1 and OS-cluster2) for subsequent 

research (Figure 1B). Patients with OS in OS-cluster2 

exhibited significantly better clinical outcomes than 

those in OS-cluster1 (Figure 1C). Compared with OS-

cluster1, the expression levels of G6PD, CCL2, GPX1, 

and HMOX1 became relatively higher in OS-cluster2 

(Figure 1D). 

 

Enrichment analysis of OXS-clusters in TARGET-

OS 

 

GSEA analysis manifested three cancer-related 

pathways (Cell cycle, Wnt signaling pathway, and 

Mismatch repair) and three immune-related path- 

ways (Natural killer cell mediated cytotoxicity, T cell 

receptor signaling pathway, and PD-L1 expression  

and PD-1 checkpoint pathway) that might be regulated 

by OXS-clusters, providing insights for exploring  

the mechanism of the clustering system for OS (Figure 

2A). A total of 125 DEGs were observed between  

the two OXS-clusters and the volcano map was drawn 

to directly reflect the expression differences of DEGs 

(Figure 2B). Furthermore, KEGG analysis of the above 

identified DEGs revealed that these DEGs were signi-

ficantly enriched in several immune-related pathways, 

including regulation of immune effector process, acute 

inflammatory response, lymphocyte mediated immunity, 

B cell-mediated immunity, leukocyte proliferation, 

regulation of T cell proliferation, cellular response  

to interferon-gamma, macrophage migration, positive 

regulation of T cell migration, positive regulation of T 

cell proliferation, T cell migration and proliferation, 

leukocyte differentiation, T cell activation, and dendritic 

cell differentiation (Figure 2C). In conclusion, OXS-

clusters might be closely related to the immune activity 

of OS. 

 

Establishment of OXS-signature for TARGET-OS 

 

Univariate Cox regression analysis of 125 DEGs 

between the two OXS-clusters yielded 18 prognostic 

genes (Figure 3A). Among them, there were ten genes 

https://toil.xenahubs.net/
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Table 1. The primer sequences in PCR analysis.  

Symbol  Sequences (5’-3’) 

RHBDL2-F TCAGCACATCTTGGGGAATCT 

RHBDL2-R CACTCCTGCCAGGTACACC 

CGREF1-F ACGATGACAGTGTTAATCCTGC 

CGREF1-R CCTAGTCCCTTTAGGTAGCTCTG 

C2-F TGGAAAGTCCAATATGGGTGGC 

C2-R CTGGTGCAGAGCCTTTGTGT 

GAPDH-F GGAGCGAGATCCCTCCAAAAT 

GAPDH-R GGCTGTTGTCATACTTCTCATGG 

 

increasing in hazard (HR>1; CGREF1,  

RHBDL2, LPAR3, KAZALD1, RAMP1, GALNT14, 

AC010991.1, COL24A1, SLC8A3, and COCH) and 

eight genes reducing in hazard (HR<1; MAGEA6, 

MAGEA3, CSAG1, MAGEA12, F13A1, TAGLN, 

C2, and ACTA2). Hence, ten oncogenic genes  

and eight tumor-suppressor genes were observed. 

Whereafter, the distribution of error rates generated 

by Random Survival Forest model is described  

in Figure 3B. Based on threshold value (variable 

importance>0.3), six genes (CSAG1, MAGEA12,  

C2, RHBDL2, SLC8A3, and CGREF1) with more 

prognostic potential were screened out (Figure 3B). 

LASSO analysis was further performed on these  

six genes to establish the OXS-signature based  

on the OS-score computed by the following  

formula: OS-score=–0.4719×CSAG1–0.5174×C2– 

0.6393×MAGEA12+0.5535×RHBDL2+2.1171×CGR

EF1. Therefore, each OS sample was given a 

corresponding OS-score for subsequent research.  

The lambda selection diagram is displayed in  

Figure 3C. The OXS-signature ended up containing  

five genes: RHBDL2, CGREF1, C2, CSAG1, and 

MAGEA12.  

 

Efficacy of OXS-signature for OS 

 

The OS-scores of TARGET-OS patients were 

compared among the expression levels of five genes 

contained in the OXS-signature (Sex, Age). From  

the heatmap (Figure 4A), it could be found that the 

high expression levels of RHBDL2 and CGREF1 

were associated with higher OS-scores, on the 

contrary, the high expression levels of C2, CSAG1 

and MAGEA12 were relevant to lower OS-scores. 

There was no significant correlation between the two 

clinical factors (Sex and Age) and OS-scores. The 

optimal cutoff of OS-scores was set as the threshold 

value to distinguish TARGET-OS patients into two 

risk groups. As shown in the Kaplan-Meier curves 

(Figure 4B), significant differences in outcomes were 

observed between the two subgroups (P<0.001): better 

clinical outcomes in patients with lower OS-scores 

while worse clinical outcomes in patients with higher 

OS-scores. Therefore, OS-score might serve as a 

malignancy factor for OS. The 1-year (AUC=0.818), 

2-year (AUC=0.877), 3-year (AUC=0.825), 4-year 

(AUC=0.825), and 5-year (AUC=0.785) survival 

ROC curves predicted by the OXS-signature revealed 

that the AUCs were all larger than 0.75, indicating  

the efficiency of the OXS-signature in predict- 

ing prognosis for TARGET-OS (Figure 4C). To  

further confirm the above conclusion, an external  

dataset (GSE21257) was included in this study. 

Analogously, the survival curves displayed the 

significantly better clinical outcomes of patients  

with lower OS-scores while patients with higher  

OS-scores experienced worse prognosis (Figure  

4D, P=0.03). In addition, the 1-year (AUC=0.719),  

2-year (AUC=0.631), 3-year (AUC=0.672), 4-year 

(AUC=0.727), and 5-year (AUC=0.714) survival 

ROC curves predicted by the OXS-signature also 

indicated the efficiency of the OXS-signature in 

predicting prognosis for OS patients from GSE21257  

(Figure 4E).  

 

Immunological characteristics of OXS-signature for 

TARGET-OS 

 

ESTIMATE score, immune score, and stromal score 

were calculated using ESTIMATE algorithm. From 

Figure 5A, it could be seen that all the three scores 

(ESTIMATE score, immune score, and stromal score) 

of OS patients with lower OS-scores were higher than 

that of OS patients with higher OS-scores (Figure 

5A). GO analysis revealed that four immune-related 

pathways (innate immune response, immune response, 

regulation of immune response and T cell receptor 

signaling pathway) might be regulated by OS-scores 

(Figure 5B). To further evaluate the immunological 

characteristics of OXS-signature for TARGET-OS, 

ssGSEA analysis was carried out to represent the 

abundance of invasive immune cell populations with 

different OS-scores in the heatmap (Figure 5C). 
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Figure 1. Characteristics of OXS-clusters in TARGET-OS. (A) Forest plot for Univariate Cox regression analysis of ten prognostic OXRGs;  
(B) Cluster diagram for subtype analysis of osteosarcoma samples, with the intragroup correlations being the highest and the inter-group 
correlations being low when k=2; (C) Kaplan-Meier curve of the correlation between OXS-clusters and survival status of osteosarcoma 
patients; The green curve denotes OS-cluster1, and the purple curve denotes OS-cluster2. (D) The heatmap displaying the distribution of the 
ten prognostic OXRGs, clinicopathological characteristics (Sex, Age) and OXS-clusters; Purple represents high gene expression, while green 
represents low gene expression. 
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Figure 2. Enrichment analysis of OXS-clusters in TARGET-OS. (A) GSEA maps of cancer and immune-related signaling pathways for 
OXS-clusters; (B) The volcano map reflecting the differentially expressed genes identified between the two OXS-clusters (logFC>1, FDR<0.01), 
with the black dots representing genes that do not reach the threshold, and the red dots representing genes that reach the threshold; (C) 
KEGG enrichment map of 125 differentially expressed genes. 
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Figure 3. Establishment of OXS-signature for TARGET-OS. (A) Forest plot for Univariate Cox regression analysis of 18 prognostic genes 
125 differentially expressed genes between the two OXS-clusters; (B) The distribution of error rates in Random Survival Forest model and the 
variable relative importance of the six genes. Notably, only genes with variable importance greater than 0.3 were screened out for display.  
(C) Lambda selection diagram for Least Absolute Shrinkage and Selection Operator (LASSO) analysis, with different colored curves 
representing different genes. 
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Figure 4. Efficacy of OXS-signature for OS. (A) Heat map showing the relationship between five genes (RHBDL2, CGREF1, C2, CSAG1, and 

MAGEA12) in the OXS-signature and OS-scores distribution and its clinical characteristics; (B) Kaplan-Meier survival curve showing survival 
probability of high-OS-score or low-OS-score subgroups for TARGET-OS cohort, with the green curve representing the group with higher OS-
scores, and the purple curve representing the group with lower OS-scores; (C) The 1-year, 2-year, 3-year, 4-year, and 5-year survival ROC 
curves predicted by the OXS-signature for TARGET-OS cohort, with curves in different colors referring to the AUC for different years;  
(D) Kaplan-Meier survival curve showing survival probability of high-OS-score or low-OS-score subgroups for GSE21257-OS cohort, with the 
green curve indicating the group with higher OS-scores, and the purple curve indicating the group with lower OS-scores; (E) The 1-year, 2-
year, 3-year, 4-year, and 5-year survival ROC curves predicted by the OXS-signature for GSE21257-OS cohort, with curves in different colors 
representing the AUC for different years. 
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Figure 5. Immunological characteristics of OXS-signature for TARGET-OS. (A) The box plot comparing the differences between high- 
and low-OS-score on ESTIMATE score, immune score, and stromal score, with the green images representing the group with higher OS-
scores, and the purple images representing the group with lower OS-scores; (B) GO analysis for immune-related pathways potentially 
regulated by OXS-signature; (C) The heatmap of the abundance of infiltrating immune cell populations at different OS-scores.  
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Immunotherapy and chemotherapy of OXS-

signature for TARGET-OS 

 

According to the results of TIDE algorithm, a higher 

proportion of OS patients with lower OS-scores 

responded to immune checkpoint inhibitors, suggesting 

that these patients presented more sensitive to Immune 

Checkpoint Blockage (ICB) treatment (Figure 6A). 

From SubMap analysis, it could be estimated that  

OS patients with low OS-scores might respond to  

anti-CTLA4 therapy (Figure 6B). The IC50 levels  

of six chemotherapy drugs (Staurosporine_1034,  

MK-2206_1053, Dasatinib_1079, Temozolomide_1375, 

Uprosertib_1553, and WZ4003_1614) were compared 

between the two subgroups based on OS-scores. As 

observed, all the IC50 values of the six drugs were 

lower in the group with higher OS-scores than that of 

the group with lower OS-scores, indicating OS patients 

with higher OS-scores might be more sensitive to these 

six drugs (Figure 6C). 

 
RHBDL2 contributed the high expression in 

TARGET-OS 

 

Considering the great value of the above OXS-

signature in OS prognosis and treatment, a gene, 

RHBDL2, in OXS-signature was randomly selected to 

explore its role in OS. As could be seen from the 

Kaplan-Meier survival curve, RHBDL2 might serve  

as a promoter of OS since OS patients with higher 

expression level of RHBDL2 appeared worse survival 

(Figure 7A). The AUCs for 1-year (AUC=0.705),  

2-year (AUC=0.863), 3-year (AUC=0.733), 4-year 

(AUC=0.728), and 5-year (AUC=0.728) survival ROC 

curves predicted by RHBDL2 were all larger than 0.7, 

suggesting the efficiency of RHBDL2 in predicting 

prognosis for OS (Figure 7B). Moreover, Univariate 

and Multivariate Cox regression analyses of RHBDL2 

and clinical factors confirmed that RHBDL2 was  

an independent prognostic factor for OS patients 

(Figure 7C). Additionally, it was found that RHBDL2  

was significantly related to immune checkpoints 

(Figure 7D). 

 
And three genes (RHBDL2, CGREF1, and C2) were 

randomly selected from the prognostic OXS-signature 

to detect their expression levels in cell lines. Compared 

with control cell lines (hFOB1.19), RHBDL2 (Figure 

7E) and CGREF1 (Supplementary Figure 1) were 

markedly higher expressed in OS cell lines (U-2 OS  

and Saos-2), while C2 (Supplementary Figure 1) was 

significantly lower expressed. In addition, it was also 

observed that the protein of RHBDL2 was significantly 

increased in Osteosarcoma cell lines compared with 

normal cells (Figure 7F). Immunofluorescence staining 

was carried out on Osteosarcoma cells and normal cells. 

Under a confocal microscope, RHBDL2 was found to 

be mainly distributed in the membrane and cytoplasm, 

with higher expression in Osteosarcoma cells than in 

normal cells (Figure 7G). 

 

DISCUSSION 
 

OS, a malignant tumor derived from mesenchymal 

tissue, is a type of sarcoma that has a high mortality  

rate and has become one of the killers threatening  

the lives of children and adolescents worldwide [1]. 

Due to the high heterogeneity of the tumor, there is no 

effective treatment at present, and surgery is still the 

main treatment. However, the 5-year survival rate of 

osteosarcoma patients treated with surgery remains low 

[33–35]. Currently, the relatively small number of OS 

specimens makes it relatively difficult to collect and 

analyze clinical samples. In addition, a lot of manual 

experimental screening inevitably costs a huge amount 

of manpower and material resources, and screening 

specific prognostic genes is even more challenging. 

Fortunately, with the development of cancer genomics 

and precise oncology, genetic information databases 

have sprung up. Screening of large-scale genomic 

datasets in large databases is conducive to narrowing 

the gap between cancer genomics and precise oncology 

and uncovering important changes in cancer etiology. 

Consequently, further translation of these findings into 

effective treatments is feasible. 

 

With the rapid progress of molecular biology  

and precision oncology, sequencing technology  

and gene chip technology have achieved qualitative 

breakthroughs. At present, the methods of leveraging 

bioinformatics tools and database raw data to analyze 

tumors have been widely popularized, but the vast  

and precious sample information has not been deeply 

and comprehensively exploited. For researchers, a series 

of standardized and rigorous information processing 

methods and scientific research ideas should be 

gradually developed and formed, so as to make full use 

of them. In-depth mining of DEGs that can affect the 

prognosis of patients from the sample data exerts a very 

positive significance in promoting clinical diagnosis  

and treatment. In our study, based on Univariate Cox 

regression analysis, ten prognostic OXRGs (ACADVL, 

ATF4, HMOX1, GPX1, CCL2, MAPK1, MAPK14, 

MAP3K5, G6PD, and CAT) were identified for OS. 

ATF4 (activating transcription factor 4) is a stress 

response gene, with its expression up-regulated in 

response to hypoxia, amino acid deficiency, ERS, 

oxidative stress and some other stress factors [36, 37]. 

Studies have demonstrated that the ER stress response 

tends to occur in the case of the insufficient oxygen and 

nutrients supplied by tumor cells. Protein processing 

and folding in the ER (Endoplasmic Reticulum) require 
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Figure 6. Immunotherapy and chemotherapy of OXS-signature for TARGET-OS. (A) Comparison of the ICB response rates between 

groups with high OS-scores or low OS-scores; (B) SubMap analysis for OXS-signature in TARGET-OS; (C) Box plots of estimated IC50 for six 
chemotherapeutic agents in high- or low-OS-score groups, with green images representing the group with higher OS-scores, and purple 
images representing the group with lower OS-scores. 
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oxygen and energy. This implies that in terms of  

the insufficient supply of oxygen and energy, protein 

misfolding can lead to the occurrence of ER stress [38]. 

ATF4 is a major transcriptional regulatory element in 

cells. By binding to the promoter of C/EBP homologous 

protein, ATF4 is capable of inducing and activating the 

expression of related genes to promote correct folding 

of proteins and the degradation of residual proteins 

under endoplasmic reticulum stress (ERS) [39]. It is 

well acknowledged that the growth and progression of 

 

 
 

Figure 7. Importance of RHBDL2 in TARGET-OS cohort. (A) Kaplan-Meier survival curve showing survival probability of high- or low-

expression RHBDL2; (B) The 1-year, 2-year, 3-year, 4-year, and 5-year survival ROC curves predicted by the expression of RHBDL2, with curves 
in different colors representing the AUC for different years; (C) The forest figure for Univariate and Multivariate Cox regression analyses of 
RHBDL2 and clinicopathologic features (Age, Sex); (D) The relationship of RHBDL2 with immune checkpoints in TARGET cohort;  
(E) Quantitative Real-time PCR. (A–C) Quantitative Real-time PCR assays using cell lines for RHBDL2; (F) The protein expression levels of ENO1 
and CD44 in HK-2 cell control group and hyperglycemic group by Western blot; (G) The detection of RHBDL2 in tumor cells and normal cells 
by immunofluorescence. 
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human tumors lead to the existence of tissue cells in a 

state of hypoxia and nutrient deprivation. Therefore, 

ERS response often occurs in rapidly growing and 

spreading cancer cells, and tumor cells also produce  

a series of responses to adapt to this stress state.  

Some studies have pointed out that compared with 

normal tissues, ATF4 protein is expressed at a higher 

level in primary human tumors, which is caused by 

the induction of microenvironmental factors around 

tumors [36, 40–42]. Previous studies have suggested 

that increased expression of ATF4 and MYC can 

induce decreased adhesion and promote cell shedding 

and metastasis in a variety of OS cell lines [43]. 

HMOX1 possesses anti-inflammatory, anti-apoptotic 

and anti-oxidation effects, among which the anti-

oxidation effect has been extensively studied and 

applied [44–46]. The mechanism of anti-oxidative 

stress is related to Nrf2/HMOX1 signaling pathway 

and Nrf2/HMOX1 signaling axis plays a protective 

role in oxidative stress [47]. It is reported that 

HMOX1 is up-regulated in OS [48, 49]. Glutathione 

peroxidase (GPX) represents antioxidant effects [50]. 

The main function of GPX1 is to degrade reactive 

oxygen species (ROS) and protect cells from ROS. 

The expression products of GPX1 mainly exist in 

lung, liver, kidney and other tissues with high oxygen 

tension, and GPX1 expression is up-regulated in 

breast, lung and colon cancer tissues, which may be 

conducive to tumor progression and spread [51, 52]. 

However, little research has been performed on GPX1 

in OS. Tumor microenvironment is closely correlated 

with tumor metastasis. CC chemokine ligand 2 (CCL2) 

is a chemokine closely related to tumor [53]. The 

migration of immune cells to tumors is regulated by 

recognizing CC chemokine ligand receptor 2 (CCR2) 

[53]. Metastasis-associated macrophages express  

high levels of CCR2 on the cell surface. The binding 

of CCL2 to CCR2 promotes the recruitment of 

macrophages to metastatic sites, thereby accelerating 

the dissemination and expansion of cancer cells. 

CCL2 can increase the metastasis and invasiveness  

of breast, intestinal, lung tumors, and glioblastoma 

multiforme [54–57]. CCL2 is associated with oxidative 

stress in tumors [58] and is highly expressed in OS 

cells [59]. ERK/MAPK pathway is one of the key 

signaling pathways that promote the proliferation and 

survival of cancer cells [60] and is widely involved in 

various cellular processes, such as apoptosis [61], 

autophagy [62], EMT [63] and cell metabolism [64]. 

MAPK signaling pathway exerts a great influence on 

the regulation of apoptosis, proliferation, invasion and 

metastasis of OS cells [65–68]. Glucose-6-phosphate 

dehydrogenase (G6PD) is the first enzyme involved in 
pentose phosphate pathway (PPP) and the rate-limiting 

enzyme of PPP. Glucose 6-phosphate produced by 

glycolysis is catalyzed by G6PD into PPP to generate 

energy needed for cellular activities [69]. Studies have 

manifested that G6PD expression is increased in 

melanoma [70], breast cancer [71], lung cancer [72, 

73], liver cancer [74, 75], and colorectal cancer [76], 

and G6PD plays an important role in the occurrence 

and development of tumors. However, the remaining 

prognostic OXRGs have been poorly studied in tumors. 

The role of these OXRGs in tumors, especially OXS, 

still needs to be further explored. 

 

Histopathological diagnosis has always been the  

gold standard in the diagnosis of OS, and is also the 

basis for guiding the treatment of OS [5]. However,  

OS is highly heterogeneous, with significant differences 

in treatment response and prognosis among patients 

with consistent histological classification and clinical 

staging. Individualized treatment based on molecular 

differences is a new direction for diagnosis and 

treatment of OS. Specific targeted therapy for subtypes 

with the same pathological origin can achieve the 

optimal efficacy and minimum toxicity. In recent years, 

with the popularization of next-generation sequencing, 

research of a variety of malignant tumors has been 

developed toward molecular targeted therapy. Given  

the fact that some subtypes of tumors overexpress  

some landmark molecules, the selection of appropriate 

blocking agents is beneficial for intervening and 

inhibiting the signal transduction pathway involved  

and regulated by this marker, so as to achieve the 

purpose of cancer suppression. However, there is no 

clear molecular classification of OS, which poses a 

major challenge for the precise treatment of OS. In our 

study, two OXS-clusters based on ten prognostic 

OXRGs were identified, providing new insights into the 

prognostic assessment of OS. It is worth mentioning 

that the identified OXS-clusters might be closely related 

to the immune activity of OS. Based on prognostic 

OXS-signature, OS patients were classified into two 

subtypes (patients with higher OS-scores and patients 

with lower OS-scores). With the improvement of OS-

scores, the extent of infiltration of most immune cells 

appeared varying degrees of decline. Both immune  

cell infiltration and stromal cell scoring were lower  

in the high OS-score group compared to the low OS-

score group. Considering the poorer prognosis of the 

high OS-score group and the role of immune cells in 

suppressing tumors, patients with higher OS-scores 

were believed to present a poorer tumor immune status. 

Tumor cells in these patients progressed more easily in 

the absence of immune surveillance and clearance, 

leading to adverse outcomes. OS patients with lower 

OS-scores might be more sensitive to ICB treatment. 

Furthermore, compared to patients with lower OS-
scores, OS patients with higher OS-scores showed 

lower IC50 values of several chemotherapeutics 

(Staurosporine_1034, MK-2206_1053, Dasatinib_1079, 
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Temozolomide_1375, Uprosertib_1553, WZ4003_ 

1614, Entospletinib_1630, AZD8186_1918, and AMG-

319 2045), suggesting that these patients revealed more 

sensitivity to these drugs. 

 

Communication between OS cells and the surround-

ing tumor microenvironment (TME) is essential for  

tumor growth and subsequent metastasis. The main 

influencing component of TME is tumor-associated 

macrophages (TAM), a type of immune cells involved 

in inflammatory response and tissue homeostasis. 

There have been preliminary studies on the hetero-

geneity of OS tissue and immune microenvironment 

by single cell technique [59]. Compared with primary 

OS, a higher proportion of M2-type TAM has been 

found in lung metastases, which is associated with 

increased tumor invasiveness due to proinflammatory 

molecules. Increased invasion of TAM, especially M2 

TAM, has long been connected with poor prognosis in 

various tumors, including OS [3]. In this study, the 

differences in the TME of different OS patients were 

explored, especially the immune microenvironment. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. Quantitative real-time PCR assays using cell lines for CGREF1 and C2. 
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Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The list of OXS-related genes (OXRGs).  
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1, 2. 

 

Supplementary File 1. The processed data of GSE21257.  

 

Supplementary File 2. The code script for the bioinformatics. 

 

 

 


