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INTRODUCTION 
 

Non-alcoholic fatty liver disease (NAFLD) is a 

clinicopathologic syndrome characterized by the 

occurrence of steatosis in more than 5% of hepatocytes 

which is not caused by alcohol and other well-defined 
hepatic injury factors [1]. It includes simple steatosis, 

nonalcoholic steatohepatitis (NASH), cirrhosis, and 

hepatocellular carcinoma (HCC) [2]. With the rising 

number of obese people, NAFLD has become one of the 

leading causes of liver disease in the world, with about 

100 million people worldwide suffering from the disease 

according to recent statistics [3]. If not diagnosed and 

treated in time, it will not only lead to liver disease 

disability, but also has a strong connection to the elevated 

incidence of metabolic syndrome, type 2 diabetes 
mellitus, atherosclerotic cardiovascular disease, and 

colorectal tumors [4]. In addition, there are no specific 

drugs that can reverse NAFLD, and the only treatment 

for end-stage liver disease is a liver transplant [5]. Thus, 
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ABSTRACT 
 

Background: NAFLD has attracted increasing attention because of its high prevalence and risk of progression to 
cirrhosis or even hepatocellular carcinoma. Therefore, research into the root causes and molecular indicators of 
NAFLD is crucial. 
Methods: We analyzed scRNA-seq data and RNA-seq data from normal and NAFLD liver samples. We utilized 
hdWGCNA to find module-related genes associated with the phenotype. Multiple machine learning algorithms 
were used to validate the model diagnostics and further screen for genes that are characteristic of NAFLD. The 
NAFLD mouse model was constructed using the MCD diet to validate the diagnostic effect of the genes. 
Results: We identified a specific macrophage population called NASH-macrophages by single-cell sequencing 
analysis. Cell communication analysis and Pseudo-time trajectory analysis revealed the specific role and 
temporal distribution of NASH-macrophages in NAFLD. The hdWGCNA screening yielded 30 genes associated 
with NASH-macrophages, and machine learning algorithms screened and obtained two genes characterizing 
NAFLD. The immune infiltration indicated that these genes were highly associated with macrophages. Notably, 
we verified by RT-qPCR, IHC, and WB that MAFB and CX3CR1 are highly expressed in the MCD mouse model and 
may play important roles. 
Conclusions: Our study revealed a macrophage population that is closely associated with NAFLD. Using 
hdWGCNA analysis and multiple machine learning algorithms, we identified two NAFLD signature genes that 
are highly correlated with macrophages. Our findings may provide potential feature markers and therapeutic 
targets for NAFLD. 

mailto:201262005933@email.sdu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


www.aging-us.com 15452 AGING 

there is an urgent need to elucidate the intrinsic molecular 

mechanisms of NAFLD pathogenesis and to search for 

specific biomarkers to develop effective preventive and 

therapeutic approaches. 

 

The pathology of NAFLD is a complex network of 

mechanisms involving multiple factors. It is significantly 

influenced by the increased infiltration of immune cell 

subsets, such as monocytes, T lymphocytes, and 

neutrophils, along with the activation of liver-resident 

cells, such as Kupffer Cells (KCs) or Hepatic Stellate 

Cells [6]. Macrophages can be categorized according to 

their origin into liver tissue resident macrophages (KCs) 

and monocyte-derived macrophages. Several studies have 

demonstrated that cytokines and chemokines released by 

KCs are critical in promoting chronic steatohepatitis  

[7, 8]. Depletion of KCs by using gadolinium chloride or 

clodronate liposomes prevented the progression of diet-

induced steatosis and hepatic insulin resistance in rats [9]. 

In addition, it has been shown that monocyte-derived 

macrophages that can infiltrate the liver during the 

disease also play a vital role in NAFLD, and the 

reduction of infiltrating macrophages with specific drugs 

can inhibit hepatic steatosis and fibrosis [10]. 

Over the past few years, the rapid development of 

single-cell transcriptomics has revolutionized the high-

resolution analysis of cellular composition and 

heterogeneous cellular states, which has considerably 

contributed to our understanding of the composition of 

immune cells in liver tissues in NAFLD disease [11]. 

Weighted gene co-expression network analysis 

(WGCNA), an unbiased systems biology analysis 

method, aims to explore the co-expressed gene 

modules and identify core genes in the networks, 

whereas it can only be used for bulk RNA sequencing 

(RNA-seq) data [12]. Unlike WGCNA, the high-

dimensional weighted correlation network analysis 

(hdWGNCA) could constitute an integrated functional 

framework for co-expression networks based on single-

cell RNA sequencing (scRNA-seq) data [13]. Previous 

studies have not delved into the characteristic markers 

of NAFLD at the single-cell level [14]. In our 

investigation, we coordinated scRNA-seq data and 

RNA-seq datasets to screen key signature genes 

contributing to NAFLD diagnosis by hdWGCNA and 

multiple machine learning algorithms, which may 

contribute to the early diagnosis and treatment of 

NAFLD (Figure 1). 

 

 
 

Figure 1. The flow chart of our analysis. 
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MATERIALS AND METHODS 
 

Data acquisition 

 

We obtained a NAFLD single-cell RNA sequencing 

dataset (GSE158241)and five NAFLD RNA sequen-

cing datasets (GSE135251 [15], GSE48452 [16], 

GSE63067 [17], GSE66676 [18], and GSE89632 [19]) 

from the Gene Expression Omnibus (GEO) database 

(http://www.ncbi.nlm.nih.gov/geo). For the RNA-seq 

datasets, we firstly utilized the “GEOquery” software 

package to download the data and clinical information 

[20]. Secondly, the “SVA” package was used for 

background correction, normalization, and log2 

transformation [21]. When multiple probes of the 

platform identified the same gene, the average value 

was taken as its expression. Subsequently, the 

GSE63067 and GSE89632 datasets were merged as the 

experimental group (31 normal and 50 NAFLD 

samples), while the GSE48452, GSE66676, and 

GSE13251 datasets were merged for further validation 

(85 normal and 271 NAFLD samples). The “SVA” 

package was used to eliminate batch effects after 

merging datasets [21]. Table 1 provides information on 

these six datasets’ elements. 

 

Preprocessing of single-cell RNA sequencing data 

 

Using the “Seurat” (4.1.0) package [22], we created 

Seurat objects based on the single-cell transcriptomic 

expression matrices of overall and individual cell types. 

We identified cells expressing over 200 but no more 

than 2500 RNA features. Additionally, 10% of 

mitochondrial RNA was set as a threshold for 

normalizing the scRNA-seq data. The batch effect of the 

samples was eliminated by the “harmony” functions. 

Furthermore, we used the “ScaleData” and “RunPCA” 

functions to determine the number of principal 

components (PCs) based on the Seurat object. We 

adjusted the number of PCs to 12 to generate cell 

clusters and then visualized them using the “UMAP” 

plot. To annotate the cell clusters, we performed 

unsupervised clustering using the “FindClusters” and 

“FindNeighbors” functions. The clustering results were 

obtained with the clearest resolution when the resolution 

was set to 0.5. Subsequently, we used the “SingleR” 

package (v 1.4.1) [23] for automated cell type annotation 

based on the marker genes of each cluster. Finally, we 

selected macrophages for principal component analysis 

(PCA) to identify distinct macrophage subtypes. 

 

High-dimensional weighted correlation network 

analysis 

 

We employed the high-dimensional weighted gene  

co-expression network analysis (hdWGCNA) to 

construct a co-expression network based on  

single-cell level data using the “hdWGCNA” package 

[13]. First, we input the genes expressed in at  

least 5% of the cells and use the “MetacellsByGroups” 

function to construct the metacell gene expression 

matrix. Then, the “TestSoftPowers” function is used  

to determine the soft power. The “ConstructNetwork” 

function is used to build the co-expression  

network. All analyses are performed according to the 

official standard procedure as described in 

https://smorabit.github.io/hdWGCNA/articles/basic_tu

torial.html. 

 

Cell-cell communication analysis 

 

The “CellChat” package provides an effective analysis 

tool for studying the interactions and communications 

between cells [24]. We used the “CellChat” package to 

infer important biological interactions between cells in 

the liver, and calculated the probability values and 

significance of these interactions. Circle plots and 

bubble plots were used to visualize the relationships and 

importance between cells. 

 

Pseudo-time trajectory and SCENIC analysis 

 

Monocle2 algorithm (version 2.22.0) [25] can infer the 

temporal development and differentiation trajectories 

of cells, as well as explore the transition relationships 

between cell states. In our study, we employed 

monocle2 (v2.18.0) for trajectory analysis to further 

investigate the differentiation process of macrophages 

in the liver. Additionally, Single-cell regulatory 

network interference and clustering (SCENIC, version 

1.2.4) was employed on all single cells to unveil the 

regulatory relationships between transcription factors 

(TFs) and target genes [26]. The “limma” package was 

utilized to calculate significantly distinctly expressed 

regulators, with a statistical significance level set at  

p < 0.05. 

 

Functional enrichment analysis and GSVA analysis 

 

To test the gene expression level in RNA-seq datasets, 

we employed the “limma” package in R to compare the 

expression differences of the feature genes between 

NAFLD samples and control samples. And to 

investigate the functional abundance of the potential 

feature genes, we used the “clusterProfiler” package 

(v4.0) for Gene Ontology (GO) and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) pathway 

enrichment analysis. Additionally, the gene set variation 

analysis (GSVA) algorithm was applied to explore the 
activity variations of KEGG pathways in the optimal 

feature genes. The statistical significance level was set 

at p < 0.05. 

http://www.ncbi.nlm.nih.gov/geo
https://smorabit.github.io/hdWGCNA/articles/basic_tutorial.html
https://smorabit.github.io/hdWGCNA/articles/basic_tutorial.html
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Table 1. The basic information of datasets. 

 

Building the machine learning model 

 

To assess the diagnostic capability of the potential  

feature genes identified by hdWGCNA, we employed 

seven machine learning algorithms to build models 

using the mlr3verse (version 0.2.7) package in R 

(https://CRAN.R-project.org/package=mlr3verse). The 

predictive performance of the seven models was 

evaluated using the AUC values obtained from ROC 

analysis in the training set and validation set. To further 

select the optimal feature genes, we applied three 

machine learning algorithms (LASSO, SVM-REF, and 

RF) to predict disease status and identify important 

prognostic variables. For RF analysis, we used the 

“randomForest” package and the “caret” package in R 

[27] to determine gene importance, with a threshold set at 

an importance score greater than 2 [28]. We utilized the 

“glmnet” package in R [29] to perform LASSO logistic 

regression analysis with the value of lambda min. An 

SVM classifier was created using the “e1071” package in 

R [30]. Next, the effectiveness of the optimal feature 

genes was thoroughly evaluated in the training and 

validation sets. The expression levels of the optimal 

feature genes in NAFLD tissues and control tissues were 

compared with the Wilcoxon rank-sum test. The 

predictive ability of the optimal feature genes was 

evaluated using receiver operating characteristic (ROC) 

analysis, and the area under the ROC curve (AUC) 

values were assessed. The statistical significance level 

was set at p < 0.05. 

 

Immune infiltration analysis 

 

We utilized the CIBERSORT analysis technique [31] to 

evaluate the immune infiltration patterns in NAFLD 

samples and normal samples. In this analysis, the 

parameter “PERM” was set to 1000 and a significance 

threshold of p<0.05 was applied. The “pheatmap” 

package in R was employed to generate a heatmap that 

displays the 22 immune cell types, while the “vioplot” 
package was used to create boxplots illustrating their 

abundance. To assess the differences in immune cell 

proportions, we conducted Wilcoxon rank-sum tests, 

considering p<0.05 as statistically significant. 

 

Single-sample gene set enrichment analysis 

(ssGSEA) and gene set enrichment analysis (GSEA) 

 

In order to gain a more comprehensive understanding of 

the activation status of the gene sets under investigation, 

we utilized the single-sample Gene Set Enrichment 

Analysis (ssGSEA) algorithm [21] to assess the relative 

levels of 50 hallmark gene sets (h.all.v7.5.1.symbols.gmt) 

in control and NAFLD samples. Moreover, we conducted 

Spearman correlation analysis to determine the 

associations between these 50 hallmark gene sets and the 

top feature genes. Additionally, to delve into the bio-

logical significance of the top feature genes, we 

performed GSEA using the “c2.cp.kegg.v11.0.symbols” 

gene set from the Molecular Signatures Database. 

 

Animal model construction 

 

We purchased Ten C57BL/6 mice (males) aged 6 weeks 

from GemPharmatech (Nanjing, China). All mice were 

fed at room temperature and under standard light 

conditions. After 7 days of acclimatization feeding, the 

mice were randomly divided into 2 groups. The control 

group was fed chow diet, and the experimental group 

was fed a methionine-choline deficient (MCD) diet 

without any additional intervention. After four weeks, 

peripheral blood of the mice was collected and 

centrifuged to obtain serum. The levels of alanine 

aminotransferase (ALT) and aspartate aminotransferase 

(AST) in serum were determined by Roche Cobas test. 

Fresh livers were exercised and weighed, and portions 

of the livers were taken for triglyceride assay. After 

being fixed in 10% formalin, partial liver samples were 

dehydrated in a series of progressively stronger alcohol 

washing solutions. Following xylene cleaning, tissues 

were embedded in paraffin. Sections were roughly 3μm 

thick and stained with hematoxylin and eosin (H&E). 

For Oil Red O staining, the sections were initially 

incubated in 60% isopropanol, followed by staining 
with an Oil Red O staining solution and a second 

incubation in 60% isopropanol. All procedures were 

conducted in accordance with the guidelines of the 

Institute for the Study of Animals. 

Dataset Year Species NAFLD Normal Platform Data type Team 

GSE158241 2020 Mus musculus 2 4 GPL19057 scRNA-seq Rigbolt KG, et al. 

GSE135251 2020 Homo sapiens 206 10 GPL18573 Bulk RNA-seq Govaere O, et al. 

GSE48452 2013 Homo sapiens 32 41 GPL11532 Microarray Jochen H, et al. 

GSE63067 2014 Homo sapiens 11 7 GPL570 Microarray Frades I 

GSE66676 2017 Homo sapiens 33 34 GPL6244 Microarray Xanthakos S, et al. 

GSE89632 2016 Homo sapiens 39 24 GPL14951 Microarray Allard JP, et al. 

https://cran.r-project.org/package=mlr3verse
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RT-qPCR, WB, and IHC 

 

Total RNA was isolated from mouse liver tissue and 

cDNA was synthesized using HiScript II Reverse 

Transcriptase (Vazyme, Nanjing, China). Real-time 

quantitative polymerase chain reaction (RT-qPCR) 

analysis was performed using SYBR Green mixture 

(Vazyme Biotech, Q711). We set actin as the reference 

gene for each sample. All primers were purchased from 

Sangon Biotech (Shanghai, China). The primers are 

given in Supplementary Table 1. For western blot (WB) 

analysis, total proteins were extracted from the liver 

samples with lysis buffer (ThermoFisher, 78443) 

containing 1% PMSF. Proteins (15μg) of each sample 

were loaded onto a gradient SDS-PAGE. Proteins were 

then transferred to a PVDF membrane. After blocking 

with 1% bovine serum albumin (Sigma, A7030),  

the primary antibodies were used for detection:  

MAFB (TD8895, 1:2000) (Abmart), CX3CR1 (13885-

1-AP, 1:1000) (Proteintech) and Actin (66009-1-Ig,  

1. 10000). Tissue levels of MAFB and CX3CR1  

were also analyzed by immunohistochemistry (IHC) 

using MAFB (TD8895, 1:500) (Abmart) and CX3CR1 

(13885-1-AP, 1:200) (Proteintech) according to 

standard protocols. 

 

RESULTS 
 

Single-cell RNA sequencing quality control and cell 

annotation 

 

We initially obtained a total of 6888 cells from a 

scRNA-seq data set containing the livers of two NASH 

mice and four normal mice. Following quality control 

and removal of batch effects, a total of 6875 cells were 

used for single-cell clustering analysis (Figure 2A, 2B 

and Supplementary Figure 1A–1D). After cell 

annotation, we could observe 8 distinct cell types on the 

UMAP plot, including hepatocytes, epithelial cells, 

endothelial cells, T cells, NK cells, macrophages, 

granulocytes, and B cells (Figure 2C). We then 

analyzed the proportions of different cell types in 

NASH and normal mouse livers (Figure 2D, 2E). 

Interestingly, macrophages, B cells, and NK cells 

showed increased proportions in NASH compared to 

the normal group (Figure 2F). Given the crucial role of 

macrophages in the liver, we selected macrophages for 

further analysis. After clustering the macrophages, we 

identified seven subclusters of macrophages. Notably, 

subcluster 1 was significantly more prevalent in the 

NASH group, and subcluster 7 was specific to NASH 

(Figure 2G, 2H). Therefore, we labeled subcluster 1  

and subcluster 7 as NASH-macrophages. Next, we 

performed cell-to-cell communication analysis between 

different cells in the liver. The results revealed that 

NASH-macrophages exhibited highly active signaling 

communication with other cells, while the other-

macrophages had rarely communicated with other cells. 

(Figure 2I). Of interest, NASH-macrophages received 

more signals than other cells, and hepatocytes were 

identified as the strongest senders (Figure 2I). This 

indicates that NASH-macrophages may play a critical 

role in the progression of NAFLD. 

 

Screening for modules representing NASH-

macrophages by hdWGCNA 

 

Cell communication detected a total of 9 significant 

pathways, including CCL, MIF, SPP1, GAS, 

GALECTIN, CXCL, MK, COMPLEMENT, and PARs 

(Figure 3A). Of note, the macrophage migration 

inhibitory factor (MIF) signaling pathway exhibited 

great strength in both incoming and outgoing signal 

patterns of NASH-macrophages (Figure 3A). Within the 

MIF signaling pathway, NASH-macrophages were 

found to be the strongest sender, receiver, mediator, and 

influencer (Figure 3B, 3C). Ligand-receptor analysis 

indicated that Gas6-Axl was significantly activated in 

the paracrine signaling from hepatocytes to NASH-

macrophages (Figure 3D). In view of the critical role of 

macrophages, we explored the hdWGCNA analysis to 

identify potential markers of macrophages. After setting 

the soft threshold to eight, we identified six modules 

(Supplementary Figure 2). As shown in Figure 3E,  

six gene modules were obtained, and the top 10  

most influential genes were listed according to the 

hdWGCNA. Of interest, we found that the turquoise and 

blue modules were greatly expressed in subcluster 1 and 

subcluster 7 macrophages (Figure 3F). Additionally, the 

blue module exhibited a strong positive correlation 

within turquoise module (Figure 3G). Moreover, UMAP 

plots illustrated the distribution of the turquoise and blue 

modules in macrophages, which extremely overlapped 

with subcluster 1 and subcluster 7 macrophages  

(Figure 3H). Therefore, we proposed that the turquoise 

and blue modules may represent characteristics of 

NASH-macrophages. The top 20 genes from each of the 

turquoise and blue modules were considered as potential 

feature biomarkers of NAFLD. 

 

Pseudo-time analysis and transcription factor 

prediction 

 

To determine the transcriptional features of macrophage 

development at different stages, we performed a pseudo-

time analysis. Cells with similar states are grouped, and 

branch points separate cells into different states. 

Notably, cluster 1 and cluster 7 macrophages were 

mainly located at the end of the pseudo-time trajectory 
(Figure 4A). We intersected genes from the turquoise 

and blue modules with human transcriptional genes, 

resulting in 30 potential feature genes. Besides, the 
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changes of potential feature genes in the differentiation 

were detected based on the gene expression levels in 

different subclusters of macrophages (Figure 4B). In 

order to further explore the transcriptional regulatory 

network underlying NASH, we subsequently used 

SCENIC algorithm to infer the transcription factors 

(TFs) behind NASH disease. SCENIC analysis revealed 

that certain TFs exhibited distinct activation and 

deactivation patterns across different samples (Figure 

4C). We then detected 3 upregulated TFs and 8 

downregulated TFs in the NASH group (Figure 4D). 

Additionally, a regulon specificity score (RSS) was 

defined based on Jensen-Shannon divergence for each 

group [32]. In the normal group, the transcription factor 

with the highest score was identified as Fos, while the 

RXRa ranked first in the NASH group (Figure 4E, 4F). 

In addition, transcription factors were closely related to 

potential feature genes (Figure 4G). 

Expression validation and functional enrichment of 

potential feature genes 

 

Next, we analyzed the expression levels of these 30 

potential feature genes in the livers of normal 

individuals and NAFLD patients using RNA-seq data. 

We found that SIRPA, ATP2B1, RRBP1, SRRM2, 

SON, and RBM39 were significantly downregulated in 

NAFLD samples, while MAFB, CX3CR1, and DBI 

were significantly upgraded (Figure 5A). Among all the 

differentially expressed genes, CX3CR1, SIRPA, and 

MAFB showed the largest differences (Figure 5B). And 

these 30 genes exhibited close associations with each 

other (Figure 5C). In terms of GO enrichment analysis, 

the potential feature genes were enriched in biological 

processes (BP), such as Cytoplasmic translation,  

RNA splicing, via transesterification reactions with 

bulged adenosine as nucleophile, mRNA splicing, via 

 

 
 

Figure 2. Single-cell analysis of cell proportion of NAFLD. (A) The features, counts, and percentages of mitochondrial genes in 

each of the analyzed samples after quality control. (B) The elimination of batch effect. (C) UMAP plot visualizes the distribution of eight 
cell types in control and NASH mouse livers. (D) Bar plot indicating the cell proportion of all eight cell types in liver of a normal chow 
diet mice. (E) Bar plot indicating the cell proportion of all eight cell types in liver of NASH mice. (F) Cell fraction distribution differences 
between NASH and normal. (G) UMAP plot showing the distribution of different clusters of macrophages in livers. (H) Bar plot indicating 
the proportion of seven macrophage clusters in liver of control and NASH mice. (I) Scatter plot indicating the incoming and outgoing 
interaction strength of the cells. 
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spliceosome, RNA splicing, via transesterification 

reactions; and cellular components (CC), such as 

Ribosome, Focal adhesion, Cell-substrate junction; and 

molecular functions (MF), such as Structural constituent 

of ribosome (Figure 5D). In the KEGG enrichment 

analysis, these genes were significantly enriched in 

pathways related to Coronavirus disease-COVID-19, 

Ribosome, and Alzheimer’s disease (Figure 5E, 5F). 

We also analyzed the overall relationship of the 

potential feature genes as a whole and their associations 

with immune cell infiltration. The results showed a 

significant association between the potential feature 

genes and M0, M1, and M2 macrophage infiltration, 

with a negative correlation with M0 and positive 

correlations with M2 and M1 (Figure 5G). 

Identifying optimal feature genes of NAFLD by 

machine learning 

 

Based on the potential feature genes, seven machine 

learning algorithms were applied to construct models 

and evaluate diagnostic performance (Figure 6A). It is 

worth noting that the support vector machine (SVM) 

algorithm showed the best performance in the training 

set (Figure 6B), with an AUC of 0.751 in the external 

validation set (Figure 6C). Next, we selected three 

machine learning algorithms to further screen for key 

feature genes of NAFLD. LASSO regression was 

performed using the aforementioned 30 genes as input, 

resulting in 5 genes (Figure 6D, 6E). We filtered 25 

genes using the SVM algorithm (Figure 6F) and 5 genes 

 

 
 

Figure 3. Identification of the crucial modules related to NASH-macrophages by hdWGCNA. (A) The dot plot showing the 

comparison of outgoing and incoming signaling patterns. (B) Heatmap showing the relative importance of each cell group in the MIF 
signaling network. (C) Circle plot showing the communication strength between interacting cells in the MIF signaling network. (D) Bubble 
plot showing the significant ligand-receptor pairs between cells. (E) Six gene modules were obtained and the top ten hub genes were 
presented according to the hdWGCNA pipeline. (F) Module activities in different macrophage clusters. (G) Correlation analysis between 
different models. (H) UMAP plots illustrating the distribution of each module. 



www.aging-us.com 15458 AGING 

using the Random Forest algorithm (Figure 6G, 6H). 

Finally, we exploit the intersection of these gene sets to 

identify the optimal diagnostic genes for NAFLD: 

MAFB and CX3CR1 (Figure 6I). 

 

To validate the performance of the two key genes, we 

split the RNA-seq dataset into a training and validation 

set. Both MAFB and CX3CR1 consistently showed 

higher expression in NAFLD liver samples in both sets 

(Figure 7A, 7C). We assessed the diagnostic performance 

of these two feature genes using the ROC analyses. In the 

training set, MAFB and CXCR1 had AUC values of 

0.840 and 0.842, respectively (Figure 7B). In the 

validation set, the AUC values were 0.729 for MAFB  

and 0.687 for CX3CR1 (Figure 7D). Furthermore, the 

expression of MAFB was positively linked with that  

of CX3CR1 (Figure 7E). Additionally, we performed 

pathway analysis using GSVA to identify KEGG 

pathways potentially associated with these two genes. As 

shown in Figure 7F, 7G, a total of 22 pathways were 

 

 
 

Figure 4. Pseudo-Time trajectory and SCENIC analysis. (A) pseudo-time distribution of the different macrophage subtypes. (B) 

Heatmap showing the change of potential feature genes in pseudo-time developmental trajectories. (C) Heatmap of RAS activity of 
transcription factors (TFs) in each sample, with negative correlations in blue and positive correlations in red. (D) Heatmap of the area under 
the curve (AUC) scores of TFs in each group. (E, F) Ranking of TFs in NASH and normal samples calculated by the RSS specificity score. (G) The 
correlation between SCENIC-identified TFs and 30 potential feature genes. 
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significantly associated with these two genes, including 

Arachidonic acid metabolism, Histidine-metabolism, 

Oxidative phosphorylation, Phenylalanine metabolism, 

Pyrimidine Metabolism, and so on. 

 

Immune infiltration analysis 

 

In order to comprehensively assess immune cell 

profiles in normal and NAFLD samples, immune 

infiltration analysis was conducted. According to the 

results of CIBERSORT, there were significant 

differences in immune cell infiltration levels between 

NAFLD and normal samples (Figure 8A). NAFLD 

samples had a higher proportion of M1 macrophages, 

but relatively lower proportions of B cells, NK  

cells, and Dendritic cells than normal samples did 

(Figure 8B). The correlation heatmap demonstrated 

close associations between the potential feature genes 

and various immune cells (Figure 8C). We also 

performed separate analyses of the relationship 

between the optimal feature genes and immune cells 

(Figure 8D). The results showed that MAFB displayed 

a positive correlation with M2 macrophages, but 

negatively correlated with M0 and M1 macrophages 

(Figure 8E, Supplementary Figure 3A–3C). CX3CR1 

showed a negative correlation with M0 and  

M1 macrophages (Figure 8F and Supplementary 

Figure 3D,3E). 

 

 
 

Figure 5. Expression analysis and functional enrichment of potential feature genes. (A, B) Expression analysis of potential feature 
genes between NAFLD and normal samples. (C) Correlation analysis between potential feature genes. (D) Enrichment analysis of potential 
feature genes using Gene Ontology (GO). BP, biological process; CC, cellular component; MF, molecular function. (E, F) Enrichment analysis of 
potential feature genes using the Kyoto Encyclopedia of Genes and Genomes (KEGG). (G) Correlation analysis between potential feature 
genes and M0, M1, and M2 macrophages. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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The ssGSEA and GSEA analysis 

 

We compared the abundance differences of 50 hallmark 

gene sets between the NAFLD group and the control 

group using the single-sample Gene Set Enrichment 

Analysis (ssGSEA) algorithm. In Figure 9A, we 

presented the distribution of these 50 gene sets in the 

NAFLD and control samples. We observed a 

significant upregulation of multiple gene sets in the 

NAFLD group compared to the control group. These 

upregulated gene sets include the peroxisome, bile acid 

metabolism, Heme metabolism, UV response up, P53 

 

 
 

Figure 6. Machine learning identifies optimal feature genes of NAFLD. (A) Seven machine learning algorithms were utilized for 
model construction. (B) The ROC values of all seven algorithms in the training group. (C) The ROC scores of the SVM model were presented in 
the test group. (D) Lasso algorithm for selection features. (E) Coefficient changes of the selected features using lasso algorithm. (F) The SVM 
algorithm was used to further candidate optimal feature genes with the highest accuracy (the lower) and lowest error (the upper) obtained in 
the curves. The x-axis represents the number of feature selections, and the y-axis indicates the prediction accuracy. (G) The impact of the 
number of decision trees on the error rate was examined. The x-axis represents the number of decision trees, while the y-axis indicates the 
error rate. (H) The relative importance of potential feature genes was calculated in random forest (Top 5 genes’ importance > 2). (I) Venn 
diagram showing the overlap between the three algorithms. 
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pathway, reactive oxygen species, glycolysis, oxidative 

phosphorylation, fat acid metabolism, xenobiotic 

metabolism, Myc targets v1, Myc targets v2,  

E2F targets, mTORC1 signaling, PI3K/AKT/mTOR 

Signaling, unfolded protein response, Interferon-alpha 

response, protein secretion, androgen response, estrogen 

response early, adipogenesis, apoptosis, G2M check-

point, mitotic spindle, and cholesterol homeostasis. 

Additionally, we found that two top feature genes were 

positively correlated with the KRAS signaling up, 

interferon gamma response, interferon alpha response, 

inflammatory response, E2F targets and allograft 

rejection gene set (Figure 9B). For the single-gene 

GSEA analysis, the MAFB-activated pathway 

encompassed Cytosolic DNA-sensing pathway,  

Graft-versus-host disease, Oxidative phosphorylation, 

Phototransduction, and Viral protein interaction with 

cytokine and cytokine receptor (Figure 9C). The 

CX3CR1-activated pathway included Asthma, Nicotine 

Addiction, Olfactory transduction, Phototransduction, 

and Viral protein interaction with cytokine and cytokine 

receptor (Figure 9C). 

 

 
 

Figure 7. Verification of expression and diagnostic efficacy for optimal feature genes. (A) MAFB and CX3CR1 mRNA expression in 

the training group. (B) ROC curves of MAFB and CX3CR1 in the training group. (C) MAFB and CX3CR1 mRNA expression in the testing group. 
(D) ROC curves of MAFB and CX3CR1 in the testing group. (E) Correlation analysis between MAFB and CX3CR1. (F) Heatmap showing the 
scores of KEGG pathways in the optimal feature genes as calculated by GSVA. (G) Heatmap showing the correlation between the gene 
pathway and optimal feature genes. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Then, we investigated the role of MAFB+ macrophages 

in cell communication analysis. The results revealed 

that MAFB+ macrophages exhibited highly active 

signaling communication with other cells, while the 

MAFB- macrophages had rarely communicated with 

other cells (Figure 9D, 9E). The MAFB+ macrophages 

took part in more outgoing and incoming pathways  

than MAFB- macrophages (Figure 9F). Of note, the 

 

 
 

Figure 8. Immune cell infiltration analysis. (A) Heat map of the 22 immune cell subpopulations comparing NAFLD and normal samples. 

(B) Violin diagram illustrating the proportion of 22 different kinds of immune cells in NAFLD versus normal samples. (C) Heat map showing the 
correlation between 22 different kinds of immune cells and potential feature genes. The size of the colored squares indicates the 
connection’s strength; red indicates a positive correlation, while blue indicates a negative correlation. (D) Correlation between immune cells 
and optimal feature genes. (E) Correlation between MAFB and infiltrating immune cells. (F) Correlation between CX3CR1 and infiltrating 
immune cells. Correlation strength is proportional to the size of the dots. The color of the dots indicates the P-value. *P < 0.05, **P < 0.01, 
***P < 0.001, ns, no significant difference. 
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Figure 9. Enrichment analyses by ssGSEA and single-gene GSEA. (A) The specific distribution of 50 hallmark gene sets in the NAFLD 

group and control group samples. (B) The correlation analysis of 50 hallmark gene sets and 2 top feature genes. (C) Gene sets enrichment 
analysis (GSEA) identifies top five signaling pathways that are significantly enriched in the high expression of MAFB or CX3CR1. (D) Circle plot 
showing the communication strength between interacting cells. (E) Scatter plot indicating the incoming and outgoing interaction strength of 
the cells. (F) The dot plot showing the comparison of outgoing and incoming signaling patterns. (G) The cell communication between MAFB+ 
macrophages and other cells in the GALECTIN signaling pathway. *P < 0.05, **P < 0.01, ***P < 0.001. 
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MAFB+ macrophages exhibited great strength in both 

incoming and outgoing patterns in MIF signaling 

pathway (Figure 9G). 

 

Validation of optimal feature genes in mouse module 

 

To assess the diagnostic value of the best characterized 

genes for NAFLD, we constructed the NAFLD mouse 

model and a normal mouse model. After four weeks of 

MCD feeding, MCD mice had decreased liver 

weight/body weight (Figure 10A), elevated serum ALT 

and AST (Figure 10B), enlarged vacuolization in liver 

cells (Figure 10C), which suggested that MCD mice had 

hepatitis injury. Furthermore, Oil Red O staining 

showed accumulating lipids in liver sections from mice 

fed on the MCD-diet (Figure 10C). After that, we used 

RT-qPCR (Figure 10D), IHC (Figure 10E), and western 

blot (Figure 10F) to detect the levels of MAFB and 

CX3CR1 in liver tissues of MCD and normal dietary 

mice (Figure 10F), which showed that MAFB and 

CX3CR1 were significantly overexpressed in the livers 

of MCD mice. 

 

 
 

Figure 10. Validation of optimal feature genes in mouse module. (A) Fresh Livers and liver-to-body weight ratio in control and MCD 
mice. (B) The serum ALT and AST levels on control and MCD mice. (C) HE staining and Oil Red O staining of liver sections from mice fed on 
control or MCD-diet. (D) The relative expressions of MAFB and CX3CR1 were validated by RT-qPCR. (E) MAFB and CX3CR1 expression in liver 
tissues of control and MCD mice was detected by IHC. (F) MAFB and CX3CR1 expression in liver tissues of control and MCD mice was detected 
by WB. ***P < 0.001, ****P < 0.0001. 
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DISCUSSION 
 

The pathological course of NAFLD involves the role of 

genetic background and environmental factors and is 

associated with abnormalities in lipid metabolism, 

glucose metabolism, protein metabolism, and other 

aspects. This complexity increases the difficulty in 

understanding NAFLD [33]. Although non-invasive 

techniques such as ultrasound and alanine amino-

transferase (ALT) can assist in the diagnosis of NAFLD, 

there are currently no established molecular markers that 

serve as key indicators for NAFLD [34]. According to 

prior studies, biomarkers at the genetic level can 

precisely determine the presence of disease and guide 

the development of clinical treatment strategies. 

 

Therefore, we utilized multiple bioinformatics methods 

to explore the characteristic markers of NAFLD. Firstly, 

we derived the scRNA-seq data and the RNA-seq 

transcriptomic datasets of NAFLD from the GEO 

database for analysis. After processing the single-cell 

data, we found that the subtype 1 and subtype 7 

macrophages were distinct in NASH mice. Cell-cell 

interaction analysis revealed close communication 

between NASH-macrophages and different cells. Then, 

we used the hdWGCNA algorithm to identify the 

modules most associated with NASH-macrophages, 

resulting in 40 genes representing the functionality of 

NASH-macrophages. After cross-correlated them with 

human transcriptome data, resulting in 30 potential 

characteristic genes. Through immune infiltration 

analysis, we also found their close association with 

various immune cells, particularly macrophages. Then, 

we combined three machine learning algorithms, LASSO 

regression, SVM, and Random Forest, and finally 

identified two optimal feature genes (MAFB and 

CX3CR1) closely associated with the diagnosis or 

progression of the disease. In addition, the ROC results 

show that both CX3CR1 and MAFB genes have elevated 

diagnostic performance for NAFLD on both training and 

validation sets. Functional enrichment analysis using 

GSVA and single gene GSEA was performed on the 

optimal feature genes. Immune infiltration analysis 

revealed the optimal feature genes were statistically 

associated with macrophage infiltration, consistent with 

the module correlations obtained from hdWGCNA. 

Moreover, we constructed an NAFLD mouse model to 

further validate the expression of MAFB and CX3CR1. 

In conclusion, our study identified a NAFLD-associated 

macrophage subpopulation and the NAFLD feature gene. 

 

Previous studies have found that an increase in portal 

vein macrophages is one of the earliest changes observed 

in liver biopsy specimens of patients with fatty liver 

disease [35]. In a high-fat diet-induced mouse model  

of fatty liver disease, the release of interleukin-1 beta 

(IL-1β) by KCs promotes hepatic steatosis by inhibiting 

peroxisome proliferator-activated receptor alpha 

(PPARα) activity in hepatocytes [7]. It has been found 

that under hepatic lipotoxic conditions, the release of 

inflammatory factors by hepatocytes induces the 

infiltration of macrophages into the liver [36]. Several 

studies have reported that macrophages can interact with 

hepatic stellate cells through cytokines and chemokines 

during the progression of NAFLD, promoting collagen 

deposition and fibrosis, ultimately leading to liver 

fibrosis and cirrhosis [37, 38]. Activated macrophages 

also participate in the regulation of fatty acid metabolism 

and lipid deposition in NAFLD [39]. This is consistent 

with our findings of activation of lipid metabolism 

signaling pathways in ssGSEA. In summary, macro-

phages play a crucial role in the progression of NAFLD 

and warrant additional investigation. 

 

Our pseudo-temporal analysis describes macrophage 

development and indicates that NASH-macrophages are 

predominantly concentrated in the late stages of 

macrophage differentiation. Previous literature reports 

have shown that late-stage differentiated macrophages 

express additional surface molecules, including various 

tissue-specific surface markers and receptors [40]. This 

is consistent with our analysis, as some receptor-related 

genes, such as CX3CR1, Gani2, and Son, are expressed 

in the late stages of macrophage differentiation. In the 

transcription factor prediction analysis, it is clear that 

the RXRa is greatly expressed in the NASH group. 

Retinoid X receptor alpha (RXRA) is a member of the 

nuclear receptor superfamily that participates in lipid, 

glucose, energy, and hormone metabolism. RXRA can 

accelerate lipid accumulation by regulating the 

transcription of target genes that promote lipid 

accumulation [41]. Furthermore, RXRA may potentially 

increase people’s risk of developing Alzheimer’s 

disease by affecting brain cholesterol metabolism [42]. 

These analyses suggest that NASH-macrophages and 

their associated genes play a particularly prominent role 

in the progression of NAFLD. 

 

Of the 30 genes that could be characterized, we identified 

the 2 most closely related to NAFLD. The function  

of the transcription factor V-maf musculoaponeurotic 

fibrosarcoma oncogene homologue B (MAFB) in the 

development of NAFLD has been extensively studied. As 

early as 2000, Kelly et al. indicated that overexpression 

of MAFB resulted in differentiation of chicken bone 

marrow primitive cells to macrophages [43]. Several 

studies showed that MAFB function is indispensable in 

disease-associated macrophages [44, 45]. Recently, 

Cuevas VD et al. found that MAFB is essential to  
the acquisition of anti-inflammatory transcriptional  

and functional characteristics in human macrophages  

[46]. This phenomenon was verified by Basile et al.,  
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who suggested that MAFB-mediated macrophage 

differentiation is involved in intrinsic repair after  

acute kidney injury [47]. CX3CR1 is a gene that encodes 

a chemokine receptor involved in immune and 

inflammatory processes. Sutti et al. found that 

inflammatory dendritic cells expressing CX3CR1 cells 

promote the development of nonalcoholic steatohepatitis 

[48]. The research conducted by Ni Y et al. demonstrated 

a significant upregulation of CX3CR1 expression in liver 

macrophages within NASH mice, as compared to their 

counterparts in normal mice [49]. Hence, we contend that 

the optimal feature genes play a crucial role in the 

initiation of NAFLD. 

 

The methionine and choline deficiency (MCD) diet-

induced NAFLD model is one of the most classical 

models. Its principle involves the deficiency of 

methionine and choline, which hinders the necessary 

processes of beta-oxidation and very low-density 

lipoprotein synthesis [50]. Mice fed with the MCD diet 

exhibit characteristics such as weight loss, decreased 

levels of serum triglycerides (TG), and reduced liver 

weight-to-body weight ratio, which are contrary to the 

phenotype of human fatty liver disease [51]. Pathological 

validation of the model commonly involves the use of 

HE and oil red O staining. Through validation using the 

MCD mouse model, we observed increased expression of 

MAFB and CX3CR1 at the RNA and protein levels in 

liver tissue, further confirming their accuracy in the 

diagnosis of NAFLD. 

 

All in all, we first identified a special cluster of 

macrophages playing an important role in NAFLD. 

Secondly, we reported for the first time that MAFB and 

CX3CR1 are characteristic genes of NAFLD. Immune 

infiltration analysis validated the relationship between 

these two genes and macrophages. Additionally, the 

diagnostic performance of these two genes was 

confirmed through the construction of an animal model. 

However, our study also has limitations. On one hand, 

we did not thoroughly explore the expression patterns of 

these two genes in macrophages. Furthermore, we 

lacked a large clinical cohort to explore the diagnostic 

value of these characteristic genes. In summary, our 

findings may bring new hope for the early diagnosis of 

NAFLD. Further research on the specific mechanisms 

and regulatory pathways of MAFB and CX3CR1 

mediated by macrophages in NAFLD development will 

help enhance our understanding of the pathogenesis of 

NAFLD and potentially provide new targets for its 

treatment. 

 

CONCLUSIONS 
 

In conclusion, our study demonstrates a diagnostic model 

that can be applied to NAFLD. These findings will help 

to better reveal the role of macrophages in the 

progression of NAFLD. Meanwhile, the NAFLD 

characteristic genes identified in this study, especially 

MAFB and CX3CR1, may shed new light on the clinical 

development of effective diagnosis and treatment of 

NAFLD. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. Preprocessing of scRNA-seq data. (A) The features, counts, and percentages of mitochondrial genes in each 

of the analyzed samples. (B) The Scatter Plot demonstrates the correlation between cell counts and intracellular gene counts following 
standardization. (C) Selecting the principal components (PCs) for further analysis. (D) UMAP plot visualizes the clusters in control and NASH 
mouse livers. (E) PCA dimension reduction of macrophages. (F) Selecting the principal components (PCs) for further analysis. 
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Supplementary Figure 2. The process of hdWGCNA. (A) Scale-free fit index and mean connectivity plot for various soft threshold 

powers. (B) The hdWGCNA dendrogram of macrophages. 
 

 
 

Supplementary Figure 3. Immune cell infiltration analysis. Correlation between MAFB and M0 macrophages (A), M1 macrophages 
(B), and M2 macrophages (C); Correlation between CX3CR1 and M0 macrophages (D) and M1 macrophages (E). 
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Supplementary Table 
 

 

Supplementary Table 1. The primers designed for RT-qPCR. 

Gene Primer 

Mus-Actin (Forward) TCCTTCCTGGGCATGGAG 

Mus-Actin (Reverse) AGGAGGAGCAATGATCTTGATCTT 

Mus-MAFB (Forward) TGAATTTGCTGGCACTGCTG 

Mus-MAFB (Reverse) AAGCACCATGCGGTTCATACA 

Mus-CX3CR1 (Forward) CAGCATCGACCGGTACCTT 

Mus-CX3CR1 (Reverse) GCTGCACTGTCCGGTTGTT 

 


