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INTRODUCTION 
 

Esophageal carcinoma (ESCA) is globally recognized 

as the sixth most prevalent cancer, with a low survival 

rate [1]. Tumor recurrence and metastasis are identified 

as the primary causes of mortality among ESCA 

patients; however, the underlying mechanisms remain 

unclear [2]. ESCA exhibits significant variations in 

incidence, mortality, and histopathology across different 

geographic regions, especially in Southeast Asia/Africa 

and East Asia, contributing to a significant disease 

burden [3]. The two main histologic subtypes of ESCA 

www.aging-us.com AGING 2023, Vol. 15, No. 24 

Research Paper 

Potential impact of cuproptosis-related genes on tumor immunity in 
esophageal carcinoma 
 

Pengfei Guo1,2,*, Zemiao Niu2,*, Dengfeng Zhang1,2,*, Fangchao Zhao1,2,*, Jing Li1,2, Tianxing Lu1, 
Xuebo Qin3, Shiquan Liu4, Zhirong Li5, Yishuai Li3, Shujun Li1 
 
1Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China 
2Graduate school of Hebei Medical University, Shijiazhuang, China 
3Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang, China 
4Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical University, Chengde, China 
5Clinical Laboratory Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China 
*Equal contribution 
 
Correspondence to: Zhirong Li, Yishuai Li, Shujun Li; email: lzr726@126.com, https://orcid.org/0000-0002-9379-6057; 
liyishuai66@126.com, https://orcid.org/0000-0003-4425-366X; lishujun2333@163.com, https://orcid.org/0000-0001-5959-
3160 
Keywords: esophageal carcinoma, cuproptosis-related genes, cuproptosis, immune contexture, prognostic model 
Received: July 10, 2023 Accepted: November 7, 2023  Published: December 30, 2023 
 
Copyright: © 2023 Guo et al. This is an open access article distributed under the terms of the Creative Commons Attribution 
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited. 

 

ABSTRACT 
 

Cuproptosis involves a direct interaction with the tricarboxylic acid (TCA) lipid acylation components. This 
process intricately intersects with post-transcriptional lipid acylation (LA) and is linked to mitochondrial 
respiration and LA metabolism. Copper ions form direct bonds with acylated DLAT, promoting DLAT 
oligomerization, reducing Fe-S cluster proteins, and inducing a protein-triggered toxic stress response that 
culminates in cell demise. Simultaneously, the importance of immune contexture in cancer progression and 
treatment has significantly increased. We assessed the expression of cuproptosis-related genes (CRGs) across 
TCGA and validated our findings using the GEO data. Consensus clustering divided esophageal cancer (ESCA) 
patients into two clusters based on the expression of 7 CRGs. We evaluated the expression of immune 
checkpoint inhibitor (ICI) targets and calculated the elevated tumor mutational burden (TMB). Weighted gene 
co-expression network analysis (WGCNA) identified genes associated with the expression of CRGs and 
immunity. Cluster 1 exhibited increased immune infiltration, higher expression of ICI targets, higher TMB, and a 
higher incidence of deficiency in mismatch repair-microsatellite instability-high status. WGCNA analysis 
identified 14 genes associated with the expression of CRGs and immune scores. ROC analysis revealed specific 
hub genes with strong predictive capabilities. The expression levels of SLC6A3, MITD1, and PDHA1 varied across 
different pathological stages; CCS, LIPT2, PDHB, and PDHA1 showed variation in response to radiation therapy; 
MITD1 and PDHA1 exhibited differences related to the pathological M stages of ESCA. CRGs influence the 
immune contexture and can potentially transform cold tumors into hot tumors in ESCA patients. 
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are esophageal adenocarcinoma (EAC) and esophageal 

squamous cell carcinoma (ESCC), which together 

constitute over 95% of all ESCA cases [4]. Significant 

progress has been achieved in the treatment of ESCA in 

recent decades [5]. Combined approaches, including 

surgery, chemotherapy, and radiotherapy, have led to 

improved overall survival rates for patients with this 

disease [6]. However, a substantial number of ESCA 

patients are diagnosed at an advanced stage, frequently 

with delays in initial detection, resulting in a relatively 

poor prognosis and contributing to over 500,000 annual 

fatalities [7]. 

 

Copper, an essential micronutrient, plays a vital role in 

fundamental biological processes in all organisms. Being 

a redox-active metal, copper has the ability to donate and 

accept electrons, facilitating its transition between the 

reduced (Cu⁺) and oxidized (Cu2⁺) states [8]. Disruptions 

in copper homeostasis can lead to cellular toxicity, and 

changes in intracellular copper levels have been 

implicated in cancer development and progression [9]. 

Various copper ion carriers, including disulfide shimron, 

dithiocarbamate ester, chlorine compounds, and copper 

chelating agents like Sanchoishi and tetrathiomolyb-

denate, have been employed in cancer treatment using 

this mechanism [10–12]. Cuproptosis, a unique 

pathway, has become a significant player in the 

development of various cell death mechanisms, includ-

ing apoptosis, pyroptosis, necroptosis, and ferroptosis 

[13]. The interaction between copper and the 

tricarboxylic acid (TCA) cycle influences the lipid 

acylation process, resulting in protein aggregation 

during acylation and the depletion of iron-sulfur cluster 

proteins. This leads to the accumulation of stress-

inducing proteins and, ultimately, cell death [14]. Given 

copper’s dual function as both an essential enzyme 

cofactor and a potential inducer of cellular toxicity, it 

shows potential as an innovative therapeutic target. The 

accumulation of intracellular copper can be precisely 

targeted to eliminate cancer cells. Reports suggest that 

the combination of copper with platinum-based 

antitumor compounds can overcome drug resistance and 

function as a synergistic radiotherapeutic agent in cancer 

treatment [15]. 

 

Further research has unveiled a strong connection 

between cuproptosis and esophageal carcinoma. 

Irregular copper buildup is a common occurrence in 

different cancer types, which establishes a link between 

copper levels and cancer advancement [16, 17]. Copper 

plays a crucial role in promoting tumor growth and 

angiogenesis, acting as a cofactor for multiple pro-

angiogenic molecules, including vascular endothelial 
growth factor (VEGF) [18]. Moreover, the copper ion 

plays an active role in the BRAF signaling pathway in 

cancer, promoting the proliferation and migration of 

tumor cells [19]. Notably, specific copper chelating 

agents and inhibitors, like ATOX1 and CCS, have 

shown the capacity to hinder the proliferation of various 

cancer cell types [18]. Tetrathiomolybdenate (TM), a 

copper chelating agent, has demonstrated good 

tolerability in both animal models and clinical trials, 

proving its effectiveness in inhibiting angiogenesis and 

tumor growth [20]. Therefore, the use of copper strips is 

considered a promising therapeutic approach for 

treating copper-rich cancers [21]. Nonetheless, the 

specific genes’ roles in cuproptosis and esophageal 

cancer have not been investigated. In this study, we 

pioneer the use of bioinformatics analysis to explore 

gene differences and assess the impact of genetic 

variations using gene enrichment analysis. 

 

RESULTS 
 

Expression and consensus clustering of CRGs in 

ESCA 

 

We performed a comparative analysis of the expression 

levels of 27 CRGs using a dataset that included 11 

normal tissues and 152 tumor tissues from the TCGA 

database. For evaluating the proportions of stromal and 

immune cells in each sample, we computed four 

ESTIMATE indices. We aimed to investigate the role of 

CRGs in tumor immunity among ESCA patients. We 

analyzed the correlation between regulator expression 

and the ESTIMATE results (Figure 1A, 1B). Out of the 

identified regulators, six genes (SLC6A3, MITD1, CCS, 

LIPT2, ATOX1, and GLS) showed increased 

expression in tumor tissues, while PDHB had higher 

expression in normal tissues. The remaining 20 genes 

did not display significant differences in expression 

(Figure 1C). Next, we conducted a consensus clustering 

analysis on the expression matrix of CRGs using the 

152 TCGA-ESCA samples. This analysis led to the 

classification of samples into two distinct clusters 

(Figure 1D and Supplementary Figures 1, 2). To explore 

the interactions among the 27 CRGs, we created a PPI 

network using online tools available on the STRING 

and GeneMANIA websites. The network analysis 

uncovered strong associations among the seven CRGs 

(Figure 1E, 1F). 

 

Immunity and pathway enrichment analysis 

 

We employed ESTIMATE, CIBERSORT, and ssGSEA 

analyses to understand the differences in immunological 

function between the two clusters. Results from the 

ESTIMATE algorithm showed that Cluster 1 had higher 

scores in stromal, immune, and estimate parameters and 
lower tumor purity compared to Cluster 2 (Figure 2A). 

Additionally, the CIBERSORT analysis revealed a 

higher proportion of CD4 T cells in Cluster 1 (Figure 
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2B). Conversely, ssGSEA analysis revealed increased 

expression of 25 immune cell subtypes, including 

immature B cells, macrophages, myeloid-derived 

suppressor cells (MDSCs), plasmacytoid dendritic cells, 

T follicular helper cells, and type 1 T helper cells, in 

Cluster 2 (Figure 2C). To explore the functional 

differences between the two clusters, we conducted 

GSEA with all the differentially expressed genes from  

 

 
 

Figure 1. Identification of CRGs and their association with the immune score and clustering of TCGA-ESCA. (A) Association 

between 27 CRGs and the ESTIMATE results. (B) Association between 7 CRGs and the ESTIMATE results. (C) Comparison of expression levels 
of the 7 CRGs in tumor and normal tissues. (D) TCGA-ESCA patients were classified into two clusters based on their expression levels of the 7 
CRGs. (E) A PPI network of the differentially expressed genes associated with the 7 CRGs. (F) A PPI network of the differentially expressed 
genes associated with the 27 CRGs. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Cluster 1 and Cluster 2. Importantly, we found several 

significant pathways related to immunity in the 

enrichment analysis using the MSigDB collection, one 

of which is the humoral immune response (Figure 2D). 

 

Evaluation of sensitivity to immunotherapy 

 

To assess the potential responsiveness of ESCA 

patients to immunotherapy, we examined the 

immunomodulatory drug targets identified in clinical 

trials for metastatic esophageal cancer. Then, we 

compared the expression levels of these 

immunomodulatory targets between the two clusters. 

Remarkably, we observed significantly higher expres-

sion of most targets, including PDCD1, CD274, 

PDCD1LG2, CTLA4, CD80, CD86, LAG3, HAVCR2, 

TIGHT, LGALS9, LAIR1, TNFRSF4, TNFRSF9, 

ICOS, CD40, and CD70, in Cluster 1 (Figure 3A–3D). 

These findings suggest that Cluster 1 may exhibit a 

more favorable response to immunotherapy than 

Cluster 2. 

 

Mutation analysis of CRGs 

 

We acquired and analyzed mutation data from the 

TCGA database to study CRGs. Figure 4A shows that 

missense mutations are the most common variant. 

Among various types of variants, single nucleotide 

polymorphisms (SNPs) were the most common, with C 

> T being the predominant class of single nucleotide 

variant (SNV). TP53 notably showed the highest 

mutation frequency among the CRGs. Considering the 

substantial role of gene mutations in carcinogenesis, we 

delved into the distribution of somatic mutations in both 

Cluster 1 and Cluster 2. Figure 4B, 4C depict the 

corresponding results, showing that Cluster 1 had a 

somatic mutation rate of 98.78% (81 out of 82 samples), 

with missense mutations as the primary characteristic. 

Among these mutations, TP53 had the highest mutation 

frequency at 82%. In Cluster 2, the mutation rate was 

100% (67 out of 67 samples), primarily consisting of 

missense mutations. TP53 exhibited the highest 

mutation frequency in this cluster, at 87%. TMB has 

become a potential marker for identifying cancer 

patients who may benefit from immunotherapy and 

predicting their therapeutic response to immune 

checkpoint inhibitors. 

 

WGCNA and identification of hub genes related 

with cuproptosis and immunity 

 

We identified 987 differentially expressed genes, with 

313 upregulated and 674 downregulated, between the 

two clusters. Their distribution was visualized using a 

 

 
 

Figure 2. Comparative analysis of immune characteristics between two clusters. (A) Expression level of stromal score, immune score, 

ESTIMATE score and tumor purity between the Cluster 1 and Cluster 2. (B) Comparison of immune cell proportions and (C) expression of immune 
cells between the two clusters. (D) Comparative analysis of functional enrichment. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 3. Comparative analysis of targets of immunomodulatory drugs in clinical trials for metastatic esophageal cancer 
between two clusters. The expression levels of immunomodulatory targets related to PD1 (A), CTLA4 (B), other immune checkpoint 

molecules (C), and agonists of T cell activation (D) varied between Cluster 1 and Cluster 2. *P < 0.05, **P < 0.01, ***P < 0.001. 

 

 
 

Figure 4. Comparative analysis of mutational landscapes between two clusters. (A) Overall mutational profile. Mutational 
landscape of Cluster 1 (B) and Cluster 2 (C). 



www.aging-us.com 15540 AGING 

volcano plot (Figure 5A). These genes were then 

subjected to WGCNA to investigate their co-expression 

patterns (Figure 5B, 5C). To identify a module 

associated with both cuproptosis and immunity, we 

conducted a correlation analysis between the modules 

and relevant traits (Figure 5D). From the available 

modules, we selected the black module due to its higher 

scores in stromal, immune, and estimate fractions, and 

lower tumor purity. 

 

Functional enrichment of hub genes and their 

correlation with immune infiltration 

 

To investigate the relationships among genes within the 

black module, we constructed a PPI network using the 

online tool provided on the STRING website. Figure 6A 

shows the strong associations among the 14 hub genes, 

which include CCL3L3, CCL5, CXCL11, CCL8, 

CXCL9, CXCL10, CXCL5, CCL7, CCL3, CXCL8, 

CD80, CSF3, CSF2, and FCGR2A. Additionally, we 

performed Spearman’s correlation analysis to 

investigate the relationships between these genes and 

immune infiltration, as evaluated using ESTIMATE and 

ssGSEA. The results indicated significant associations 

between the majority of genes and the immune response 

(Figure 6B, 6C). 

 

GEO validation of immune characteristics between 

two clusters 

 

Initially, we employed the same clustering approach to 

partition 42 esophageal cancer samples from the 

 

 
 

Figure 5. Identification of module genes associated with clustering and immunity in the WGCNA. (A) Volcano plot depicting 
differential analysis. (B) Analysis of network topology using soft powers. (C) Gene dendrogram with module colors. (D) Heatmap depicting the 
relationship between module eigengenes, clusters, and ESTIMATE results. 
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GSE199967 dataset into two clusters, mirroring the 

TCGA analysis (Figure 7A). We subsequently noted a 

comparable distribution of CRGs’ expression levels in 

these two clusters, which resembled the TCGA dataset’s 

findings. Subsequently, we evaluated the expression 

levels of immunomodulatory targets and the degree of 

immune infiltration using the CIBERSORT and 

ssGSEA methods (Figure 7B–7D). Cluster 1 notably 

exhibited significantly higher immune system activity in 

comparison to Cluster 2. Furthermore, we examined the 

 

 
 

Figure 6. Analysis of 14 hub genes. (A) PPI network of hub genes. (B) Correlation between hub genes and ESTIMATE results.  

(C) Correlation between hub genes and immune cell expression (ssGSEA). 
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expression of genes related to CRGs and immune 

checkpoint inhibitors in the GSE199967 cohort. We 

observed elevated expression levels of these genes in 

tumors compared to normal tissues (Figure 7E, 7F). We 

conducted a comprehensive evaluation of the potential 

implications of CRGs in immunotherapy and immune-

related mechanisms. Our analysis showed that 

macrophages, including M0, M1, and M2 subsets, made 

up a significant portion of the GEO cohort (Figure 7G, 

7H). In order to understand the mechanisms behind the 

various clinical risks associated with abnormal CRGs 

expression, we performed a GSEA analysis. The results 

 

 
 

Figure 7. Validation of immune contexture in GSE199967 between two clusters. (A) Division of GSE199967 patients into two clusters 
based on 7 CRGs. (B) Comparative analysis of targets of immunomodulatory drugs. (C) Proportion of immune cells and (D) expression of immune 
cells between the two clusters. (E) Comparative analysis of expression of 7 CRGs between tumor and normal tissues in GSE199967. (F) 
Comparative analysis of targets of immunomodulatory drugs between tumor and normal tissues in GSE199967. (G) Heatmap in GSE199967. (H) 
Percentages of immune cell types in GSE199967. (I) GSEA of the 7 CRGs. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001. 
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revealed abnormal enrichment of pathways related to 

chromosomes and chromosome metabolism (Figure 7I). 

 

External validation of 7 signature-associated genes 

 

We performed qRT-PCR experiments to assess the 

expression levels of the 7 signature-associated genes in 

both esophageal cancer tissue and normal tissue. The 

results show a significant increase in the expression of 

SLC3A3, MITD1, LIPT2, ATOX1, PDHB, and GLS in 

tumor tissues compared to normal esophageal tissues 

(Figure 8A, 8B, 8D–8G). Of the six genes analyzed, 

PDHB showed an expression trend opposite to the 

decreasing trend observed in the TCGA database, while 

the other five genes exhibited a similar increasing trend 

as seen in the TCGA database. The expression level of 

CCS showed no significant difference between 

esophageal cancer and adjacent tissues (Figure 8C). The 

gene expression results from the clinical tissue samples 

closely matched the RNA sequencing data analyzed in 

the TCGA database. 

 

Prognosis prediction based on CRGs 

 

We used a cohort of 151 patients with the TCGA-ESCA 

for external validation. Before conducting further 

analysis, we standardized the gene expression data 

using the “sva” package. Using relevant hub genes as 

predictive variables and taking the median risk score as 

a reference, we assessed the survival index of patients 

based on their outcome time and whether the outcome 

indicated death or survival (Figure 9A–9I). The ROC 

analysis showed the strong predictive ability of specific 

hub genes. Particularly, MITD1 displayed a positive 

predictive impact on the risk score, as supported by its 

AUC values of 0.6068 at 1 year, 0.5261 at 3 years, and 

0.6727 at 5 years (Figure 9B). Similarly, PDHB and 

GLS exhibited strong predictive capabilities, with 

PDHB achieving AUC values of 0.6016 at 1 year, 

0.5248 at 3 years, and 0.7788 at 5 years, and GLS 

achieving AUC values of 0.5627 at 1 year, 0.5943 at 3 

years, and 0.7870 at 5 years (Figure 9F, 9G). 

 

Differential expression of CRGs in different 

pathologic stages and histological grades of ESCA 

 

As illustrated in Figure 10, the expression levels of 

three genes, namely SLC6A3, MITD1, and PDHA1, 

exhibited variations across different pathological stages 

(Figure 10A, 10B, 10G). Similarly, four genes, namely 

CCS, LIPT2, PDHB, and PDHA1, displayed variations 

in response to different radiation therapies (Figure 10D–

10F, 10K). Of these genes, MITD1 and PDHA1 

exhibited variations in different pathological M stages 

of ESCA. Specifically, the expression levels of 

SLC6A3, MITD1, and PDHA1 exhibited an increasing 

 

 
 

Figure 8. Validation of expression of 7 CRGs in ESCA tissues using qRT-PCR. (A–G) The expression levels of the 7 CRGs in 10 pairs 
ESCA tissues and corresponding adjacent normal tissues were examined by qRT-PCR. ns, not significant, *P < 0.05, **P < 0.01, *** P < 0.001. 
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trend with tumor pathological stage, whereas CCS, 

LIPT2, PDHB, and PDHA1 displayed a decreasing 

trend in response to radiation therapy. However, 

MITD1 and PDHA1 displayed a contrasting trend in 

relation to the pathological M stage. Furthermore, the 

expression levels of PDHA1 varied across distinct 

pathological N stages, pathological T stages, and the 

count of metastatic lymph nodes in ESCA. Importantly, 

an increasing trend was observed in different 

pathological N stages and the count of metastatic lymph 

nodes, while a decreasing trend was observed in 

pathological T stages. These findings indicate a 

potential link between the expression of CRGs, disease 

grade, and radiotherapy resistance in ESCA. Patients 

with esophageal cancer were categorized into two 

groups, namely high expression and low expression, 

based on their PDHA1 expression. The Kaplan-Meier 

curve consistently showed that the high expression 

group had significantly shorter overall survival than the 

low expression group (Supplementary Figure 3). 

 

DISCUSSION 
 

This study is a pioneering investigation into the link 

between CRGs and ESCA. The main objective was to 

comprehensively analyze the expression patterns and 

 

 
 

Figure 9. Evaluation of the independent prognostic value of gene expression using timeROC curves for 1-, 3-, and 5-year overall survival (OS) 

predictions of SLC6A3 (A), MITD1 (B), CCS (C), LIPT2 (D), ATOX1 (E), PDHB (F), GLS (G), DLAT (H), and DLD (I) through the nomogram in the 
TCGA cohort. 
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immune infiltration of seven specific CRGs in patients 

with ESCA. Our analysis successfully identified two 

distinct molecular clusters based on the expression 

profiles of these CRGs. To clarify the functional 

differences between these clusters, we performed GSEA 

using all differentially expressed genes between Cluster 

1 and Cluster 2. Our GSEA results unveiled several 

significant immunity-related pathways, including the 

humoral immune response. Importantly, we created a 

prognostic score that includes seven crucial CRGs 

(SLC6A3, MITD1, CCS, LIPT2, ATOX1, GLS, and 

PDHB). Of these genes, SLC6A3 has gained 

recognition as a risk factor due to its association with 

various familial mutations related to neuropsychiatric 

and neurological disorders [22]. Moreover, MITD1 

deficiency has been discovered to hinder the growth and 

 

 
 

Figure 10. Correlation between gene expression and clinicopathological staging characteristics. (A) Expression of SLC6A3 in 
different pathologic stages. (B, C) Expression of MITD1 in different pathologic stages and pathology M stage. (D) Expression of CCS, (E) LIPT2, 
and (F) PDHB in different radiation therapy. (G) Expression of PDHA1 in different pathologic stages, (H) pathology M stage, (I) pathology N 
stage, (J) pathology T stage, (K) radiation therapy, and (L) number of lymph nodes. *P < 0.05, **P < 0.01. 
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migration of clear cell renal cell carcinoma by inducing 

ferroptosis through the TAZ/SLC7A11 pathway [23]. 

Michael Grasso’s previous research showed that the 

copper chaperone for superoxide dismutase, CCS, binds 

temporarily to MEK1, promoting copper loading and 

thereby increasing MEK1/2 kinase activity [24]. The 

mechanism by which LIPT2 presence outside the 

mitochondrion induces apoptotic cell death is likely 

associated with mitochondrial dysfunction [25]. Inside 

human cells, ATOX1 plays a vital role in copper 

transport to the secretory pathway, where it transfers 

copper to copper-transporting ATPases (ATP7A and 

ATP7B) found in the trans-Golgi network and different 

endocytic vesicles. This mechanism promotes the 

maturation of copper-dependent enzymes in the 

secretory pathway and sustains copper levels in the 

cytosol and mitochondria [26]. Succinylation of GLS at 

K311 increases GLS activity, promoting glutaminolysis 

and generating NADPH and glutathione to counteract 

oxidative stress-induced reactive oxygen species (ROS) 

and apoptosis. As a result, this process facilitates tumor 

growth [27]. Manipulating PDHB expression through 

knockdown or overexpression resulted in decreased or 

increased expression of Myf5, MyoD, MyoG, and 

MyHC, resulting in reduced or increased rates of 

myogenic differentiation. Additionally, overexpressing 

PDHB in skeletal muscle alleviated D-galactose-

induced sarcopenia in mice [28]. 

 

We assessed the immune characteristics of the two 

identified clusters using various methodologies, 

including ESTIMATE, CIBERSORT, and ssGSEA. 

ESTIMATE analysis showed that Cluster 1 had higher 

stromal, immune, and overall ESTIMATE scores, 

indicating a more dynamic tumor immune micro-

environment. CIBERSORT analysis showed a 

significant increase in the proportion of CD4 memory 

activated T cells and resting NK cells in Cluster 1. Prior 

studies have emphasized that naive CD4 T lymphocytes 

differentiate into effector/memory cells during 

conventional adaptive immune responses upon 

recognizing foreign antigens [29]. In the immuno-

suppressive tumor microenvironment, NK cells may 

experience dysfunction due to exposure to inhibitory 

molecules produced by cancer cells, contributing to 

tumor escape [30]. Furthermore, the ssGSEA analysis 

indicated higher expression of 25 immune cell subtypes 

in Cluster 1, including CD8 T cells, CD4 T helper cells, 

dendritic cells (DCs), natural killer T (NKT) cells, 

regulatory T cells, and MDSCs. The infiltration of these 

immune cells has a significant impact on the clinical 

characteristics of ESCA. Higher intratumoral infiltration 

of CD8 T cells has been linked to longer survival times 
[31]. Th1 cells have been demonstrated to suppress 

ESCC cell proliferation, increase chemosensitivity and 

radiosensitivity, and correlate with improved prognosis 

[32]. DCs play a critical role in enhancing anti-tumor 

immunity by activating T cells [33]. Conventional type 

1 dendritic cells are recruited into the tumor 

microenvironment upon being stimulated by NK cells 

[34]. Infiltration of LAMP-3-expressing DCs is 

positively correlated with intratumoral CD8 T cell 

levels and is linked to a favorable prognosis in ESCC 

[35]. NKT cells contribute to anti-tumor immunity by 

rejuvenating exhausted CD8 T cells in a tumor model 

resistant to anti-PD-1 therapy [36]. Macrophages are 

commonly categorized into M1 (proinflammatory; anti-

tumor) and M2 (anti-inflammatory; tumor-promoting) 

subtypes [37]. Cluster 1 showed a higher proportion of 

M1 subtype macro-phages, indicating a potential 

promotion of anti-tumor Th1-type responses, whereas 

Cluster 2 tended to establish a tolerogenic micro-

environment. In summary, our analysis of the immune 

contexture showed increased immune cell infiltration in 

Cluster 1, suggesting higher immunological competence 

and the potential for immunotherapy benefits. 

 

Previous studies extensively reported the FDA approval 

of ICIs that target programmed cell death 1 (PD-1), 

programmed cell death 1 ligand, and cytotoxic T 

lymphocyte antigen 4 [38]. Additionally, co-inhibitory 

receptor targets, like lymphocyte activation gene-3, T 

cell immunoglobulin-3, and T cell immunoglobulin and 

ITIM domain, have been identified as well [39]. This 

study aimed to compare two clusters of immuno-

modulatory drugs that have been studied in clinical 

trials for metastatic ESCC [40]. Importantly, Cluster 1 

showed significantly higher expression levels of most of 

these targets. Subsequently, we analyzed the mutational 

profiles within the two clusters, revealing a significant 

difference between them. Specifically, Cluster 2 had a 

higher TMB compared to Cluster 1. TMB plays a 

critical role in influencing the generation of 

immunogenic peptides and, consequently, impacting the 

response to immunotherapy [41]. Therefore, these 

findings suggest that Cluster 1 may show a more 

favorable response to immunotherapy. 

 

Subsequently, we conducted WGCNA to identify the 

blue module that exhibited distinct characteristics 

related to both CRGs and immune scores. By assessing 

module membership and gene significance values, we 

identified 14 genes within this module, which included 

CD80. CD80, among these genes, is associated with 

“professional antigen-presenting cells” that initiate T-

cell activation via antigen presentation. Conversely, 

insufficient CD80 costimulation during antigen 

presentation may result in tolerance induction, and 

inhibiting CD80 costimulation has shown the potential 
to hinder the progression of autoimmune diseases in 

multiple animal models [42]. These occurrences are 

likely to be widespread in Cluster 1. Consequently, we 
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hypothesize that Cluster 1 may demonstrate a more 

favorable response to immunotherapy than Cluster 2. 

 

Cluster 1 exhibited “hot” tumor characteristics in its 

immunological features, while Cluster 2 showed 

characteristics indicative of a “cold” tumor [43]. By 

verifying CRGs expression in 10 pairs of cancer  

and normal tissues through qRT-PCR, we observed  

that Cluster 2 exhibited the overall immunological 

characteristics of ESCA, indicating a reduced immune 

response. It is plausible that CRGs may contribute to the 

conversion of a cold tumor to a hot tumor in ESCA. 

Furthermore, we developed a prognostic model based 

on CRGs and examined their expression in various 

pathological stages and histological grades of ESCA. 

Several hub genes showed robust predictive 

capabilities, as revealed by ROC analysis. Notably, 

PDHA1 expression displayed variations across distinct 

pathological N stages, T stages, and counts of metastatic 

lymph nodes in ESCA. Increasing trends were observed 

in N stages and lymph node count, whereas decreasing 

trends were noticed in T stages. 

 

This study has contributed to our comprehension of the 

connection between CRGs and immunity; nonetheless, 

it’s important to recognize specific constraints. Firstly, 

the retrospective nature of the study underscores the 

importance of prioritizing future research on 

prospective studies, which can mitigate potential biases 

linked to retrospective designs. Furthermore, the lack of 

datasets with a sample size large enough and 

encompassing clinical prognostic information hampers 

the further validation of the results. Finally, the 

prognostic signature was built and confirmed using data 

from public databases. However, depending solely on 

TCGA and GEO databases restricts our capacity to 

explore CRGs’ expression at the protein level and 

reveal the direct mechanisms by which they influence 

anti-tumor immunity. Thus, it’s essential to collect more 

biological evidence to supplement the statistical results 

and enhance the robustness of the findings. Future 

research efforts should concentrate on unraveling the 

direct mechanisms that underlie the observed 

phenomena. 

 

MATERIALS AND METHODS 
 

Data sources and preprocessing 

 

Transcriptome profiling data, including HTSeq-Counts 

and HTSeq-FPKM, and clinical information, were 

acquired from the TCGA-ESCA project using R and 

the R package “TCGAbiolinks” [44]. The download 

was executed to collect extensive clinical data, which 

included age, sex, T stage, N stage, M stage, and 

prognostic information. Only cases with complete 

clinical information were included in the subsequent 

analyses. To further investigate, a log2(FPKM+1) 

transformation was applied to the Level 3 HTSeq-

FPKM data of 173 primary solid tumor samples,  

while HTSeq-Counts were used for differential 

analysis. 

 

To obtain nucleotide variation data, specifically 

MuTect2, for the 173 patients with ESCA, we used the 

R package “maftool” [45]. Mutational landscape 

analysis was exclusively conducted on these 173 

patients due to the absence of mutation information for 

some ESCA patients. Waterfall plots, created with the R 

package “ComplexHeatmap” [46], were used to depict 

the genetic mutations observed in these patients. The 

tumor mutation burden (TMB) was calculated as the 

number of mutations per megabase using data on single 

nucleotide variations. 

 

Expression profiling data from the GSE199967 array 

were obtained from the Gene Expression Omnibus 

(GEO) database. Subsequently, we extracted 27 

cuproptosis-related genes (CRGs) from the reports by 

Tsvetkov [14] and the MsigDB. A total of 27 CRGs 

were included in the analysis conducted for this study 

(Supplementary Table 1). Seven specific CRGs were 

filtered based on the comparison of expression levels 

between normal tissues and ESCA samples. 

 

Immune infiltration analysis 

 

The ESTIMATE method, which analyzes gene 

expression patterns in tumor samples, quantified 

stromal and immune cell proportions in ESCA patients 

to evaluate the tumor microenvironment (TME). This 

assessment included the evaluation of stromal score 

(reflecting stromal content), immune score (indicating 

the extent of immune cell infiltration), ESTIMATE 

score (a composite measure of stroma and immune 

components), and tumor purity. These analyses were 

conducted using the R package “estimate” [47]. 

 

To estimate cell composition, we used the CIBERSORT 

computational method, which analyzes gene expression 

profiles. The deconvolution algorithm was applied to 

determine the relative abundance of 22 immune cell 

types in each ESCA patient [48]. The sum of the 

fractions of these 22 immune cell types in each sample 

equaled 1. 

 

To assess immune cell type infiltration levels, we used 

the ssGSEA method from the R package “GSVA” [49]. 

This method allowed us to evaluate the expression 
profiles of 28 published gene sets specific to immune 

cells, giving insights into the infiltration levels of these 

28 immune cell types [50]. 
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Consensus clustering analysis of CRGs and GSEA 

analysis 

 

We extracted the expression profiles of CRGs and 

conducted coherent clustering with the “Consensus-

ClusterPlus”| R package [51]. This analysis resulted in 

the samples being partitioned into two distinct clusters. 

Additionally, we identified consensus molecular 

subtypes (CMS) for each sample using the “CMScaller” 

R package [52]. CMS is a robust classification system 

for ESCA with distinct features: CMS1 (immune), 

CMS2 (canonical), CMS3 (metabolic), and CMS4 

(mesenchymal) [53]. We employed a Sankey diagram to 

visualize the relationship between the two clusters and 

CMS. 

 

Next, we performed gene set enrichment analysis 

(GSEA) on the differentially classified risk groups 

using the “ggplot2” and “clusterProfiler” packages in R 

software [54]. Pathway enrichment was deemed 

significant when it met specific criteria, including a 

normalized enrichment score (|NES| > 1), a P-value < 

0.05, and a false discovery rate (FDR) q-value < 0.05. 

 

Differential expressed genes 

 

Expression profiling data (HTSeq-Counts) were 

analyzed with the “DESeq2” R package [55] to identify 

differentially expressed genes (DEGs) between the two 

clusters. The criteria for selecting DEGs included a 

threshold of |log2FoldChange| > 1 and an adjusted P-

value < 0.05. 

 

Weighted gene co-expression network analysis and 

functional enrichment analysis 

 

Weighted gene co-expression network analysis 

(WGCNA) was performed on the differentially expressed 

genes with the “WGCNA” R package [56]. To ensure the 

construction of a co-expression network with a scale-free 

distribution, we chose a soft power of 5. Eleven modules 

were identified, and we assessed their associations with 

the cluster, stromal score, immune score, ESTIMATE 

score, and tumor purity. Subsequently, we identified 14 

genes based on calculations of module membership (MM) 

and gene significance (GS). 

 

We performed Gene Ontology (GO) analysis using the 

“clusterProfiler” R package [54] to gain insights into 

the functions of the 14 selected DEGs. Additionally, 

we constructed a protein-protein interaction (PPI) 

network using the STRING database [57]. 

Furthermore, we used the “corrplot” R package to 
conduct Spearman’s correlation analysis, investigating 

the relationships between genes, gene-ESTIMATE, 

and gene-ssGSEA. 

Tissue samples and qRT-PCR 

 

We obtained 10 tumor tissue samples and 

corresponding adjacent normal esophageal tissue 

samples from patients who underwent tumor resection 

for ESCA. The tissue sample collection took place at 

the Thoracic Surgery Department of the Second 

Hospital of Hebei Medical University, with approval 

from the hospital’s Medical Ethics Committee. To 

maintain sample integrity, fresh tumor and non-tumor 

tissues were promptly frozen in liquid nitrogen. RNA 

extraction utilized the TRIzol Reagent (Invitrogen, 

USA). cDNA synthesis was conducted using the 

PrimeScriptTM RT reagent Kit with gDNA Eraser 

(Takara, Beijing, China) via reverse transcription. 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) analysis utilized the SYBR Premix Ex 

Taq (Takara). Expression data were normalized to the 

internal control GAPDH using the 2−ΔΔCT method. 

Gene-specific primers were synthesized by Sangon 

Biotech (Shanghai, China), and their sequences are 

available in Supplementary Table 2. 

 

Prognosis prediction of CRGs and difference 

analysis of scores with clinical stages 

 

Using the median risk score as the basis, we employed 

key hub genes as predictive variables to estimate 

patients’ survival index, taking into account their 

survival time and outcome (death or survival). 

Furthermore, we used the signature to calculate the 1-

year, 3-year, and 5-year survival rates through the 

nearest neighbor estimation method [58]. To evaluate its 

predictive performance, we generated receiver operating 

characteristic (ROC) curves with the “survivalROC” R 

package. The clinicopathological data of ESCA samples 

were retrieved from the TCGA database. Statistical 

analysis was conducted using the R programming 

language. The significance was assessed by employing 

either the Wilcoxon rank sum test or the Kruskal-Wallis 

rank sum test for comparisons, depending on the 

number of clinical stages. 

 

Statistical analysis 

 

All statistical analyses were performed using R software 

version 4.2.1. Figures were created and compiled using 

Adobe Illustrator. The Wilcoxon rank-sum test was used 

for box plot analyses. Spearman’s coefficient was used for 

correlation analysis. The chi-square test was used to 

compare clinical characteristics between the two clusters, 

and Fisher’s exact test was used when necessary. 

Multivariate logistic regression analysis was performed to 
assess the impact of clinical characteristics on the clusters. 

All hypothesis tests were two-sided, and statistical 

significance was defined as a P-value less than 0.05. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Heatmap corresponding to the consensus matrix using consensus clustering.  
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Supplementary Figure 2. Heatmap corresponding to the item-consensus using consensus clustering. 
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Supplementary Figure 3. Survival analysis of PDHA1. 
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Supplementary Tables 
 

Supplementary Table 1. 27 cuproptosis-related 
genes (CRGs) were extracted from the reports by 
Tsvetkov and the MsigDB. 

27 cuproptosis-related genes (CRGs) 

SLC25A5 CP SLC23A2 

NDUFB2 DLD PDHX 

DLST LIAS ATP7B 

NDUFA1 COX7B NDUFA2 

SLC31A1 FDX1 SLC6A3 

LIPT1 DLAT PIH1D2 

MITD1 ATP7A CCS 

LIPT2 ATOX1 NDUFB1 

SLC22A5 PDHB GLS 

 

Supplementary Table 2. 7 CRGs specific primers. 

7 CRGs specific primers 

CRGs Forward primer (5’-3’) Reverse primer (5’-3’) 

SLC6A3 GAGAGAACACGAACAAACC TTACAAACACAAGACA 

MITD1 UAGCGCUGGACCGGTCA AGCTCACGGAGTGGTTCAACT 

CCS GGGAACTATTGACGGCCTGG GTCAGCATCAGCACGGACAT 

LIPT2 CGTGGTTTGAGCACATCG AAGGCCACAAGGAAAGGTG 

ATOX1 GTGCTGAAGCTGTCTCTCGG GCCCAAGGTAGGTAGGAAACAGTCTTT 

PDHB CTCAGCACTCGCAATGCTTC AAGTCCTTTCGCATCCTCGG 

GLS AGGGTCTGTTACCTAGCTTGG ACGTTCGCAATCCTGTAGATTT 

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

 

 

 


