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INTRODUCTION 
 

Glioblastoma multiforme (GBM) stands as the most 

prevalent malignant type of primary brain tumors in 

adults, accompanying by a poor prognosis and a high 

mortality rate [1]. It accounts for approximately 14.2% 

of all brain tumors and 50.1% of all malignant tumors 

according to the most recent statistics presented by the 

Central Brain Tumor Registry of the United States 

(CBTRUS) [2]. The current first-line treatments for 

GBM include maximal surgical tumor resection, 

followed by radiotherapy plus concurrent and adjuvant 

temozolomide (TMZ) chemotherapy. However, recur-

rence seems to be the rule [3]. Despite the integration of 

tumor-treating fields (TTFs), the median overall survival 

for GBM only experiences a modest extension from 
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ABSTRACT 
 

Glioblastoma multiforme (GBM) is one of the most common and aggressive brain tumors. The microenvironment 
of GBM is characterized by its highly immunosuppressive nature with infiltration of immunosuppressive cells 
and the expression levels of cytokines. Efferocytosis is a biological process in which phagocytes remove 
apoptotic cells and vesicles from tissues. Efferocytosis plays a noticeable function in the formation of 
immunosuppressive environment. This study aimed to develop an efferocytosis-related prognostic model for 
GBM. The bioinformatic methods were utilized to analyze the transcriptomic data of GBM and normal samples. 
Clinical and RNA-seq data were sourced from TCGA database comprising 167 tumor samples and 5 normal 
samples, and 167 tumor samples for which survival information was available. Transcriptomic data of 1034 
normal samples were collected from the Genotype-Tissue Expression (GTEx) database as a control sample 
supplement to the TCGA database. In the end, 167 tumor samples and 1039 normal samples were obtained for 
transcriptome analysis. Efferocytosis-related differentially expressed genes (ERDEGs) were obtained by 
intersecting 7487 differentially expressed genes (DEGs) between GBM and normal samples along with 1189 hub 
genes. Functional enrichment analyses revealed that ERDEGs were mainly involved in cytokine-mediated 
immune responses. Moreover, 9 prognosis-related genes (PRGs) were identified by the least absolute shrinkage 
and selection operator (LASSO) regression analysis, and a prognostic model was therefore developed. The 
nomogram combining age and risk score could effectively predict GBM patients’ prognosis. GBM patients in the 
high-risk group had higher immune infiltration, invasion, epithelial-mesenchymal transition, angiogenesis 
scores and poorer tumor purity. In addition, the high-risk group exhibited higher half maximal inhibitory 
concentration (IC50) values for temozolomide, carmustine, and vincristine. Expression analysis indicated that 
PRGs were overexpressed in GBM cells. PDIA4 knockdown reduced efferocytosis in vitro. In summary, the 
proposed prognostic model for GBM based on efferocytosis-related genes exhibited a robust performance. 
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16.0 to 21.6 months, which is primarily attributable to the 

tumor’s aggressive nature and resistance to conventional 

treatments [4, 5]. In recent years, molecular-targeted 

therapies and immunotherapy have been widely utilized 

in clinical trials [6]. However, patients’ clinical out-

comes exhibit noticeable diversity, a reflection of the 

pronounced molecular and cellular heterogeneity inherent 

in GBM. Biomarkers are used to quantify normal 

physiology and physiological response to therapies.  

Due to the challenges of these treatments identification 

of new predictive and prognostic biomarkers to gauge 

response to immune therapy for patients with GBM  

will be critical in the precise treatment of this highly 

heterogenous disease [7]. Therefore, it is essential to 

find new efficient diagnostic biomarkers and therapeutic 

targets for GBM. 

 
Throughout the progression of GBM, tumor cell 

apoptosis is widespread, and this phenomenon intensifies 

with the application of cytotoxic treatments, such as 

chemotherapy and radiotherapy. Apoptotic tumor cells 

are rapidly and efficiently detected and cleared by 

professional and non-professional phagocytes through 

efferocytosis, preventing secondary necrosis [8]. Equally 

important, engulfing phagocytes may release anti-

inflammatory substances and recruit myeloid-derived 

suppressor cells (MDSCs) and regulatory T (Treg) cells 

to enforce immune tolerance [9]. Efferocytosis plays a 

pivotal role in the maintenance of tissue homeostasis in 

normal physiology and the restoration of homeostasis 

during inflammation. In contrast, tumor cells can 

exploit the immunosuppressive environment facilitated 

by efferocytosis to elude immune surveillance and 

advance tumor progression [10]. The microenvironment 

of GBM is characterized by its highly immunosuppress-

sive nature with infiltration of immunosuppressive cells 

and the expression levels of cytokines. Microglia/ 

macrophages, as the major professional phagocytes of 

the central nervous system, are more abundant in GBM 

compared with low-grade gliomas [11]. Efferocytosis 

has the potential to prompt the polarization of tumor-

associated macrophages, steering them towards an anti-

inflammatory M2 phenotype, promoting pro-tumor 

activation [12]. Tyrosine kinase Mer (MerTK), the main 

receptor of efferocytosis, is overexpressed in GBM 

cells, and it is associated with invasion and survival  

of GBM cells [13]. Regarding the enriched apoptosis  

and immune-suppressive microenvironment in GBM, 

the role of efferocytosis-related genes in GBM is 

worthy of further investigation. 

 
In the present study, bioinformatics methods, such as 

differential expression analysis and weighted gene co-

expression network analysis (WGCNA), were employed 

to develop a novel efferocytosis-related prognostic  

gene signature for GBM. Novel efferocytosis-related 

prognostic gene signature has the potential to be  

used in clinical practice for risk stratification of GBM 

patients and for selecting individuals who are likely to 

respond to immunotherapy. This can help clinicians 

design appropriate targeted therapies before initiating 

clinical treatment [14] In addition, in-depth analyses 

encompassing signal transduction pathways, the tumor 

microenvironment, and responsiveness to anticancer 

drugs hold promise for revealing novel insights into the 

molecular mechanisms underlying GBM.  

 

RESULTS  
 

Efferocytosis-related differentially expressed genes 

(ERDEGs) were mainly involved in cytokine-

mediated immune responses 

 

The study flowchart is illustrated in Figure 1. Through 

differential analysis, 7487 differentially expressed genes 

(DEGs) in normal and GBM samples were screened, 

comprising 4374 downregulated DEGs and 3113 

upregulated DEGs (Figure 2A, 2B). All samples in the 

training dataset exhibited cohesive clustering, devoid  

of any outliers (Figure 2C). In order to construct a  

co-expression network and distinguish modules, the 

WCGNA was performed. First, the soft-threshold power 

of 10 was selected to calculate adjacencies (Figure  

2D). Subsequently, 12 modules were obtained by the 

dynamic tree cutting approach (Figure 2E). Among the 

modules, MEyellow and MEtan, which were highly 

associated with efferocytosis scores, were selected  

(|cor| > 0.5 and P < 0.05). The MEyellow and the 

MEtan contained 1,189 genes that were used as hub 

genes (Figure 2F). Furthermore, 982 ERDEGs were 

obtained by crossing 1,189 hub genes and 7487 DEGs 

between the GBM and normal samples (Figure 2G). 

 
The outcomes of the Kyoto Encyclopedia of Genes  

and Genomes (KEGG) pathway analysis revealed that 

ERDEGs were primarily associated with the differen-

tiation of osteoblasts, Staphylococcus aureus infection, 

phagosomes, cytokine-cytokine receptor interaction, 

etc., (Figure 2H). 

 

The Gene Ontology (GO) analysis suggested  

that ERDEGs were remarkably abundant in the 

activation of myeloid leukocytes, cytokine-mediated 

positive regulation, activation of T cells, leukocyte-

mediated immunity, activity of immune receptors, 

binding of cytokines, etc., (Figure 2I). 

 

The ERDEGs-based prognostic model could 

accurately assess the prognosis of GBM patients 

 

In The Cancer Genome Atlas (TCGA)-GBM dataset, 

the univariate Cox analysis of ERDEGs was conducted 
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to screen 19 survival-associated ERDEGs in GBM 

patients (HR≠1, P < 0.001) (Figure 3A). Furthermore, 

the results of the least absolute shrinkage and selection 

operator (LASSO) regression analysis indicated that the 

optimal model was developed when lambda was 0.058, 

and the 9 ERDEGs (PDIA4, GNS, OSMR, MXRA8, 

PDLIM4, STC1, C9orf64, SLC16A13, and GZMB) 

were prognosis-related genes (PRGs) of GBM patients 

(Figure 3B, 3C). The distribution of patient risk scores 

and survival status is shown in Figure 3D, 3E. The 

survival analysis indicated that the prognosis of high-

risk group patients with the relatively short survival 

time accounted for the majority of GBM patients. 

Subsequently, the Kaplan-Meier (K-M) survival curves 

revealed that compared with the low-risk group, patients 

in the high-risk group significantly exhibited shorter 

survival time (P < 0.05) (Figure 3F). In the training 

dataset, risk score was found to be able to reliably 

assess GBM (Figure 3G).  

 

Afterward, the prediction ability of the prognostic 

model was confirmed using the validation dataset. The 

high-risk group was enriched with GBM patients whose 

median survival time was relatively short (Figure 4A, 

4B). The K-M survival curves revealed significantly 

poorer survival in the high-risk group compared with 

the low-risk group (Figure 4C). In the validation 

dataset, the risk score proved to be reliable in assessing 

GBM (Figure 4D).  

Additionally, risk scores were higher in TCGA-GBM 

dataset for patients who aged >50 years (P < 0.05), 

and risk scores were independent of patients’ gender 

(Figure 4E). 

 

The nomogram model could reliably predict GBM 

patients’ prognosis 

 

Univariate Cox analysis confirmed the correlation 

between risk score and age with GBM patients’ survival 

in TCGA-GBM dataset (P < 0.05) (Figure 5A). Next, 

the independent prognostic value of risk score was 

identified by multivariate Cox regression analysis (P < 

0.05) (Figure 5B). 

 

The integration of the risk score with age promoted  

the development of a nomogram model, providing  

a reliable tool to estimate GBM patients’ prognosis 

(Figure 5C, 5D). 

 

Genes in the high- and low-risk groups were 

associated with the JAK-STAT-mediated signaling 

pathway 

 

In TCGA-GBM dataset, gene set enrichment analysis 

(GSEA) demonstrated that genes in the two groups 

primarily participated in signaling pathways, such as 

chemokines, cytokine-cytokine receptor interaction, 

and the JAK-STAT signaling pathway (Figure 5E). 

 
 

 
 

Figure 1. Flowchart of the study. Abbreviations: WGCNA: weighted gene co-expression network analysis; DEGs: differentially expressed 
genes; ROC: the receiver operating characteristic; LASSO: the least absolute shrinkage and selection operator. 
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Figure 2. Efferocytosis-related differentially expressed genes (ERDEGs) were primarily involved in immune responses 
mediated by cytokines. (A) Volcano plot of DEGs in glioblastoma multiforme (GBM). (B) Heat map of top 10 upregulated and top 10 

downregulated genes in GBM. (C) The Hclust function indicated that all samples in the training dataset were well clustered. (D) The 
soft-threshold power of 10 was selected to calculate adjacencies based on R2 > 0.85. (E) 12 modules were identified by dynamic tree 
cutting approach. (F) MEyellow and MEtan, which were mainly related to efferocytosis scores were selected, and 1,189 genes were 
considered as hub genes. (G) 982 ERDEGs were identified by crossing 1,189 hub gens with 7,487 DEGs found between GBM and normal 
samples. (H) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of ERDEGs. ( I) Gene Ontology (GO) enrichment 
analysis of ERDEGs. 



www.aging-us.com 15582 AGING 

The high-risk score was characterized by the 

elevated immune infiltration and poor tumor purity 

 

In TCGA-GBM dataset, it was noted that samples 

from the high-risk group exhibited significantly higher 

stromal, ESTIMATE, and immune scores compared 

with those from the low-risk group (P < 0.05) (Figure 

6A). Tumor purity was significantly less in the high-

risk group compared with that in the low-risk group  

(P < 0.05) (Figure 6A). It was revealed that the risk 

 

 
 

Figure 3. Development of the prognostic model based on ERDEGs. (A) Univariate Cox analysis filtered out 19 ERDEGs correlated 

with GBM patients’ survival. (B, C) LASSO regression analysis revealed that 9 ERDEGs were prognosis-related genes (PRGs) of GBM patients. 
(D) Distribution of patients based on the risk score in the training dataset. (E) Survival time and status of patients in the training dataset. 
(F, G) The Kaplan-Meier (K-M) survival curve and ROC curve in the training dataset. 
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scores of GBM patients were positively correlated 

with stromal, ESTIMATE, and immune scores, and 

they were negatively associated with tumor purity 

(Figure 6B). Furthermore, the infiltration levels of B 

cell memory, neutrophil, and resting T cell gamma delta 

were significantly different between the two groups 

(Figure 6C, 6D). The expression levels of 35 immune 

checkpoints were significantly different between the 

two groups (Figure 6E). 

The high-risk score was characterized by the 

elevated invasion, epithelial-mesenchymal transition 

(EMT), and angiogenesis scores 

 

In TCGA-GBM dataset, the invasion-associated genes 

(ADAM12, TGFBI, CALD1, and CEMIPPROS1) 

were found to be related to the risk score (Figure 7A). 

The EMT-associated genes (FURIN, TIMP1, PLAUR, 

RUNX1, and NRP1) were noted to be related to 

 
 

 

 
Figure 4. Validation of the prognostic model in the validation dataset.  (A, B) Risk plot distribution in the validation dataset. 

(C, D) The K-M survival curve and the ROC curve in the validation dataset. (E) Box plot of correlation between risk score and clinical 
features (Age and Gender). 
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the risk score (Figure 7B). The angiogenesis-

associated genes (TIMP1, NRP1, THBD, POSTN, and 

S100A4) were found to be related to the risk score 

(Figure 7C). 

 

Patients in the high-risk group in TCGA-GBM  

dataset had significantly greater invasion, EMT, and 

angiogenesis scores than those in the low-risk group  

(P < 0.05) (Figure 7D–7F). 

Correlation analysis of the prognostic model and the 

sensitivity of chemotherapeutic agents 

 

The half maximal inhibitory concentrations (IC50)  

for TMZ, carmustine, and vincristine were significantly 

lower in the low-risk group, suggesting that the effero-

cytosis genes-based prognostic model could predict  

the potential value of chemotherapy for GBM patients 

(P < 0.05) (Figure 8A). 

 

 

 

 
Figure 5. The nomogram model developed for predicting GBM patients’ prognosis. (A, B) Univariate and multivariate Cox 

regression analyses of the integration of risk scores and clinical parameters. (C) Development of a prognostic nomogram model for 
estimating GBM patients’ prognosis. (D) Calibration curve of the nomogram model at 3-, 5-, and 7-year. (E) Gene set enrichment analysis 
(GSEA) results, indicating the cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway.  
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PRGs were highly expressed in GBM samples 

 

In the training dataset, compared with normal samples, 

the expression levels of 9 PRGs were significantly 

elevated in GBM samples (P < 0.05) (Figure 8B). 

PDIA4 knockdown in GBM cells reduced efferocytosis 

in vitro 

 

PDIA4 was selected to further validate the performance 

of efferocytosis-related prognostic model. After 

 

 
 

Figure 6. Immune microenvironment analysis between high-risk and low-risk groups. (A, B) Relationship between risk scores 

and GBM microenvironment scores. (C, D) Comparison of the infiltration levels of 22 immune cells in high-risk and low-risk groups. 
(E) Comparison of the expression levels of immune checkpoints between the two groups. *P < 0.05, **P < 0.01, ***P < 0.001. 
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confirming the knockdown effect of siRNA-PDIA4  

by detecting the expression level of Erp72 (a protein 

product of PDIA4) (Figure 9A, 9B), TMZ was utilized 

for inducing apoptosis of LN229 cells in different groups 

(Figure 9C). Notably, the exposure of phosphatidylserine 

(PS) on the apoptotic cell surface was enhanced upon 

the knockdown of PDIA4 (Figure 9D). However, the 

inhibition of PDIA4 hindered efferocytosis in GBM 

cells and the THP-1-derived macrophages coculture 

system (Figure 9E, 9F). The expression levels of M2 

macrophages-expressed marker CD206 (Figure 9G, 9H) 

and secreted factors interleukin-10 (IL-10) (Figure 9I) 

and transforming growth factor-β (TGF-β) (Figure 9J) 

were also reduced in PDIA4 knockdown group.  

DISCUSSION 
 

Despite the utilization of multi-therapeutic strategies, 

GBM patients’ prognosis remains poor due to its  

high aggressiveness nature. Patient outcomes in  

GBM exhibited a remarkable variability due to the 

pronounced molecular and cellular heterogeneity of 

the disease. It is clinically valuable to explore novel 

prognostic markers and therapeutic targets for GBM. 

Tumor cells adeptly exploit the immunosuppressive 

microenvironment established by efferocytosis to evade 

immune surveillance and foster tumor progression 

[10]. However, few studies have concentrated on the 

relationship between efferocytosis and GBM.  

 

 

 
Figure 7. Invasion, epithelial-mesenchymal transition (EMT), and angiogenesis analyses in the high-risk and low-risk 
groups. (A–C) Relationships between risk scores and invasion-, EMT-, angiogenesis-related genes. (D–F) Comparison of invasion, EMT, and 
angiogenesis scores between the two groups. 



www.aging-us.com 15587 AGING 

In the present study, a novel efferocytosis-related 

prognostic gene signature for GBM was first  

developed and validated. Efferocytosis maintains  

tissue homeostasis and supports the resolution of 

inflammation and injury by engulfing apoptotic cells 

and producing anti-inflammatory substances [15]. 

Macrophages and microglia are the major professional 

phagocytes, accounting for the vast majority of 

dominant infiltrating immune cells in the GBM 

microenvironment [16]. Once the apoptotic cells are 

engulfed by phagocytes, phagosomes can be modified 

to influence the degradation of the cell corpse follow-

ing fusion with lysosome [17]. The ERDEGs were 

primarily associated with phagosomes according to the 

 

 
 

Figure 8. Correlation analysis of prognostic model and chemotherapeutic sensitivity, as well as expression analysis of PRGs. 
(A) The IC50 values for temozolomide, carmustine, and vincristine in the high-risk and low-risk groups. (B) The expression levels of nine 
PRGs. 
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results of the KEGG pathway analysis. The anti-

inflammatory cytokines released after efferocytosis 

could recruit MDSCs and Treg cells, and regulate  

the polarization of macrophages form the M1  

phenotype to the M2 phenotype for reprogramming  

an immunosuppressive tumor microenvironment [9, 

12]. The ERDEGs were significantly abundant in the 

myeloid leucocyte activation, T cell activation, and 

cytokine-cytokine receptor interaction according to the 

results of GO enrichment analysis. 

 

 
 

Figure 9. In vitro validation of PDIA4 in GBM efferocytosis. (A, B) PDIA4 knockdown efficacy was detected by Western blotting. 

(C, D) Exposure of phosphatidylserine on apoptotic cell surface was evaluated by Annexin V level. (E, F) Efferocytosis was indicated by 
proportion of CD11b+CFSE+ cells. (G, H) Quantification of the expression level of macrophages-associated marker (CD206) by flow 
cytometry. (I, J) Measurement of IL-10 and TGF-β levels in cocultured medium of efferocytosis assays. Data are presented as mean ± SD. 
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Using LASSO regression analysis, 9 PRGs (OSMR, 

STC1, PDIA4, MXRA8, PDLIM4, C9orf64, and 

GZMB) were identified in GBM patients. The majority 

of the genes were found to be associated with different 

biological mechanisms of GBM, except for GNS and 

SLC16A13. The cytokine receptor for oncostatin M 

(OSMR) and stanniocalcin-1 (STC1) have exhibited  

to reprogram the immune microenvironment [18,  

19]. OSM, an IL-6 family cytokine in inducing 

mesenchymal properties in GBM which mediated 

signaling contributes to aggressive nature associated 

with mesenchymal features via STAT3 signaling in 

glioma cells [20]). The mesenchymal-like state of 

glioblastoma, which is associated with the increased 

cytotoxicity of T cells, was induced by macrophages-

derived OSM interacting with OSMR [18]. STC1 is a 

hormone-like glycoprotein that has shown to regulate 

homeostasis of calcium and phosphorus. The tumor’s 

secreted STC1 has been identified to interact with 

calreticulin (CRT), an “eat-me” signal, leading to 

reduced CRT membrane exposure. This reduction  

acts as a deterrent against phagocytosis by dendritic 

cells and macrophages [19]. STC1 was found to be 

highly expressed in GBM cells, enhancing the stem- 

like features of glioblastoma cells [21]. In addition, 

STC1 regulates GBM migration and invasion via  

the TGF-β/SMAD4 signaling pathway [22]. Previous 

studies have reported the involvement of PDIA4, 

MXRA8, PDLIM4, C9orf64, and GZMB in glioma 

patients’ poor prognosis through bioinformatics 

analysis. Protein disulfide isomerase A4 (PDIA4) is  

a member of the multi-protein chaperone complex, 

performing diverse functions by interacting with its 

specific substrates [23]. A growing body of evidence 

demonstrated that aberrant PDIA4 expression level and 

its potential mechanisms participate in the development 

of numerous types of cancer, including GBM [24]. 

PDIA4 is a key promotor of GBM. PDIA4 regulates  

the proliferation via activating the PI3K/AKT/m- 

TOR pathway and suppression of apoptosis in GBM 

[25]. By interacting with a variety of immunological 

components, PDIA4 cold promote an immuno-

suppressive microenvironment in tumor [26]. Matrix 

remodeling-associated protein 8 (MXRA8) was found 

to be overexpressed in glioma cells, and it could  

be involved in the infiltration of M2 macrophages, 

contributing to immune response to glioma by 

regulating ferroptosis [27]. PDLIM4, an actin-binding 

protein containing PDZ and LIM domains, has been 

implicated as a tumor suppressor in prostate cancer  

and ovarian cancer due to its hypermethylation or 

downregulation feature [28]. However, it could be 

significantly upregulated in GBM cells along with  
other genes in high-grade gliomas, suggesting that 

PDLIM4 may have a potential oncogenic function  

[29, 30]. GZMB transcription is regulated by nuclear 

factor of activated T cells, Ikaros, and AP-1.  

GZMB gene transcription is also activated and 

enhanced by NF-κB and by Janus kinase 1/signal 

transducer and activator of transcription signaling.  

The role of GZMB in apoptosis makes it an attractive 

anticancer target [31]. C9orf64 and GZMB were 

identified as the prognostic biomarkers for GBM  

by bioinformatics analysis [32, 33]. In the present  

study, the expression levels of above-mentioned genes  

were significantly elevated and associated with GBM 

patients’ survival. 

 

Glucosamine (N-Acetyl)-6-sulfatase encoded by GNS is 

a lysosomal enzyme that is involved in the catabolism 

of heparan sulfate and glycosaminoglycans [34]. GNS-

deficient mice exhibited widespread neuroinflammation, 

as evidenced by the activation of microglial cells [35]. 

The expression level of GNS was found to be correlated 

with the magnitude of immune response [36]. Recent 

research demonstrated that the solute carrier (SLC) 

family of membrane transport proteins plays a role in 

modulating efferocytosis by upregulating the expres-

sion levels of anti-inflammatory genes and sustaining 

continuous efferocytosis [37]. It was reported that 

SLC16A13 could be a potential biomarker for tumor 

prognosis, including oral squamous cell carcinoma,  

lung adenocarcinoma, and pancreatic cancer [38–40]. 

However, the relationship between these two genes and 

GBM has not yet been explored.  

 

To further explore the potential molecular mecha- 

nisms of these efferocytosis-related genes, GSEA was 

conducted and it was demonstrated that they mainly 

participated in the signaling pathway of chemokines, 

cytokine-cytokine receptor interaction, and JAK-STAT 

signaling pathway. Chemokines are the largest subset of 

chemotactic cytokines, mediating trafficking of different 

immune cell subsets into the tumor microenvironment 

and lymphoid tissue development [41]. In addition, 

chemokines can directly regulate the biological 

functions of non-immune cells in the tumor micro-

environment, including tumor cells and stromal cells. 

Chemokines and their receptor interactions participate 

in the tumorigenesis, progression, angiogenesis, and 

metastasis of various cancer types, including GBM  

[42]. Some chemokines can be potential diagnostic 

biomarkers and therapeutic targets for GBM [43]. 

MerTK is the main receptor of efferocytosis, and  

it has been proved to be overexpressed in GBM  

[13]. Additionally, the JAK/STAT signaling pathways, 

responsive to over 50 cytokines and growth factors, can 

be amplified by the activation and/or overexpression of 

MerTK [44]. JAK/STAT signaling pathway, as a central 
communication node for the immune system, is also 

associated with glioma cell apoptosis, proliferation, 

angiogenesis, stem cell maintenance, and immune-
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suppression [45, 46]. Therefore, it could be speculated 

that the potential mechanisms of these efferocytosis-

related genes were involved in the upregulation of the 

expression levels of inflammatory mediators, including 

cytokines and chemokines, through JAK/STAT signaling 

pathway to promote GBM immune-escape, progression, 

and invasion. 

 

To understand the relationship between the risk score 

and GBM microenvironment, the immune/stromal 

scores were calculated using the ESTIMATE algorithm. 

It was revealed that the risk score of GBM patients was 

positively correlated with stromal, ESTIMATE, and 

immune scores, while negatively correlated with tumor 

purity. The infiltration levels of 22 immune cells in  

the two groups were explored using the CIBERSORT 

algorithm. The results indicated that the infiltration 

levels of B cell memory, neutrophil, and resting T  

cell gamma delta were significantly different between 

the two groups. The expression levels of 35 immune 

checkpoints, including PD-1, PD-L1, PD-L2, CTLA4, 

CD276, CD28, and CD27, which have been recently 

investigated in GBM, were significantly different bet-

ween the two groups [47]. These findings demonstrated 

that the prognostic model developed based on the 

efferocytosis-related genes exhibited a promising 

performance in distinguishing patients with different 

immune statuses. 

 

In addition to the direct cytotoxic effects on tumor cells, 

the subsequent activation of both innate and adaptive 

anti-tumor immune responses significantly contributes 

to the therapeutic impact of chemotherapeutic drugs. 

Through efferocytosis, phagocytes present antigens 

from apoptotic cells, influencing the immune response 

either by stimulation or suppression [12]. TMZ serves 

as the standard first-line chemotherapeutic agent  

for GBM, and in addition to TMZ, vincristine and 

carmustine are also preferred agents for recurrent  

GBM [48]. Utilizing data from the GDSC database,  

the differences in IC50 values for these three drugs 

were compared between the two groups. The findings 

indicated that the low-risk group exhibited greater 

chemosensitivity to TMZ, vincristine, and carmustine, 

reflected by lower IC50 values. These results suggest 

that efferocytosis-related genes may play a role in  

the chemoresistance of GBM to TMZ, vincristine,  

and carmustine. Furthermore, tumor cells, adept at 

remodeling the intricate tumor microenvironment to 

their advantage, can evade the immune-related benefits 

of chemotherapy, promoting continued progression  

and subversion of antitumor immune surveillance [49]. 

It was hypothesized that differences in the immune 
microenvironment are partly attributable to the dif-

ferences in chemotherapy sensitivity between high- and 

low-risk groups. 

We assessed the expression level of 9 PRGs in GBM 

based on TCGA and GTEx data. The upregulation  

of PDIA4 in GBM was particularly pronounced  

when compared to normal tissues. A growing body  

of evidence underscored the pivotal role of PDIA4  

in the endoplasmic reticulum (ER) stress response  

[24]. In tumor microenvironments, various metabolic 

abnormalities collaborate to disrupt ER homeostasis in 

malignant and stromal cells, as well as immunocytes. 

These conditions induce persistent ER stress, a 

phenomenon known to modulate several oncogenic 

traits in cancer cells, including the reprogramming of 

innate and adaptive immune cells [50]. After confirming 

the knockdown effect of siRNA-PDIA4 by detecting  

the expression level of Erp72, the in vitro validation  

of PDIA4’s efficacy in GBM efferocytosis revealed  

that inhibiting PDIA4 increased PS exposure of  

GBM cells. However, consistent with bioinformatics 

analysis, it concurrently decreased efferocytosis and the 

presence of M2 macrophages in a GBM cells and THP-

1 derived macrophage coculture system. Moreover, M2 

macrophages secreted factors IL-10 and TGF-β also 

decreased in PDIA4 knockdown groups. These results 

reveal that PDIA4 is aberrantly upregulated and 

expressed in GBM, which leads to more efferocytosis 

and might endow cancer cells with the ability to resist 

the endoplasmic reticulum stress (ERS), leading to 

cancer cell survival in a severe microenvironment [51]. 

Efferocytosis encompasses multiple phases: the ‘smell 

phase’ involves phagocytes detecting apoptotic cells 

and moving towards them; in the ‘eating phase’, 

phagocytic receptors on phagocytes engage with ligands 

on apoptotic cells for the specific identification and 

ingestion process; and the ‘digestion phase’ involves 

processing the engulfed corpse and its components. 

While PS exposure is crucial, optimal recognition and 

ingestion by phagocytes are dictated by a collection  

of other “eat-me” signals [9]. In addition, efferocytosis 

induces naïve macrophages to adopt an M2 phenotype, 

which has been exhibited to be a major contributor to 

poor prognosis by suppressing anti-tumor activity [52]. 

The specific mechanisms involved in PDIA4-mediated 

efferocytosis are worthy of further exploration.  

 

Many biomarkers have been reported and are now 

clinically used in the management of GBM patients. 

They now play a crucial role in improving diagnostic 

accuracy, determining prognosis, and predicting treat-

ment responses. In this study, we obtained nine PRGs 

through screening, which may be used in clinical 

practice to predict the prognosis of GBM patients. Risk 

score models constructed based on gene expression may 

be used in clinical practice to risk stratification of GBM 
patients and select individuals who are likely to respond 

to immunotherapy and help medical professionals 

identify potentially responsive patients and develop 
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effective immunotherapies. At the same time, this 

nomogram model based on risk score can play an 

auxiliary role in clinical decision making. To our 

knowledge, the present study, for the first time, clarified 

how efferocytosis-related genes could interact with 

GBM. While this study has several strengths, its 

limitations are noteworthy. The study limitations were 

shortly described, firstly the reliance on data mining 

from a public database with a constrained sample size 

may induce bias into the prognostic model. Secondly, 

subsequent experiments are imperative to validate the 

functional role of core genes and analyze the specific 

signaling pathways associated with these genes.  

 
In conclusion, a reliable prognostic model comprising 

efferocytosis-related genes (PDIA4, GNS, OSMR, 

MXRA8, PDLIM4, STC1, C9orf64, SLC16A13, and 

GZMB) for GBM patients was developed. Further 

in vivo and in vitro studies are required to indicate the 

precise mechanisms by which these genes participate  

in GBM progression. Such insights may enhance the 

therapeutic strategies for GBM. 

 

MATERIALS AND METHODS 
 

Data source 

 
Clinical and RNA-seq data were sourced from TCGA 

database (https://www.ebi.ac.uk/), comprising 167 

GBM samples with comprehensive survival details and 

5 normal samples. Transcriptomic data of 1034 normal 

samples were collected from the Genotype-Tissue 

Expression (GTEx) database. Notably, TCGA-GBM 

and GTEx-normal datasets were amalgamated to form 

the training dataset, encompassing 167 GBM samples 

with complete survival data and 1039 normal samples. 

Subsequently, the validation dataset was constituted by 

acquiring transcriptomic data from 137 GBM samples 

from the Chinese Glioma Genome Atlas (CGGA) data-

base. Following this, efferocytosis-related genes were 

extracted from previous studies [9, 53]. 

 
Identification and functional enrichment analyses of 

ERDEGs 

 
Supplementary Table 1 lists the names of R packages 

and software employed in this study. The batch effect in 

the training dataset was effectively mitigated using  

the sva package ComBat seq. Utilizing the DESeq2  

R package, DEGs were identified in both normal  

and GBM samples in the training dataset, adhering to 

criteria of adj.P.value < 0.05 and |log2 fold-change 
(FC)|>1. Visualization of screening results was con-

ducted by generating a volcano map through the  

ggplot2 R package (ver. 3.3.5), and the expression 

levels of DEGs were further illustrated using a heatmap 

generated by the Pheatmap R package (ver. 1.0.12). The 

exploration of modular genes linked to efferocytosis 

was carried out through the WGCNA. Initially, outlier 

samples were filtered out in the training dataset using 

the Hclust function. Subsequently, the determination  

of the soft-threshold and adjacency calculation were 

performed via the pickSoftThreshold function. Identi-

fication of modules was undertaken through the dynamic 

tree cutting approach. Following this, efferocytosis scores 

for samples in the training dataset were computed using 

the GSVA R package. The Pearson algorithm was 

employed to assess the relationship between modules 

and efferocytosis scores, leading to the selection of the 

two most relevant modules. The intersection of DEGs 

between normal and GBM samples and hub genes 

yielded the identification of ERDEGs. Furthermore,  

the GO and KEGG pathway enrichment analyses of 

ERDEGs were carried out using the clusterProfiler R 

package (ver. 4.0.5). 

 

Developing a prognostic model for GBM patients 
 

The univariate Cox analysis of DEERGs in TCGA-GBM 

dataset was employed to obtain ERDEGs associated with 

GBM patients’ survival. Furthermore, in TCGA-GBM 

dataset, the LASSO regression analysis was conducted 

by the glmnet R package to screen out the PRGs of GBM 

patients and develop a prognostic model. The risk score 

for each patient was calculated as follows:  
 

1
( )

n

i
coefi xi

=
  

 

In TCGA-GBM dataset, according to median risk  

score (−5.23247), GBM patients were categorized into 

high-risk group (N = 83) and low-risk group (N = 84). 

The K-M survival curves were applied to compare  

GBM patients’ survival between the two groups. 

Subsequently, the receiver operating characteristic 

(ROC) curve of the risk score was plotted using the 

survivalROC R package to assess the function of the 

risk score. Next, the dependability of the risk score was 

further assessed in the validation dataset. 
 

In addition, the Wilcoxon rank-sum test was utilized to 

analyze the risk scores in the training dataset under 

different clinical characteristics. 

 

Development of the nomograph model 
 

In TCGA-GBM dataset, it was attempted to explore the 

independent prognostic value of clinical characteristics 

and risk score by univariate and multivariate Cox 

regression analyses. Thereafter, the nomogram model 

was developed by combining factors of independent 

prognostic value and the reliability of the nomogram. 

The model was assessed by the calibration curve. 

https://www.ebi.ac.uk/
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GSEA of genes in high- and low-risk groups  

 

In the c2.cp.kegg.v7.5.1.symbols.gmt gene set of 

TCGA-GBM dataset, the genes from two groups were 

subjected to GSEA by the clusterProfiler R package. 

 

The landscape of immune infiltration 

 

In TCGA-GBM dataset, the R estimate package  

was utilized to calculate and compare tumor purity, 

stromal, ESTIMATE, and immune scores between high- 

and low-risk groups. Then, the infiltration levels of  

22 immune cells and expression levels of immune 

checkpoints in the two groups were explored in the 

training dataset. 

 

Correlation analysis of risk score with GBM 

invasion, EMT, and angiogenesis 

 

Invasion-, EMT-, and angiogenesis-associated genes 

were acquired from Cancer single-cell state atlas 

(CancerSEA), dbEMT2, and HALLMARK gene sets of 

the Molecular Signature Database (MSigDB) databases, 

respectively. In TCGA-GBM dataset, correlations of 

risk score with invasion-, EMT-, and angiogenesis-

associated genes were explored separately by Pearson 

correlation analysis, and 20 genes with the highest 

correlation were displayed, separately. 

 

Subsequently, invasion, EMT, and angiogenesis scores 

were calculated from TCGA-GBM dataset using the 

single-sample gene set enrichment analysis (ssGSEA). 

The differences in the above-mentioned three scores were 

compared between the two groups by the Wilcoxon rank-

sum test. 

 

Drug sensitivity prediction 

 

The IC50 values for TMZ, vincristine, and carmustine in 

TCGA-GBM dataset were assessed using the pRRophetic 

algorithm according to the Genomics of Drug Sensitivity 

in Cancer (GDSC) database. Differences in IC50 values 

between the two groups were compared by the Wilcoxon 

rank-sum test. 

 

Expression levels of PRGs 

 

In the training dataset, differences in the expression 

levels of the PRGs were compared between GBM and 

normal samples by the Wilcoxon rank-sum test. 

 

Cell lines and culture 

 
GBM LN229, A172 cells and human monocytic THP1 

cells and were purchased from the Chinese Academy  

of Sciences Cell Bank (Shanghai, China) and confirmed 

by Short tandem repeat (STR) analysis. THP1 cells  

were cultured in a Roswell Park Memorial Institute 

(RPMI)-1640 medium containing 10% fetal bovine 

serum (FBS), 0.05 mM 2-mercaptoethanol, 15 mM 

Hepes, 4.5 g/L glucose, 100 U/ml penicillin, and 100 

μg/ml streptomycin (Corning Inc., Corning, NY, USA). 

LN229 and A172 cells were maintained in a Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 

10% FBS, 100 U/ml penicillin, and 100 μg/ml strep-

tomycin (Corning Inc.). Monocytic THP1 cells were 

differentiated into macrophages by incubation with 40 

nM Phorbol 12-myristate 13-acetate (PMA) (MedChem 

Express, Monmouth Junction, NJ, USA) for 48 h. 

 

Gene silencing 

 

PDIA4 was knocked down in LN229 and A172 cells 

using siRNA oligonucleotides (RIBOBIO Biotechnology 

Co., Ltd., Guangzhou, China). The Lipofectamine 3000 

reagent (Invitrogen, Carlsbad, CA, USA) was utilized to 

transfect cells seeded into six-well plates with 50 nM of 

oligonucleotides targeting PDIA4, including siPDIA4#1 

(5′-GCAAGCGUUCUCCUCCAAUTT-3′), siPDIA4#2 

(5′-GCGAGUUUGUCACUGCUUUTT-3′), siPDIA4#3 

(5′-CCUGAGAGAAGAUUACAAATT-3′) or the control 

vector. After 48 h, various transfected cells were vali-

dated for PDIA4 knockdown by Western blotting and 

processed for subsequent experiments. 

 

Western blotting 

 

Protein was extracted using ice-cold RIPA lysis buffer 

supplemented with protease and phosphatase inhibitors 

(Thermo Fisher Scientific, Waltham, MA, USA) and 

boiled for 10 min at 100°C. Protein lysates were 

separated by sodium dodecyl sulfate–polyacrylamide 

gel electrophoresis (SDS-PAGE) and transferred to 

polyvinylidene difluoride (PVDF) membranes (Merck 

Millipore, Billerica, MA, USA). After blocking with 

5% skim milk at room temperature for 1 h, the 

membranes were probed with primary antibodies  

(anti-ERp72 (Cat. No. ab190348, Abcam, UK) and  

anti-GAPDH (Cat. No. ab190348, Abcam)) at 4°C 

overnight, followed by incubation with HRP-conjugated 

anti-rabbit secondary antibody at room temperature  

for 1.5 h. SuperSignal™ West Pico PLUS (Thermo 

Fisher Scientific) was utilized to enhance the chemi-

luminescence, and the membranes were visualized by 

the ChemiDoc Imaging system (Bio-Rad Laboratories 

Inc., Hercules, CA, USA). 

 

Flow cytometry 

 
Efferocytosis was assessed in macrophages using 

apoptotic LN229 and A172 cells line and quantified by 

flow cytometry. Apoptosis of LN229 and A172 cells 
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was induced by 15 μM TMZ (MedChem Express) for 

24 h. The exposure of PS on apoptotic cell surface was 

detected using the Annexin V APC ready flow kit 

(Invitrogen). Apoptotic LN229 and A172 cells were 

labeled with CSFE (Invitrogen) and cocultured with 

macrophages in above-mentioned medium for THP- 

1 at the ratio of 1:1 for 24 h. Cocultured medium  

was collected for cytokine analysis, and cocultured  

cells were subsequently washed with 0.2% BSA-PBS.  

Cell pellets were incubated with APC labeled CD11b 

primary antibody (BioLegend, San Diego, CA, USA)  

in the dark for 40 min, followed by thrice rinsing  

with 0.2% BSA-PBS. The efferocytosis activities were 

measured by a flow cytometer (Becton Dickinson, 

Franklin Lakes, NJ, USA) and analyzed by FlowJo 

software (Three Star, Inc., Ashland, OR, USA).  

 
Cell surface expression level of CD206 was quantified 

by flow cytometry. THP-1-derived macrophages were 

seeded into a 0.4-μm Transwell insert (Merck Millipore) 

with a RPMI-1640 medium and then cocultured with 

transfected LN229 and A172 cells for 48 h. Macrophages 

were collected and labeled with PE-conjugated anti-

CD206 antibody (BioLegend). After 45 min of incu-

bation, CD206 expression level was determined by a 

flow cytometer. 

 
Chemokine analysis 

 
The cocultured medium from efferocytosis assays 

underwent analysis for detecting the levels of IL-10 and 

TGF-β1 using the human IL-10 ELISA kit (Abcam) and 

TGF-β1 ELISA kit (Abcam), respectively, following  

the manufacturer’s protocols on Infinite 200Pro (Tecan, 

Männedorf, Switzerland). All experiments were con-

ducted in triplicate and repeated three times.  

 
Statistical analysis 

 
All statistical analyses of bioinformatics analysis 

section in this study were performed in R software 

(version 4.1.0). The Wilcoxon rank-sum test was 

utilized to analyze the risk scores under different 

clinical characteristics, the differences in three scores, 

the differences in IC50 values, differences in the 

expression levels of the PRGs were compared between 

GBM and normal samples. The Pearson algorithm was 

employed to assess the relationship between modules 

and efferocytosis scores, correlations of risk score with 

invasion-, EMT-, and angiogenesis-associated genes. 

LASSO-Cox regression was used for efferocytosis-

related genes selection. The Kaplan-Meier method was 

used to compare the survival rate between the low-  
and high-risk groups. Univariate and multivariate Cox 

regression analyses were used to assess the independent 

prognostic variables. 

For cell experiments, data were presented as mean ± SD 

and analyzed by two-tailed unpaired t test using 

Graphpad Prism 7.0 (La Jolla, CA, USA). 
 

Data availability 
 

The datasets used and analyzed in  

the current study are available from  

the GDSC database (http://www.cancerrxgene.org/),  

TCGA database (https://www.ebi.ac.uk/), GTEx  

database (http://commonfund.nih.gov/GTEx/), CGGA  

database (http://www.cgga.org.cn/), MSigDB database 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp). 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Supplementary Table 1. The list of R packages and software used in this study. 

R package/software Version Link 

ClusterProfiler 4.0.5 https://git.bioconductor.org/packages/clusterProfiler  

DESeq2 1.34.0 https://github.com/mikelove/DESeq2  

ggplot2 3.3.5 https://github.com/tidyverse/ggplot2  

pheatmap 1.0.12 https://github.com/raivokolde/pheatmap  

ggvenn 0.1.9 https://github.com/yanlinlin82/ggvenn  

survival 3.2–13 https://github.com/therneau/survival  

survminer 0.4.9 https://github.com/kassambara/survminer  

forestplot 2.0.1 https://github.com/gforge/forestplot  

GSVA 1.42.0 https://github.com/rcastelo/GSVA  

glmnet 4.1–2 https://glmnet.stanford.edu/ 

pRRophetic 0.5 https://osf.io/5xvsg/wiki/home/  

rms 6.2–0 https://hbiostat.org/R/rms/  

estimate 1.0.13 https://r-forge.r-project.org/projects/estimate/  
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