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INTRODUCTION 
 

Interstitial lung disease (ILD) refers to a group of lung 

diseases characterized by fibrosis and/or inflammation of 

the lung interstitium. ILD can be idiopathic or associated 

with known causes such as connective tissue disease 

(CTD) and environmental exposures. Idiopathic 

pulmonary fibrosis (IPF), fibrotic hypersensitivity 
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ABSTRACT 
 

Background: Interstitial lung disease (ILD) encompasses a diverse group of disorders characterized by chronic 
inflammation and fibrosis of the pulmonary interstitium. Three ILDs, namely idiopathic pulmonary fibrosis (IPF), 
fibrotic hypersensitivity pneumonitis (fHP), and connective tissue disease-associated ILD (CTD-ILD), exhibit 
similar progressive fibrosis phenotypes, yet possess distinct etiologies, encouraging us to explore their different 
underlying mechanisms.  
Methods: Transcriptome data of fibrotic lung tissues from patients with IPF, fHP, and CTD-ILD were subjected to 
functional annotation, network, and pathway analyses. Additionally, we employed the xCell deconvolution 
algorithm to predict immune cell infiltration in patients with fibrotic ILDs and healthy controls.  
Results: We identified a shared progressive fibrosis-related module in these diseases which was related to 
extracellular matrix (ECM) degradation and production and potentially regulated by the p53 family 
transcription factors. In IPF, neuron-related processes emerged as a critical specific mechanism in functional 
enrichment. In fHP, we observed that B cell signaling and immunoglobulin A (IgA) production may act as 
predominant processes, which was further verified by B cell infiltration and the central role of CD19 gene. In 
CTD-ILD, active chemokine processes were enriched, and active dendritic cells (aDCs) were predicted to 
infiltrate the lung tissues.  
Conclusions: This study revealed shared and specific molecular and cellular pathways among IPF, fHP, and CTD-
ILD, providing a basis for understanding their pathogenesis and identifying potential therapeutic targets. 
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pneumonitis (fHP), and CTD-associated ILD (CTD-ILD) 

are the most common three subtypes of fibrotic ILD, 

leading to progressive pulmonary fibrosis and respiratory 

failure [1]. Therefore, a profound understanding and 

comparison of their pathogenesis is indispensable. 

 

The pathogenesis of IPF often includes pathological 

fibrosis in response to chronic lung tissue injury [2]. 

Fibroblasts and myofibroblasts play the most important 

roles in IPF, which overproduce extracellular matrix 

(ECM) through several dysfunctional signaling pathways 

[3]. Previous studies identified well-established 

mediators of IPF including transforming growth factor-β 

(TGF-β), fibroblast growth factor (FGF), CXCL12, 

CCL2, and tumor necrosis factor-α (TNF-α) [4]. The 

poor prognosis of IPF necessitates more investigation 

into its pathogenesis, including interactions of previously 

known mechanisms and new mechanisms [5]. 

 

fHP is a type of ILDs caused by continuous exposure to 

external antigens. fHP and IPF have some similar 

clinical, radiological, and pathological features, 

including progressing fibrosis. As antigens contribute to 

triggering of fHP, T lymphocytes and granuloma are 

involved in the pathophysiology of fHP [6], Th1 

inflammatory response is canonical in the development 

of fHP while the Th17 response might be also involved 

in its pathogenesis [7]. Recent bioinformatic studies 

found that fHP and IPF have common molecular 

patterns, and HP-specific genes may be BGN and 

CXCL9, which are related to inflammation initiation and 

granulomatous diseases [8] However, the specific 

molecular features of fHP remain to be explored. 

 

CTD-ILD is a heterogenous conditions and can exhibit 

similar clinical and imaging patterns with IPF. Systemic 

sclerosis, rheumatoid arthritis, and mixed connective 

tissue disease are the most common conditions that may 

concur with progressive pulmonary fibrosis. However, 

the treatment of CTD-ILD and IPF is different, and our 

understanding of this disparity is limited [9]. Previous 

mechanistic studies demonstrated that myofibroblasts 

possess profibrotic and anti-apoptotic properties in 

systemic sclerosis associated ILD (SSc-ILD), while 

alveolar epithelial cells play a more significant role in 

IPF [10]. Immune mechanisms including innate and 

adaptive immunity, especially profibrotic and anti-

fibrotic immune cells, were also reported to play a role in 

CTD-ILD [11, 12]. So far, no definitive pattern has been 

identified to distinguish CTD-ILD from IPF, thus it is 

crucial to evaluate the distinct features of CTD-ILD. 

 

Bioinformatics has provided new insight into different 
fibrotic ILDs [13–15]. However, many transcriptome 

studies of lung tissues were limited by small sample 

sizes and a narrow focus on specific types of fibrotic 

ILDs, potentially introducing bias. Hence, there is  

an urgent need for a comprehensive investigation 

encompassing multiple ILDs with distinct etiologies yet 

sharing similar pathological patterns. Furthermore, 

previous studies have not adequately integrated the 

expression patterns, regulatory mechanisms, and 

cellular alterations within lung tissue samples. In this 

study, we utilized various databases to perform 

network and pathway analyses. We also incorporated 

transcription factors (TFs) data mining to investigate 

gene expression regulation patterns, and immune 

infiltration analysis to discover cellular changes. 

Through this comprehensive approach, our objective is 

to elucidate the differences and commonalities of the 

pathogenesis of the three prevalent fibrotic ILDs, 

thereby enabling more precise and targeted treatments 

for patients. 

 

MATERIALS AND METHODS 
 

Datasets employed in this study 

 

The microarray datasets used in this study were obtained 

from the GEO database (http://www.ncbi.nlm.nih.gov/ 

geo/). The criteria for retrieval were: A) samples were 

from human lung tissue, B) gene expression pattern was 

profiled, C) datasets contained both patients and healthy 

individuals without a history of pulmonary fibrosis, D) 

the diagnosis of IPF was based on standard American 

Thoracic Society criteria [16], E) The diagnosis of fHP 

was made according to accepted guidelines or by 

multidisciplinary consensus using ATS criteria [8, 17], F) 

The RA-UIP subjects had evidence of UIP on lung 

biopsy and rheumatoid arthritis (RA) defined by the 

American College of Rheumatology and European 

League Against Rheumatism guidelines [18]. In addition, 

all patients with systemic sclerosis (SSc) met the 

American College of Rheumatology criteria for the 

diagnosis of SSc [19]. 

 

To ensure the consistency and completeness of the 

datasets, we manually identified relevant literature 

using keywords filters and applied R programming 

language (version: 4.1.3) for subsequent analysis. 

Finally, IPF dataset (GSE175457) [20], fHP dataset 

(GSE150910) [8], and CTD-ILD datasets (SSc-ILD: 

GSE48149 [21, 22]; RA-ILD: GSE199152 [23]) were 

included, each contributing unique insights into various 

lung conditions. We merged CTD-ILD datasets and 

corrected the batch effects using the “combat” function 

in the SVA package (version: 3.38.0) [24]. Next, we 

normalized the merged datasets and adjusted for 

covariates using the “Normalize between arrays” and 

“remove Batch Effect” functions in the limma package 

(version: 3.46.0) [25]. Table 1 summarizes the included 

datasets. 
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Table 1. The information of all the datasets employed in this study. 

Data sets* 
Data Tissue  

sources 
References Category GPL 

Case Control 

GSE48149 44a 9 Lung tissue Hsu et al., 2011; Renaud et al., 2020 CTD-ILD (SSc-ILD) GPL16221 

GSE199152 23b 4 Lung tissue Vassallo et al., 2022 CTD-ILD (RA-ILD) GPL16791 

GSE150910 185c 103 Lung tissue Furusawa et al. 2020 CHP GPL24676 

GSE175457 234 188 Lung tissue Borie et al., 2022 IPF GPL24676 

*: All data sets used in this study contain a total of 646 samples, among which there were 342 cases and 304 controls. All 
samples were collected in the lung tissue. a: 23 lung samples from SSc-ILD patients were employed in this study. b: 3 lung 
samples from RA-ILD patients were employed in this study. c: 82 lung samples from CHP patients were employed in this study. 

 

Identification of differentially expressed genes and 

functional annotation 

 

To identify differentially expressed genes (DEGs) in lung 

tissue samples from ILD patients and healthy controls, 

we performed differential expression analysis using the 

limma package (version: 3.46.0), controlling for age. The 

threshold for screening DEGs was |log2 FC (fold 

change)| > 1 and false discovery rate (FDR) < 0.01. 

Upregulated and downregulated common DEGs for three 

ILDs were then subjected to functional annotation. 

 

Enrichment analysis of Gene Ontology (GO) and 

Disease Ontology (DO) was performed on common 

DEGs using the clusterProfiler package (version: 

3.18.1) [26]. Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (http://www.genome.jp/kegg/) and 

gene set enrichment analysis (GSEA) were performed 

for common DEGs. The threshold for significant 

differences in the aforementioned enrichment analyses 

was set at FDR < 0.05. 

 

Network and pathway analysis  

 

To explore the functional interaction between the 

common DEGs of IPF, fHP, and CTD-ILD, PPI network 

analysis was done using the STRINGdb package 

(version: 2.6.5) with a confidence score of ≥ 0.7 [0,1]. 

Entrez gene identifiers of DEGs were imported into 

STRING (Search Tool for the Retrieval of Interacting 

Genes/Proteins) database (Version: 11.5) [27] for 

network and pathway analyses. We imported the 

information of the PPI network into the igraph package 

(version: 1.12.1) and selected the minimum connected 

network for further pathway analyses. To explore the 

unique biological pathways, we individually used the 

pathway analysis data derived from the KEGG database 

on the PPI network of IPF, fHP, and CTD-ILD. 

 

Transcription factors analysis 

 

The common DEGs were imported into Cytospace for 

network analysis of TFs [28]. RcisTarget package [29] 

was used to acquire information on TFs and gene 

targets, and an adjusted P-value < 0.05 was considered 

significant. Subsequently, we separately identified the 

unique TFs in IPF, fHP, and CTD-ILD.  

 

Immune infiltration analysis 

 

The xCell deconvolution algorithm was applied in this 

study [30]. We used the “immunedeconv” package to 

comprehensively analyze tissue immune infiltration 

based on gene expression profiles [31]. Following the 

application of the xCell deconvolution algorithm, we 

obtained the estimated proportions of various immune 

cells in the lung tissues of ILD patients and healthy 

controls. Student′s t-test was used to investigate the 

differences in immune cell infiltration between these 

groups. 

 

Statistical analysis 

 

For this study, statistical computations were performed 

using R (version 4.2.2). Microarray data, sourced from 

the GEO database, were selected based on strict criteria 

ensuring sample relevance and quality. Differential 

expression analysis was executed via the limma 

package, with age as a covariate, identifying DEGs at a 

|log2 FC| > 1 and FDR < 0.01 threshold. Functional 

annotations were derived using the clusterProfiler 

package, with an FDR < 0.05 denoting significance. PPI 

networks, constructed using STRINGdb with a 

confidence score ≥ 0.7, were analyzed in igraph to 

discern minimum connected networks for pathway 

analysis against KEGG database entries. Transcription 

factor associations were determined using the 

RcisTarget package, with significance set at an adjusted 

P-value < 0.05. Immune cell proportions in lung  

tissue were estimated using the xCell algorithm  

within the immunedeconv package, with Student’s t-

tests assessing differences in infiltration between patient 

and control groups. These R scripts for replication of 

this research can be found in our dedicated online 

repository at https://github.com/Robinwhliu/IPF-fHP-

CTD_ILD. 

3202

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL16791
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL24676
https://www.ncbi.nlm.nih.gov/pubmed/?term=Borie%20R%5bAuthor%5d
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL24676
http://www.genome.jp/kegg/
https://github.com/Robinwhliu/IPF-fHP-CTD_ILD
https://github.com/Robinwhliu/IPF-fHP-CTD_ILD


www.aging-us.com 4 AGING 

Data available statement 

 

Lists of genes with varying expression across three 

diseases are presented in Supplementary Tables 1–3. 

Comprehensive gene differential and functional 

enrichment analyses are included in Supplementary 

Tables 4–10. The full expression matrix employed  

in this research can be found in the GEO  

database (https://www.ncbi.nlm.nih.gov/geo/). The R 

programming script for reproducing our analyses and 

graphical representations is also open for download on 

GitHub at the provided URL (https://github.com/ 

uuihbgg1/IPF-fHD-CTD). 

 

RESULTS 
 

Differentially expressed genes 

 

Four independent studies met our inclusion criteria 

(Table 1) were identified. First, a dataset consisting of 

26 patients with CTD-ILD and 13 matched healthy 

controls was generated by merging two IS datasets: 

GSE48149 and GSE199152 (Table 2). Concurrently, 

the fundamental clinical characteristics of the CHP and 

IPF datasets are presented in Tables 3, 4, respectively. 

We controlled batch effects and normalized different 

subsets to ensure data consistency. The results showed 

that data pre-processing was effective and reliable 

(Supplementary Figure 1). The results of PCA analysis 

showed that data pre-processing was effective and 

reliable (Supplementary Figure 2). In total, 1059  

DEGs for IPF, 602 DEGs for fHP, and 321 DEGs  

for CTD-ILD were identified between patients and 

healthy controls (Figure 1). We found 105 common 

DEGs between IPF, fHP, and CTD-ILD, among which 

74 DEGs were upregulated, and 29 DEGs were 

downregulated (Figure 2). 

 

Shared biological pathways in IPF, fHP, and  

CTD-ILD 

 

For biological processes, 30 pathways reached 

statistical significance (Figure 3). Upregulated genes 

were associated with extracellular matrix changes while 

downregulated genes were relevant to cognition and 

sensory perception. For cellular components, up-

regulated genes were involved in the extracellular 

matrix, collagen trimming, and intermediate filament. 

The molecular function significantly associated with 

common upregulated DEGs was extracellular matrix 

structural constituent, structural constituent of the 

cytoskeleton, glycosaminoglycan binding, and heparin 

binding. Peptide, amide, carbohydrate binding, neuro-

transmitter receptor activity, and glutamate receptor 

activity were associated with the enrichment of 

downregulated genes. More information for GO and DO 

enrichment analyses is presented in Figure 3A, 3B and 

Supplementary Figures 3, 4.  

 

Furthermore, the GSEA results demonstrated that the 

enriched molecular pathways related to the upregulated 

DEGs were degradation of the extracellular matrix and 

collagen, formation of the cornified envelope and 

collagen, activation of matrix metalloproteinases, and 

keratinization (Figure 3C). Meanwhile, downregulated 

DEGs were associated with monitoring of oxygen-

dependent proline hydroxylation of hypoxia-inducible 

factor α (HIF-1α), pluripotent stem cells, GPCR ligand 

binding, Gα (q) signaling, transmission across chemical 

synapses, O2/CO2 exchange, and pexophagy. These 

results, particularly the results upregulated DEGs, were 

consistent with those from GO enrichment analysis, 

indicating extracellular environment involvement.  

 

Unique biological pathways in IPF, fHP, and  

CTD-ILD 

 

Network analysis of upregulated genes identified in the 

differential analysis of the IPF dataset resulted in a 

unique network centered on Gremlin 2 (GREM2). 

GREM2 encodes an antagonist of bone morphogenetic 

protein (Figure 4A). This network was predominantly 

enriched in genes associated with neuron-related 

pathways, including axon development, axonogenesis, 

axon guidance, and neuron projection guidance  

(Figure 4C). Network analysis of downregulated  

genes identified in the differential analysis of the IPF 

dataset resulted in a particular network centered on 

chromosome 1 open reading frame 115 (C1orf115) and 

odontogenic ameloblast-associated protein (ODAM) 

(Figure 4B). Downregulated genes were predominantly 

enriched in angiogenesis, epithelial cell migration, and 

endothelial cell migration (Figure 4D). 

 

The same network analysis was performed for the fHP 

dataset. The unique network of upregulated genes in fHP 

was centered on the cluster of differentiation 19 (CD19) 

and matrix metallopeptidase 9 (MMP9) and was enriched 

predominantly in immune-related pathways (Figure 5A, 

5C). Among them, B cell receptor signaling pathway, 

primary immunodeficiency, and intestinal immune 

network for IgA production and cell adhesion molecules 

were the upregulated pathways. Downregulated genes 

formed a network centered on vascular endothelial 

growth factor A (VEGFA), protein tyrosine kinase 2 

(PTK2), and kinase insert domain receptor (KDR), which 

were enriched in protein digestion and absorption, 

arginine biosynthesis, adherens junction, and PI3K/Akt 

signaling pathway (Figure 5B, 5D). 
 

Analysis of upregulated genes in CTD-ILD resulted in  

a unique network centered on ATP binding cassette 
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Table 2. Clinical characteristics of the merged CTD-ILD data set. 

 CTD-ILD (N=26) Controls(N=13) P-value 

Gender (Male/Female) 9/17 5/8 1 

Age at study visit (mean, years) 49.5 ± 10.2 53.3 ± 6.1 0.7510 

Smoking history 10/16 4/9 0.7334 

 

Table 3. Clinical characters of the fHP data set. 

Characteristic fHP (n = 82) Control (n = 103) P-Value 

Age, years 59.4 ± 10.6 59.9 ± 10.2 0.98 

Sex n = 81 n = 103 0.23 

 Male 38 (47%) 45 (44%)  

 Female 43 (53%) 58 (56%)  

Race n = 75 n = 103  

 Non-Hispanic white 59 (79%) 87 (84%) 0.055 

 Hispanic 10 (13%) 4 (4%) — 

 Asian 4 (5%) 3 (3%) — 

 Black 1 (1%) 9 (9%) — 

 Other 1 (1%) 0 (0%) — 

Smoke n = 73 n = 96 0.9 

 Ever 33 (45%) 43 (45%)  

 Never 40 (55%) 53 (55%)  

Sampling method   0.51 

 Surgical lung biopsy 26 (32%) 41 (40%)  

 Transplant 56 (68%) 62 (60%)  

MUC5B genotype   <0.001 

 GG 52 (63%) 80 (78%)  

 GT 29 (35%) 21 (20%)  

 TT 1 (2%) 2 (2%)  

Minor allele frequency 0.19 0.12 — 

Data are presented as mean ± standard deviation or number (%). 
fHP, fibrotic hypersensitivity pneumonitis; yr, years; M, male; F, female. 

 

Table 4. Clinical characters of the IPF data set. 

Characteristic IPF (n = 234) Control (n = 188) P-Value 

Age, years 61.4 ± 7.5 55.3 ± 16.8 9.92 x 10-6 

Sex n = 234 n = 188 1.11x10-5 

 Male 184 (79%) 110 (59%)  

 Female 50 (21%) 78 (41%)  

Race n = 234 n = 188 0.42 

 White 200 (85%) 155 (82%) — 

 Non-White 34 (15%) 33 (18%) — 

Smoke n = 234 n = 188 5.7 x10-3 

 Ever 140 (60%) 86 (46%)  

 Never 75 (32%) 89 (47%)  

Unknown 19 (8%)  13 (7%)   

Data are presented as mean ± standard deviation or number (%). 
IPF, idiopathic pulmonary fibrosis. 
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Figure 1. (A–C) Volcano plot demonstrating an overview of the differential expression of all genes in fHP, IPF and CTD-ILD. The threshold in 
the volcano plot was -log10 adjusted P>2 and |log2 fold change| >0.5; red dots indicate significant differential expressed genes. Note: CTD-
ILD expression matrix was the mergence of SSc-ILD and RA-ILD datasets. 
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subfamily C member 3 (ABCC3) and was enriched in 

pathways related to cell chemotaxis (Figure 6A, 6C). 

Network analysis of downregulated genes in CTD-ILD 

exhibited a network centered on agouti-related 

neuropeptide (AGRP) and midline 1 interacting protein 

1 (MID1IP1), and enriched predominantly in mucosal 

immune response (Figure 6B, 6D).  

 

Identification of regulatory transcription factors 

 

We found six possible critical TFs regulating the 

expression of these common DEGs including two TFs 

from the p53 family (Figure 7A). We next investigated 

unique TFs among the three types of ILDs (Figure 7B). 

Venn diagram analysis showed that CTD-ILD has the 

most significant number of specific TFs (33 specific 

TFs), while fHP and IPF have 12 and 9 specific TFs, 

respectively. 

Evaluation of tissue-infiltrating immune cells 

 

The results of the violin plot showed the top 5 

significant differences in immune cell proportions 

between healthy individuals and patients with IPF, 

fHP, and CTD-ILD (Figure 8). The increased 

abundance of DCs, including induced-DCs, was 

common in the three ILDs. Meanwhile, patients with 

IPF and fHP exhibited a decrease in natural killer T 

cell abundance, and patients with IPF and CTD-ILD 

had decreased abundance of microvascular endothelial 

cells. Lymphatic endothelial cells were more abundant 

in IPF; total B cells and class-switched memory B 

cells were more abundant in fHP; and activated 

dendritic cells (aDC) and neutrophils were more 

abundant in CTD-ILD. Furthermore, we observed 

unique variants of immune cells in the three ILDs 

(Supplementary Figure 5). 

 

 
 

Figure 2. (A) Venn diagram demonstrates the common DEGs of fHP, IPF and CTD-ILD. (B, C) Venn diagrams demonstrate the up-regulated 

and down-regulated common DEGs of fHP, IPF and CTD-ILD, respectively. 
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DISCUSSION 
 

This study revealed that IPF, fHP, and CTD-ILD exhibit 

comparable downstream molecular patterns but 

divergent upstream drivers at the transcriptome level. 

Surprisingly, IPF demonstrated upregulated biological 

processes associated with neuronal and developmental 

processes, while fHP showed a prominent involvement 

of the B cell signaling pathway and intestinal IgA 

production. CTD-ILD had positive regulation in chemo-

taxis and weakened response to various pathogens and 

external stimuli. The diversity of cellular changes may 

contribute to the different clinical phenotypes, with 

endothelial cells being more prominent in IPF, total B 

cells and class-switched memory B cells in fHP, and 

aDCs and neutrophils in CTD-ILD. 

 

The analysis of shared DEGs revealed that the same 

molecular mechanisms in IPF, fHP, and CTD-ILD lead 

to progressive fibrosis. The results of GO enrichment and 

GSEA further supported this observation, indicating 

significant alterations in profibrotic ECM changes, such 

as ECM structure organization and collagen metabolism. 

Progressive fibrosis in pathological assessment of IPF, 

 

 
 

Figure 3. (A, B) GO enrichment analysis of the up-regulated and down-regulated common DEGs, where the horizontal axis represents the 

proportion of DEGs under the GO term. Top 5 pathways with most significant P-value were shown and ordered by gene ratio. BP, biological 
process; CC, cellular component; MF, molecular function. (C, D) Gene set enrichment analysis of the up-regulated and down-regulated 
common DEGs, where the horizontal axis represents the number of DEGs under the gene set enrichment analysis (GSEA) terms. 
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fHP, and CTD-ILD can verify these findings [32]. 

Oxygen-dependent proline hydroxylation of HIF-1α in 

the GSEA indicated disinhibition of HIF-1α in all three 

ILDs [33]. Erythrocyte-related processes, including 

carbon dioxide transfer, oxygen release, and O2/CO2 

exchange were suppressed in all three ILDs, verifying the 

role of hypoxia in all three ILDs. In the TF analysis, 

common genes were found to be associated with p53 

(encoded by TP53) and a p53 family member, p63, 

suggesting that these TFs may play a role in pulmonary 

 

 
 

Figure 4. Network and pathway analyses of DEGs in the lung tissues of IPF patients. Network and pathways were performed on 

the dataset from IPF patients compared to healthy controls to identify unique dysregulated pathways in the lung tissues of IPF. (A, B) 
Network analysis of up-regulated genes and down-regulated genes. Most significant hub genes, according to degree and betweenness 
centrality, with the highest number of connections, are enclosed in ovals. (C, D) Function enrichment analysis of the up-regulated and down-
regulated common DEGs, where the horizontal axis represents the proportion of DEGs under the functional terms. Top 5 pathways with most 
significant P-value were shown and ordered by gene ratio. 
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fibrosis. The differential analysis further demonstrated 

the up-regulation of p53 family members in IPF  

patients, indicating the activation of the p53 family 

(Supplementary Figure 6). Former evidences reported 

that these p53 may promote fibrosis by inducing 

autophagy resistance in alveolar epithelial cells [34, 35]. 

The involvement of p53 signaling pathway was 

previously reported in human lung samples of SSc-ILD 

and IPF, but not fHP and other CTD-ILDs [10, 36, 37], 

and its activation was proven to promote lung fibrosis 

resolution in aged mice [38], which is also reflected in 

our research. Consistently, our study indicated that p53 

may contribute to progressive fibrosis in three ILDs and 

is a therapeutic target. We displayed the pathway view of 

collagen degradation to illustrate a shared extracellular 

environment involvement across three interstitial lung 

diseases, underscoring a common pathological thread 

(Supplementary Figure 7). 

 

 
 

Figure 5. Network and pathway analyses of common DEGs in the lung tissues of fHP patients. Network and pathways were 

performed on the dataset from fHP patients compared to non-demented controls to identify unique dysregulated pathways in the lung 
tissues of fHP. (A, B) Network analysis of up-regulated genes and down-regulated genes. Most significant hub genes, according to degree and 
betweenness centrality, with the highest number of connections, are enclosed in ovals. (C, D) Function enrichment analysis of the up-
regulated and down-regulated common DEGs, where the horizontal axis represents the proportion of DEGs under the functional terms. Top 5 
pathways with most significant P-value were shown and ordered by gene ratio.  
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IPF-specific DEGs were significantly enriched in neuron-

related processes like axon guidance (Supplementary 

Figure 8) and neuron differentiation. Neuronal guidance 

proteins including netrins, semaphorin, ephrins, and 

neurophilins are increasingly studied at the interface of 

injury and repair [39]. It is reported that macrophage-

derived netrin-1 (NTN1) drives the development of 

experimentally induced lung fibrosis via their axon-

related functions involving adrenergic nerves remodeling, 

noradrenaline secretion, and α1 adrenoreceptors [40]. 

 

 
 

Figure 6. Network and pathway analyses of common DEGs in the lung tissues of CTD-ILD patients. Network and pathways were 
performed on the dataset from CTD-ILD patients compared to non-demented controls to identify unique dysregulated pathways in the lung 
tissues of CTD-ILD. (A, B) Network analysis of up-regulated genes and down-regulated genes. Most significant hub genes, according to degree 
and betweenness centrality, with the highest number of connections, are enclosed in ovals. (C, D) Function enrichment analysis of the up-
regulated and down-regulated common DEGs, where the horizontal axis represents the proportion of DEGs under the functional terms. Top 5 
pathways with most significant P-value were shown and ordered by gene ratio. 
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NTN1 deficiency or adrenergic denervation attenuated 

experimentally induced lung fibrosis [40, 41]. 

Furthermore, it is confirmed that NTN1 protein 

expression increased in IPF macrophages and IPF 

lungs are enriched for noradrenalin [40]. Use of  

α1 adrenoreceptor antagonists is associated with 

improved survival in IPF patients [40]. Therefore, our 

study highlighted that neuron-related processes may 

play a unique important role in IPF pathogenesis and 

worth more investigation. 

 

In the analysis of fHP-specific DEGs, three different 

methods showed B cell receptor signaling pathway 

(Supplementary Figure 9) as the main culprit. We found 

that B cells and antibody-related pathways are 

upregulated and may play more important roles in fHP, 

though a higher CD4+:CD8+ ratio and Th1 to Th2 switch 

are considered to be important in the pathogenesis of 

fHP in former studies [42]. Consistently, prior study has 

reported the predominance of B cells in the 

transcriptome of most severely affected lung zones [43]. 

CD19, CXCR5, and CCR7 were identified as key 

regulators of fHP, all of which are all associated with B 

cell response. Furthermore, the active TFs in HP, such as 

Myb proto-oncogene protein (MYB), have been 

implicated in B cell differentiation under specific 

circumstances [44]. Specifically, increased IgA 

production and B cell class switching were dominant in 

fHP, while increased IgA levels were only reported in 

bronchoalveolar lavage of HP patients before [45, 46]. 

IgA can possibly induce lung injury by forming immune 

complexes [47]. Our results illuminated the role of B 

cells in fHP. This may also help the diagnosis of fHP, as 

fHP patients are frequently misdiagnosed as IPF or 

CTD-ILD due to their similar radiologic and/or 

histopathologic findings. 

 

 
 

Figure 7. Transcription factors analysis. (A) TFs regulatory network. TFs were marked in red, and the DEGs were marked in blue. 

Meanwhile, TFs were enclosed in ovals. (B) The transcription factors in this table are unique to each pulmonary fibrosis analysis. 
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Figure 8. Immune infiltration analysis by xCell. Violin plots showing the comparison between 3 ILDs and healthy controls. Top 5 

significant variations in immune cell proportions were shown. ns: P ≥ 0.05, *:P < 0.05; **:P < 0.01; ***:P < 0.001; ****:P < 0.0001. 

3212



www.aging-us.com 14 AGING 

We also demonstrated that activated DCs play an 

important role in the pathogenesis of pulmonary 

fibrosis associated with CTD-ILD. Enrichment  

analysis showed that chemokine-related pathways 

(Supplementary Figure 10), particularly mononuclear 

cell-related processes are active in CTD-ILD. DEGs 

including CCL19, CCL22, CCL2, and CCL18 were 

related to DC’s function. Though total DC abundance 

was elevated in all three ILDs, activated DCs infiltrated 

the CTD-ILD lung tissue and were a possible source or 

target of these chemokines [48]. Previous studies 

primarily attributed CTD-ILD to autoantibodies and 

resultant dysregulation of innate immunity. However, 

the specific role of aDCs remains largely unexplored 

[49, 50]. In contrast to fHP, in CTD-ILD, DCs are 

activated by endogenous antigens originating from 

collagen fibers, neutrophil extracellular trap, or 

immune complexes [51]. Notably, targeting activated 

follicular DC and inducing DCs’ tolerance has  

shown promise in alleviating autoimmune conditions 

[52, 53]. Consequently, interventions aimed at 

modulating aDCs or chemotaxis in the context of  

CTD-ILD may hold therapeutic potential for improving 

patient outcomes. 

 

The strengths of this study were inclusion of most 

common subtypes of fibrotic ILD and integrated 

analysis. IPF, fHP, and CTD-ILD have similar 

pulmonary fibrosis but different causes, allowing for 

exploration of diverse fibrosis pathways. Additionally, 

the study analyzed data on different levels, including 

signaling pathways, protein interactions, immune 

infiltration, and TFs. 

 

However, there were some limitations to this study. 

First, the number of samples was not equal among 

groups because lung tissue from CTD-ILD patients was 

relatively rare. Second, some subtypes of CTD-ILD, 

like idiopathic inflammatory myopathy associated-ILD 

and primary Sjögren syndrome-associated ILD, were 

missing, though two most prevalent subtypes, SSc- and 

RA-ILD were included. 

 

In summary, the objective of this study was to compare 

distinct molecular patterns among three common types 

of fibrotic ILDs. Transcriptome data from public 

databases was collected and integrated. 1059 DEGs for 

IPF, 602 DEGs for fHP, and 321 DEGs for CTD-ILD 

were identified, and 105 DEGs were found to share 

among these 3 ILDs. PPI network and functional 

enrichment were conducted to identify functional 

modules within each set of DEGs. Interestingly, a 

shared ECM-related module among 3 ILDs was 
discovered and possibly regulated by p53 family 

members. Neuronal response seems to be involved in 

IPF and B cell signaling pathway was found active in 

fHP, based on functional enrichment of disease-specific 

DEGs. Computational immune filtration was performed 

to predict the cellular changes in the lung tissue. The 

results indicated an enrichment of aDCs in CTD-ILD, 

while B cells seemed to dominate in fHP, which was 

consistent with results from functional enrichment. 

These molecular and cellular discrepancies may 

underpin the observed clinical diversity among ILDs. It 

is imperative to note that the pathways and biomarkers 

identified herein warrant further validation through 

experimental research and clinical trials to confirm their 

relevance and applicability. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 
 

Supplementary Figure 1. The correction of datasets used in this study. (A, B) The density plots of IPF, fHP and CTD-ILD datasets 
before (A) and after (B) normalization and removing batch-effects. (C) The Q-Q plot of the three datasets after correction. 
 

 
 

Supplementary Figure 2. The principal component analysis (PCA) plot of the merged dataset by disease state and the 
original datasets. 
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Supplementary Figure 3. DO enrichment analysis. Chord diagram showed the correlation between diseases and common down-
regulated DEGs, with different colors corresponding to different DO terms. 
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Supplementary Figure 4. Immune infiltration analysis. Violin diagram showing three diseases’ unique proportion variation of immune 
cells obtained using the xCell. *:P < 0.05; **:P < 0.01; ***:P < 0.001; ****:P < 0.0001 

3220



www.aging-us.com 22 AGING 

 
 

Supplementary Figure 5. Activation of the p53 family in IPF patients. Boxplot showing the up-regulation of p53 family members in 

patients with idiopathic lung fibrosis. ****:P < 0.0001. 
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Supplementary Figure 6. Activation of the p53 family in IPF patients. Boxplot showing the up-regulation of p53 family members in 
patients with idiopathic lung fibrosis. ****:P < 0.0001. 
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Supplementary Figure 7. Pathway view of collagen degradation. The common DEGs were emphasized with red box. 
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Supplementary Figure 8. Pathway view of axon guidance. The IPF-specific DEGs were emphasized with red box. 
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Supplementary Figure 9. Pathway view of B cell receptor signaling. The CHP-specific DEGs were emphasized with red box. 
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Supplementary Figure 10. Pathway view of chemokine signaling. The CTD_ILD-specific DEGs were emphasized with red box. 
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Supplementary Tables 
 

 

Please browse Full Text version to see the data of Supplementary Tables 1–4, 7–10. 

 

Supplementary Table 1. Differentially expressed genes of fHP.  

 

Supplementary Table 2. Differentially expressed genes of IPF.  

 

Supplementary Table 3. Differentially expressed genes of CTD-ILD.  

 

Supplementary Table 4. All common differentially expressed genes of IPF, fHP and CTD-ILD.  

 

  

3227



www.aging-us.com 29 AGING 

Supplementary Table 5. Up-regulated common differentially expressed genes of 
IPF, fHP and CTD-ILD.  

hgnc_symbol logFC_IPF logFC_CHP logFC_CTD.ILD 

ACTG2 1.16867332289099 1.06884319181345 1.57264761554731 

ALDH1A3 1.37938443626019 1.203935667529 2.02540445237465 

BAAT 1.50486346899843 2.11337420730513 2.15145213982184 

CCL22 1.21217326638706 1.32230959545926 1.46059285766171 

CD1A 1.28563576066025 1.19629725112951 1.30184435915926 

CD207 1.28503231545761 1.32747024212248 1.4483832918451 

CD24 1.3567283865497 1.30857017633235 1.35159383429003 

CD79A 1.1001129187577 1.60528405537751 1.31164920456388 

CDH3 1.55254377511596 1.77422180393457 1.77715247941456 

CILP2 1.43081105473093 1.63602244229272 1.08019620698807 

CLCA2 1.1889021961 1.35272328038441 1.90153630382498 

CLDN1 1.35303152912343 1.26599260803912 2.03637389720905 

COL10A1 1.41114064628794 2.15572235346214 2.02614774212009 

COL15A1 1.32217306566972 1.16719339312545 2.03491115864745 

COL17A1 1.56579578040413 3.11378506173711 2.09905827748447 

COL1A1 1.19967078320226 1.36940141859273 2.09054631335168 

COL22A1 1.42887166919087 1.08783036913002 1.07928914726629 

COL3A1 1.16138217513617 1.19792189825317 1.96960198466899 

COMP 1.44021388998733 2.18515988472482 2.29253797286178 

CP 1.25006262921802 1.59861653042657 1.15130529617468 

CR2 1.12132181659738 4.76726574883564 1.20100749441066 

CRABP2 1.46726880643017 1.68475783603254 1.40603848092354 

CST1 1.14702917580896 4.67484799147212 2.41315816141039 

CST2 1.32344449403933 2.43414705816646 2.09366865964664 

CTHRC1 1.40382311258675 1.40711633966439 1.98177353779443 

CTSK 1.30885109655958 1.20945785400863 1.27868864164933 

CXCL13 1.28943496908849 2.5439019027623 1.65581870981868 

CXCL14 1.44220942925456 1.81851882996128 1.46659837028222 

CXCL6 1.14205998213226 1.42926109616135 1.51310015479465 

CYP24A1 1.38183581653317 2.91870164219946 1.45646381062104 

DES 1.15760796003788 1.05027649574864 1.18699183415991 

DIO2 1.50085088162593 4.84026100872179 1.7024286569945 

DSG3 1.38275286113405 1.92086551148894 1.35386259338207 

FAM83A 1.32648290606239 1.00390407052197 1.36762517730964 

FHL2 1.45987116429258 1.04584658659112 1.80808977685406 

FNDC1 1.44169186308349 2.3074685642745 1.39798967421432 

GJB2 1.38939930334731 1.90585410149485 1.44066489248103 

HS6ST2 1.53810380412916 1.29069179835172 1.04641986611265 

IGFL1 1.4173567987978 4.10096599631326 1.30994741132254 

IGFL2 1.50505031248118 4.10850318037433 2.20639209105057 

IL13RA2 1.50103761252354 1.65577949471032 2.25078732597388 

KRT14 1.48071175889854 4.79832833957068 1.95558847504554 

KRT15 1.30519460842457 1.82896466456427 1.68717749254765 

KRT16 1.31863430545208 4.60334339417622 1.15553978505549 

KRT17 1.45526856223259 2.38141883794919 3.08328692257748 

KRT5 1.345186402039 2.36519549370348 3.13204675919996 

KRT6A 1.27725887623621 2.34136032196097 2.06608901185009 
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KRT6B 1.17825127028074 2.79711661913147 1.70233098181525 

LRRTM1 1.34460832671252 2.86863997930985 1.42821470996562 

MDK 1.28116659256428 1.14996875744481 1.49032602470256 

MEOX1 1.2194108341199 2.47679192252652 1.317949319174 

MMP1 1.41926330419899 2.36944621973944 2.52411096843166 

MMP10 1.25697335482946 1.85519717382516 1.92540471014862 

MMP11 1.49021125416502 1.87211172610846 1.88099243180746 

MMP13 1.48302296385838 3.44614767062312 1.2528582962855 

MMP7 1.51474262024814 2.29674819012599 2.82787276324862 

PCP4 1.39770370221466 3.49108552294338 1.91730096143447 

PDLIM4 1.42251447811563 1.49837642836773 1.23591530117167 

POSTN 1.34102947292959 1.42996786093157 1.71850107261227 

POU2AF1 1.2747842380671 1.26539652745947 1.21263194662377 

SCG5 1.49102062977927 2.95977608871547 1.4585972748726 

SERPINB5 1.36125280521898 2.42067874661796 1.9944708717494 

SERPIND1 1.24819123091871 1.53196417422222 1.96175863645607 

SFRP2 1.38283433251574 1.55744901541122 2.37094794321419 

SLC28A3 1.28073117579086 1.02551876584639 1.74312735750169 

SLN 1.20043899312754 1.62301222630393 1.09394416395194 

SPP1 1.20157691284556 1.49184373727737 2.97845347776939 

SPRR1A 1.337886445773 4.26712471227044 1.13264020888067 

SULF1 1.43755354979499 1.07367922897018 1.70103084623035 

THBS2 1.18709534646714 1.06521212072047 1.68326877480194 

THY1 1.3345079226186 1.86940548944793 2.74004298678487 

TRPV6 1.35762436742283 1.15224496082757 1.20221419882409 

TUBB3 1.36740853052801 2.53274536700379 1.30448508092816 

UCN2 1.33588447389693 1.31905940884364 1.13027254748341 

UGT1A6 1.32118085405306 2.82876121457458 1.58714934524663 

WNT10A 1.37898853272126 1.45352136155049 1.52635758438604 
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Supplementary Table 6. Down-regulated common differentially expressed genes of 
IPF, fHP and CTD-ILD.  

hgnc_symbol logFC_IPF logFC_CHP logFC_CTD.ILD 

AGER -1.34899997867565 -1.42199951903428 -2.64609928429044 

BTNL9 -1.42003716481868 -1.62515713982911 -2.34544821942771 

CA4 -1.4501328267098 -1.5884186896536 -2.90308555733666 

CCK -1.120331223529 -2.62561468464483 -1.10951595760675 

CHRM1 -1.16493901069145 -1.45895209169062 -1.19574462535598 

CRTAC1 -1.22207832130913 -1.1324549012924 -1.66030534025204 

CSF3R -1.23097381642726 -1.15494893358054 -1.0504694882291 

EDNRB -1.30050312761451 -1.1119168035004 -1.07601469183884 

EPAS1 -1.28412788703569 -1.26627830723914 -1.02230942444717 

FCN3 -1.26412115067964 -1.24178649339451 -2.57438309243446 

GALNT13 -1.56703692435974 -1.93826251238563 -1.23444085378394 

GRIA1 -1.33586041118294 -1.89998969983665 -1.23841567821961 

GRM8 -1.12127198304424 -2.89794990829132 -1.32327719649941 

HIF3A -1.3482116537219 -1.36676416826069 -1.14455075292685 

HTR3C -1.16608921452496 -1.35575762501819 -1.42230123302719 

ITLN2 -1.46698772149713 -3.02657947692901 -3.38646612110895 

KLRF1 -1.22424721414267 -1.64203657219513 -1.04733916449086 

MME -1.32923029628891 -1.33764545145942 -1.17963698890775 

NDRG4 -1.22391023699594 -1.41714821190263 -1.31730113529117 

PNMT -1.1658308453927 -1.0634866396352 -1.53618040595259 

PRX -1.35922208820321 -1.27536241010644 -1.60625736257521 

PTPRB -1.36952057540505 -1.02877211145758 -1.20802965804873 

RGS9BP -1.2561647656702 -1.09809486301492 -1.29897202906918 

RS1 -1.33465448139793 -1.05537623233956 -1.72487566322996 

SLC6A4 -1.17726120301447 -2.32365869095908 -2.339236094182 

SLCO1A2 -1.3625353577266 -3.28361942036096 -1.11892598862302 

STXBP6 -1.33747791880127 -1.52101017786342 -1.1840624542589 

TMEM100 -1.18507102935744 -1.29489581247938 -2.3646363303669 

VIPR1 -1.23025374592456 -1.70707144428038 -2.30090054973427 

 

Supplementary Table 7. Gene ontology enrichment analysis of up-regulated common differentially expressed 
genes. 

 

Supplementary Table 8. Gene ontology enrichment analysis of down-regulated common differentially 
expressed genes. 

 

Supplementary Table 9. KEGG enrichment analysis of up-regulated common differentially expressed genes.  

 

Supplementary Table 10. KEGG enrichment analysis of down-regulated common differentially expressed genes. 
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