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INTRODUCTION 
 

Chronic obstructive pulmonary disease (COPD) is one 

of the most common lung diseases, characterized by 

chronic airway obstruction, chronic inflammation, and a 

progressive and irreversible decline in lung function [1, 

2]. The World Health Organization reports that COPD 

is the third leading cause of death and causes over 3.3 

million deaths globally [2–4]. Tobacco use, genetic 

factors, environmental pollution, and infections are the 

major risk factors for COPD [5]. Due to those risk 
factors, the total mortality rate of COPD increased by 

14.1% between 2009 and 2019 [2]. The high morbidity 

and mortality and low quality of life led by COPD have 

resulted in severe economic and social burdens [6]. 

Therefore, it is urgent to identify more underlying 

pathophysiological mechanisms of COPD development 

that can be effectively influenced for therapeutic 

purposes. 

 

The gut microbiota refers to the microbial community 

living in the gut, including bacteria, fungi, protozoa, and 

viruses. In addition to affecting metabolic, immune, and 

endocrine systems, gut microbiota influences the 

functions of extra-gut organs and disease development 

[7–9]. For this reason, researchers have proposed the 
theory of the “Gut-lung axis,” meaning the long-

distance cross-talk between lung and gut. Notably, 

increasing studies have linked the alterations in the gut 

microbiota and the pathogenesis and development of 
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ABSTRACT 
 

This study aimed to explore the profile of gut microbiota and immunological state in COPD patients. 80 fecal 
and blood samples were collected from 40 COPD patients and 40 healthy controls (HC) and analyzed with 16s-
rRNA gene sequencing and immunofactor omics analysis to investigate the profile of gut microbiota and 
immunologic factors (IFs). The linear discriminant analysis (LDA) effect size (LefSe) was used to determine the 
biomarker’s taxa. The random forest and LASSO regression analysis were executed to screen IFs and develop an 
IFscore model. The correlation between gut microbiota and IFs, along with the IFscore and the diversity of gut 
microbiota, was evaluated with the Spearman analysis. The α and β diversity showed that the composition and 
distribution of gut microbiota in the COPD group differed from that of the HC group. 7 differential taxa at the 
phylum level and 17 differential taxa at the genus level were found. LefSe analysis screened out 5 biomarker’s 
taxa. 32 differential IFs (up-regulated 27 IFs and down-regulated 5 IFs) were identified between two groups, 
and 5 IFs (CCL3, CXCL9, CCL7, IL2, IL4) were used to construct an IFscore model. The Spearman analysis revealed 
that 29 IFs were highly related to 5 biomarker’s taxa and enriched in 16 pathways. Furthermore, the 
relationship between the IFscore and gut microbiota diversity was very close. The gut microbiota and IFs profile 
in COPD patients differed from that in healthy individuals. Gut microbiota was highly related to the immune 
status in COPD patients. 
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COPD [10]. Research has proved that the composition 

and distribution of gut microbiota in COPD differs from 

those of healthy individuals [10–13]. Additionally, the 

abnormal gut microbiota in COPD is correlated to 

airway inflammation level, and the progression of 

COPD in mice is accelerated by fecal transplantation 

from COPD to mice [14], hinting at a direct influence of 

the gut microbiota on COPD. 

 

Chronic exposure to risk factors triggers and exacerbates 

the development of COPD by inducing airway inflam-

mation and immune cell infiltration into both the central 

airways, distal airways, and lung parenchyma [15]. 

Inflammation and immune cell infiltration in the 

bronchial tree are considered the essential pathogenesis 

of COPD [16]. Inflammatory and immune cells release 

various immunologic factors (cytokines, chemokines, 

and mediators). These immunologic factors (IFs) can be 

divided into two types: 1) pro-inflammatory: TNF-α, IL-

1, IL-13, IL-6, and so on; 2) anti-inflammatory: IL-10, 

TGF-β, and so on [17, 18]. An imbalance of IFs would 

cause persistent immune cells to infiltrate and aggravate 

the progressive destruction of the lung in COPD by 

releasing destructive enzymes [19]. 

 

In the study, we evaluated the relationship between gut 

microbiota and systemic immune factors for the first 

time. Firstly, we applied 16s-rRNA gene sequencing to 

analyze the composition and distribution of gut 

microbiota in COPD. Then, we take advantage of 

immunofactor omics analysis to investigate the profile 

of 48 IFs. Finally, we explored the relationship of gut 

microbiota to IFs and developed an IFscore with 5 IFs 

to evaluate the immune levels and their correlation with 

gut microbiota. 

 

RESULTS 
 

Alterations in α and β diversity between healthy 

controls (HC) and COPD 

 

We analyzed 80 stool samples (HC: 40; COPD: 40) and 

obtained 7 752 964 raw reads mapped to 7364 OTUs. 

The observed OTUs, Chao1, Shannon, and Simpson 

index were calculated to evaluate the α diversity. All 

indexes in the COPD group were significantly decreased 

(observed OTUs P =0.042, Chao1 P= 0.046, Shannon  

P =0.008, Simpson P =0.017, Figure 1A). The PCA 

presented two groups clustered in independent regions 

(Figure 2B). The PCoA and NMDS showed samples in 

two groups displayed tighter clustering (Figure 1C, 1D). 

 

Taxonomic distributions 

 

The taxonomic composition of gut microbiota at 

phylum, class, order, family, and genus levels was 

investigated. At the phylum level, 12 and 11 phyla were 

identified in the HC and COPD group, respectively 

(Figure 2A). The top three abundant phyla in the COPD 

group were Firmicutes, followed by Bacteroidetes  

and Proteobacteria (Figure 2B). In the COPD group,  

the top three abundant phyla were Firmicutes, followed 

by Bacteroidetes and Proteobacteria (Figure 2B). 

Compared with the HC group, the abundance of 

phylum-Proteobacteris, Acidobacteria, Synergistetes 
Acidobacteria, and Tenericutes increased in the COPD 

group. In contrast, the proportion of Firmicutes, 

Lentisphaerae, and Cyanobacteria was decreased 

(Figure 2C–2I). 

 

At genus levels, 289 genera were identified in the 

COPD group and 184 in the HC group (Figure 3A). The 

top 10 genera in both two groups were shown in Figure 

3B. The abundance of 7 genera in the COPD group was 

significantly higher than that in the HC group (Figure 

3C). In addition, the proportion of 10 genera was 

substantially lower than that in the HC group. 

 

Identification of biomarker’s taxa in COPD group 

 

The LefSe analysis revealed that 14 floras at genus levels 

were markedly enriched in the COPD group (LDA 

value> 3.0 and P< 0.01, Figure 4A). Then, the difference 

analysis between the two groups found that among 14 

floras, the abundance of 5 floras in the COPD group was 

significantly increased (Blautia: P <0.001, Prevotella:  

P <0.001; Ruminococcus: P <0.001, Enterococcus:  

P <0.001, Enterobacter: P <0.001; Figure 4B). Hence, 

we selected those 5 genera as the biomarker’s taxa in 

COPD. The receiver operating characteristic curves 

(ROC) of 5 genera were presented in Figure 4C, and the 

area under the ROC (AUC) was 0.811, 0.815, 0.966, 

0.922, and 0.813 for Blautia, Prevotella, Ruminococcus, 
Enterococcus, and Enterobacter, respectively. 

 

The influence of clinical indexes on the distribution 

of gut microbiota 

 

The CCA analysis showed that 6 factors had a vital 

impact on the distribution of the gut microbiota, 

including FEV1/FVC (P <0.001), FEV1%pre (P <0.001), 

GOLD Grade (P =0.008), COPD Group (P =0.024), 

smoking history (P =0.013), and frequency of 

hospitalization due to COPD at last year (P =0.006) 

(Figure 5). 

 

Functional annotation analysis 

 

As shown in Figure 6A, 145 differential pathways were 
identified between the HC and COPD groups. Of note,  

5 immune-related pathways (map04659: Th17 cell 

differentiation; map04657: IL-17 signaling pathway; 
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map04625: C-type lectin receptor signaling pathway; 

map04622: RIG-I-like receptor signaling pathway; 

map04624: Toll and Imd signaling pathway) were 

significantly enriched in the COPD group. Then, we 

investigated the association of 5 biomarker’s taxa with 5 

immune-related pathways. The Spearman analysis 

demonstrated that 5 biomarker’s taxa were highly related 

to immune-related pathways (Figure 6B). 

The profile immunologic factors in COPD 

 

The PCA indicated that the profile of 48 IFs in  

the COPD group was obviously different from that  

in the HC group (Figure 7A). The Wilcoxon  

rank-sum test determined 32 differential IFs, including 

27 up-regulated IFs and 5 down-regulated IFs  

(Figure 7B). Then, we performed pathway enrichment 

 

 
 

Figure 1. The α and β diversity assessment of gut microbiota. (A) The α diversity was evaluated by observed OTUs, Chao1, Shannon 
and Simpson indexes. The β diversity was evaluated by (B) PCA, (C) PCoA and (D) NMDS. H: healthy controls; COPD: Chronic obstructive 
pulmonary disease; PCA: Principal Component Analysis; PCoA; Principal coordinate analysis; NMDS: Non-metric multidimensional scaling. 
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analysis with the online database DAVID 

(https://david.ncifcrf.gov/home.jsp). The cut-off value 

was set as FDR <0.05. 21 pathways were enriched by 

32 differential IFs (Figure 7C). 

 

Construction of an IFscore model 

 

Previously, we identified 32 differential IFs. Then, we 

used the random forest to select 5 representative IFs 

with important points (CCL3, CXCL9, CCL7, IL2, IL4; 

Figure 8A). Next, the LASSO regression analysis was 

performed to develop an IFscore model (Figure 8B). 

The following formula established the score. 

 
9.694 1.433 3 0.029 CXCL9

0.001 CCL7 0.036 IL2

0.002 4

IFscore CCL

IL

= − +  + 

+  + 

+ 

 

 
The Spearman analysis indicated that the IFscore was 

significantly negatively correlated with the observed 

OTUs (R = -0.459, P =0.004), Chao1 (R = -0.454, P 

=0.005), Shannon (R = -0.647, P <0.001), and Simpson 

(R = -0.623, P <0.001) index (Figure 8C). The PCA was 

utilized for the β diversity assessment of gut microbiota 

between high- and low-IFscore samples and evidenced 

that samples with different IFscores were clustered in 

other regions (Figure 8D). The CCA analysis illustrated 

that the IFscore was an influential influence factor for 

the distribution of gut microbiota (Figure 8E). 

 

Correlation analysis between IFs and biomarker’s 

taxa 

 

The Spearman analysis was applied further to 

investigate the correlation between IFs and gut 

microbiota. |cor|> 0.40 and P < 0.05 were set as the cut-

off value. 27 IFs were highly related to 5 biomarker’s 

taxa (Figure 9A). Furthermore, we performed functional 

enrichment analysis and found that 16 pathways were 

enriched by 27 IFs (Figure 9B). 

 

DISCUSSION 
 

In the past decade, a large number of researchers have 

realized the role of the gut microbiota on the 

pathophysiological processes of several diseases, 

including COPD [7]. Recently, multiple studies have 

observed an imbalance in gut microbiota between 

COPD patients and healthy individuals, which was in 

line with our findings. In the study, the α and β diversity 

revealed that the gut microbiota profile in COPD 

differed significantly from those in healthy individuals. 

Previous literature reported that the relative quantity of 

 

 
 

Figure 2. Taxonomy comparison of gut microbiome at phylum level. (A) Phyla identified in HC and COPD group. (B) Top 5 phyla in 
two groups. (C–I) Differential phyla between two groups. 
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Bacteroides in COPD was higher than that in the 

healthy, whereas the abundance of Firmicmicus was 

lower [13, 20]. Inconsistent with previous findings, we 

observed no difference in Bacteroides between the two 

groups, although the proportion of Firmicmicus in the 

COPD group was decreased. A prospective study 

demonstrated that the gut microbiota was a potential 

biomarker with clinical validity for the prognostic 

 

 
 

Figure 3. Taxonomy comparison of gut microbiome at genus level. (A) Genera identified in HC and COPD group. (B) Top 10 genera in 

two groups. (C) Differential genera between two groups. FC: Fold change. 

3245



www.aging-us.com 6 AGING 

prediction of COPD [15, 21]. Herein, we also 

discovered the changes in gut microbiota were closely 

related to multiple clinical indexes. These results 

implied that gut microbiota imbalance may contribute to 

COPD development. 

We detected 5 genera as biomarker’s taxa for  

COPD, including Blautia, Prevotella, Ruminococcus, 

Enterococcus, and Enterobacter. Blautia is a gram-

positive, non-sporulating, coccobacillus shaped 

bacterium within the guts of mammals and could 

 

 
 

Figure 4. Identification of biomarker’s taxa. (A) LefSe determined 14 floras at genus levels were markedly enriched in the COPD group. 

(B) Wilcoxon rank-sum test showed the abundance of 5 floras was significantly increased in COPD group among 14 floras. (C) The ROC of 5 
biomarker’s taxa. LefSe: The Linear discriminant analysis (LDA) effect size; ROC: The receiver operating characteristic curve; AUC, the area 
under the ROC. 

3246



www.aging-us.com 7 AGING 

produce short-chain fatty acids, other organic acids, 

and H2 and CO2 gases [22]. The abundance of Blautia 

was increased in multiple diseases, and fecal 

microbiota transplantation would alleviate disease 

progression [23–26]. Prevotella was found conducive 

to the breakdown of protein and carbohydrates and 

turned into opportunistic pathogens [27, 28]. 

Ruminococcus, a Gram-positive bacterial, is widely 

present in the intestine [29]. It is highly related to 

mucosal inflammation and bile acid metabolism and 

can improve the content of regulatory T cells and the 

production of short-chain fatty acids [30, 31]. 

Enterococci are Gram-positive cocci that occur singly, 

in pairs, or in short chains and have a fermentative 

metabolism in which they convert carbohydrates to 

lactic acid [31, 32]. Enterobacter bacteria are motile, 

rod-shaped cells and possess peritrichous flagella. As 

facultative anaerobes, some Enterobacter bacteria 

ferment glucose and lactose as a carbon source [33]. 

The levels of Enterobacter were found to be 

significantly higher in patients with COPD, asthma, 

and lung cancer [14, 34]. 

 

Chronic inflammation and immune dysregulation are 

essential characteristics of COPD and could trigger 

COPD and accelerate its development. Herein, we 

investigated the profile immunologic factors in COPD 

and pinpointed 32 differential IFs (up-regulated 27 IFs 

 

 
 

Figure 5. The CCA analysis revealed the influence of clinical parameters on the distribution and structure of the gut 
microbiota. CCA: The canonical correspondence analysis; GOLD: Global Initiative for Chronic Obstructive Lung Disease. 
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Figure 6. Functional annotations analysis of gut microbiota. (A) 145 differential pathways identified between H and COPD groups.  

(B) The association of 5 biomarker’s taxa with 5 immune-related pathways. 

 

 

 

Figure 7. The profile immunologic factors in COPD. (A) PCA showed that COPD patients and healthy people were gathered in two 
areas. (B) 32 differential IFs were determined between H and COPD group. (C) Pathway enrichment analysis of 32 differential IFs. IFs: 
immunologic factors. 
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Figure 8. Construction of IFscore model. (A) Random forest screened out 5 representative IFs with important points. (B) LASSO 
regression analysis was performed to develop a IFscore model with 5 IFs. (C) The relation of IFscore to the α gut microbiota. (D) The PCA for 
the β diversity assessment of gut microbiota between high- and low-IFscore samples evidenced that the samples with different IFscore were 
clustered in different regions. (E) The CCA analysis illustrated IFscore had important influence on the distribution and structure of the gut 
microbiota. LASSO: least absolute shrinkage and selection operator. 

 

 
 

Figure 9. Correlation analysis between IFs and biomarker’s taxa. (A) The correlation network between IFs and biomarker’s taxa. The 

red circle represented biomarker’s taxa. The green square represented IFs. The edge represented correlation. The thicker the edge, the 
greater the correlation. (B) Functional enrichment analysis of 29 IFs were highly related to 5 biomarker’s taxa. 
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and down-regulated 5 IFs). Then, we developed a 

IFscore with 5 IFs (CCL3, CXCL9, CCL7, IL2, IL4), 

representing the immune status. CCL3 belongs to the CC 

chemokine subfamily. The expression of CCL3 under 

normal physiological conditions is low. However, in 

COPD patients, immune cells like macrophages, 

lymphocytes, and neutrophils could secrete and increase 

the level of CCL3 to participate in immune and 

inflammatory responses [35]. The inhibition of CCL3 

expression could restore the tight junctions of epithelial 

cells and suppress COPD development [36]. CCL7 is a 

chemotactic factor for monocytes and neutrophils and is 

induced in several cell types, like monocytes, vascular 

smooth muscle cells, and endothelial cells [37]. 

Decreased CCL7 levels may cause the loss of 

chemotactic effects on immune cells and a subsequent 

reduction in inflammatory cell recruitment, while 

increased CCL7 levels may lead to inflammation [38]. 

Similar to CCL3, the CCL7 level in COPD patients was 

enhanced [38]. CXCL9 is secreted by several immune 

and non-immune cells, including T lymphocytes, 

eosinophils, macrophages, dendritic cells, fibroblasts, 

tumor cells, and endothelial cells [39]. CXCL9 

induced by IFN-γ functions as a T-cell chemoattractant 

and can be considered a biomarker of host immune 

response, especially in Th1 cells mediated immune 

response [40]. In COPD, the CXCL9 level was 

increased [40]. In addition, the CXCL9 levels could 

predict the 12-month COPD-related readmission rate 

[41]. IL-2 predominantly secretes activated T-cells in 

an autocrine and paracrine manner to stimulate T-cell 

differentiation and proliferation and promote host 

immunity [42]. IL-2 levels were enhanced in COPD 

patients compared with healthy individuals [43, 44]. 

IL-4 has the capacity to induce B cell proliferation and 

Th2 differentiation and switch the immunoglobulin 

(Ig) class of IgE and IgG4 to play a critical role in 

inflammation and infection [45]. COPD patients had 

higher levels of IL-4 than those in healthy individuals. 

Furthermore, IL-4 level was related to the severity of 

COPD and could be a potential clinical evaluation 

marker [46–48]. 

 

The gut microbiota can interact with the lungs through 

the lung–gut axes, which play a causal role in the 

development and progression of COPD [11]. 

Nevertheless, the underlying mechanism remains 

unclear. Herein, we analyzed the correlation between 

IFs and gut microbiota and identified 29 IFs that were 

highly related to 5 biomarkers’ taxa. Moreover, we 

found 29 IFs, especially the pathway, enriched 16 

immune-related pathways: cytokine- cytokine receptor 

interaction, indicating that gut microbiota may influence 

the development of COPD by regulating the level of 

cytokine. However, the results still needed more basic 

experiments to verify. 

Limitations: 1. Herein, we unpacked the relation of gut 

microbiota to IFs. All conclusions were based on high-

throughput research and correlation analysis. No 

experimental research was conducted to confirm the 

results, and further experiment was demanded. 2. We 

analyzed the composition and distribution of gut 

microbiota in COPD patients and selected those 5 genera 

as the biomarker’s taxa. The included sample size was 

only 40 cases, which may bring biased results. Therefore, 

external data was needed to validate the conclusion. 3. 

We built an IFscore to assess the immune status. 

However, only 40 samples were used to construct the 

IFscore model and 0 cases to validate. Hence, large-scale 

clinical trials were needed to validate the results. 

 

Together, we detected the gut microbiota profile in 

COPD patients and identified 5 biomarker’s taxa. 

Additionally, we analyzed the abundance of 48 IFs and 

determined 32 differential IFs. Then, an IFscore model 

was developed to evaluate the immune status in COPD 

patients. Finally, we estimated the association of 

biomarker’s taxa and IFs and the association of IFscore 

and the diversity of gut microbiota to conclude that gut 

microbiota was highly related to the immune status in 

COPD patients. 

 

MATERIALS AND METHODS 
 

Subjects 

 

80 individuals were recruited from Guangfu Hospital, 

including 40 COPD patients and 40 healthy controls 

(HC). The study was approved by the medical ethics 

committee of the Guangfu Hospital, and all participants 

gave written informed consent. The corresponding 

clinical information was also collected, such as age, 

gender, height, weight, body mass index (BMI), 

smoking history, Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) Grade, mMRC, 

COPD Group, Blood Eosinophil, FVC, FEV1, 

FEV1%pre, and FEV1/FVC. All participants’ detailed 

demographic and baseline characteristics were 

described in Table 1. 

 

Patients were diagnosed with COPD according to the 

GOLD recommendations (2023): FEV1%pre < 80% and 

FEV1/FVC < 0.7 (after bronchodilators, in a clinically 

stable condition). 

 

Inclusion criteria in the study: 1) Aged from 18 to 75 

years; 2) Meet diagnostic criteria; 3) During the stable 

period of the condition (>4 weeks after the condition 

worsens). 

 

Exclusion criteria: 1) With other diseases that would 

affect the composition and distribution of gut 
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Table 1. The detailed demographic and baseline characteristics of all 
participants. 

 H (n = 40) COPD (n = 40) P 

Age 68.3 ± 7.34 69.5 ± 7.58 0.674 

Gender   0.465 

Female 9 (22.5%) 8 (20.0%)  

Male 31 (77.5%) 32 (80.0%)  

Height (cm) 165 ± 7.24 164.5 ± 7.18 0.563 

Weight (kg) 57.4 ± 11.54 59.6 ± 12.68 0.742 

BMI 21.1 ± 3.34 22.0 ± 3.91 0.683 

Smoking history   - 

Never - 11 (27.5%)  

Ever - 21 (52.5%)  

Current - 8 (20.0%)  

Frequency of hospitalization a   - 

≥1 - 23 (57.5%)  

<1 - 17 (42.5%)  

GOLD Grade   - 

I - 2 (5.0%)  

II - 15 (37.5%)  

III - 21 (52.5%)  

IV - 2 (5.0%)  

mMRC   - 

I - 11 (27.5%)  

II - 17 (42.5%)  

III - 6 (15.0%)  

IV - 6 (15.0%)  

COPD Group   - 

A - 11 (27.5%)  

B - 6 (15.0%)  

E - 23 (57.5%)  

Blood Eosinophil (10*9) - 0.17 ± 0.28 - 

FVC - 2.24 ± 0.61 - 

FEV1 - 1.28 ± 0.51 - 

FEV1%pre - 50.66 ± 16.70 - 

FEV1/FVC - 56.16 ± 10.75 - 

Notes: a Frequency of hospitalization due to COPD in the past year. BMI, body 
mass index. 

 

microbiota, like cancer, metabolic diseases, and mental 

illness; 2) Any antibiotics used intravenously or orally 

in the past 4 weeks; 3) Women were in pregnancy or 

breastfeeding. 

 

Sample collection 

 

The Fecal Collection Kit (Beyotime, China) was used 

for gathering stool samples. Total genome DNA was 

extracted using the CTAB method and stored at −80° C.  

5 mL blood samples were collected with an EDTA tube 

and centrifuged (3500 rpm, 4° C, 15 mins). The 

supernatant was collected as the plasma samples and 

stored at − 80° C. 

 

16s-rRNA gene sequencing 

 

As described previously [49], 1% agarose gel 

electrophoresis was used to monitor the purity and 

concentration of DNA. Appropriate samples were taken 
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and diluted to 1ng/µl with sterile water. The primers 

that targeted the16s-rRNA V3-V4 region was: 341F (5’-

CCTAYGGGRBGCASCAG-3’); 806R (5’-GGACTA 

CNNGGGTATCTAAT-3’). The PCR amplification and 

purification were performed as described previously 

[49]. Sequencing library construction was performed 

with NEB Next ® The Ultra DNA Library Prep Kit 

(Illumina, USA), and the constructed library was tested 

and quantified using Agilent 5400 (Agilent, USA). 

After the library was qualified, the library was 

sequenced on a NovaSeq platform (Illumina, USA), and 

250 bp paired-end reads were generated as FASTQ 

files. Briefly, after format conversion, the plugin dada2 

in QIIME2 was used to filter quality, trim, de-noise, 

merge sequences, and chimerism, and generate the 

amplicon sequence variant feature table (ASV). The 

plugin feature-classifier was applied to match ASV to 

the GREENGENES database to generate the taxonomy 

table. In addition, the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) profiles of microbial communities 

were predicted with PICRUSt (v1.1.2). 

 

Bio-Plex pro human cytokine 48-plex screening 

panel 

 

The plasma sample was centrifuged (1000g, 15 min,  

4° C) to remove particulates and mixed with wash 

buffer in a ratio of 1:4. The standards were added 250 μl 

of standard diluent HB, vortexed 5s and incubated 30 

mins. Prepared a fourfold standard dilution series and 

blank sample. Each well was added 50 μl 1x beads and 

washed 2 times with 100 μl Bio-Plex Wash Buffer. 

Then, added 50 μl standards, a plasma sample, blank to 

well and incubated on shaker at 850 rpm for 30 mins. 

After washing 3 times, add 25 μl 1x detection antibody 

and incubate 30 mins. After washing 3 times, added 50 

μl 1x streptavidin-PE and incubated for 10 mins. After 

washing 3 times, resuspended beads in 125 μl assay 

buffer and generated data with Bio-Plex 3D (Bio-Rad, 

USA). The data were analyzed using MILLIPLEX 

Analyst software (V5.1). The fluorescence value of the 

standard sample was used to obtain the fitting curve, 

Coefficient of variation (CV), Accuracy, and Sensitivity 

with the 5-parameter logistic method. Calculated the 

concentration of immunologic factors by substituting 

the sample’s fluorescence value into the fitting curve. 

 

Statistical analysis 
 

The categorical data were presented with No (%) and 

compared with the Chi-square test. The measurement 

data were presented with mean ± standard deviation (SD) 

and compared with the Wilcoxon rank-sum test or one-

way ANOVA test. The α diversity was applied to assess 

the evenness and richness of the gut microbiota presented 

with observed OTUs, Chao1, Shannon, and Simpson 

index. The β diversity was utilized to evaluate the extent 

of the similarity pictured with Principal Component 

Analysis (PCA), Principal coordinate analysis (PCoA), 

and Non-metric multidimensional scaling (NMDS) based 

on Bray–Curtis dissimilarity. The Linear discriminant 

analysis (LDA) effect size (LefSe) was applied to 

determine biomarker’s taxa using the Galaxy online 

platform (http://huttenhower.sph.harvard.edu/galaxy/). 

LDA value> 3.0 and Wilcoxon rank-sum test: P< 0.01 

were set as the threshold. The Spearman analysis was 

performed to investigate the relationship between the two 

indexes. The canonical correspondence analysis (CCA) 

was used to explore the influence factor of the 

distribution of gut microbiota. The Random forest  

and least absolute shrinkage and selection operator 

(LASSO) regression analysis were with packages 

“randomForestSRC” and “glmnet,” respectively, to 

screen IFs and develop an IFscore model. All statistical 

analysis was performed with R 4.1.1 (https://cran.r-

project.org) and Prism 7. 
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