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INTRODUCTION 
 

Testicular aging, leading to a decrease in the levels of 

testosterone, decline in sperm quality, a decline in 

fertility, dysfunction body, mental and psychological 

disorders. To treat the decline of testosterone caused by 

testicular aging, testosterone replacement therapy (TRT) 

has been proposed, but it has great side effects  

including prostate cancers, uncontrolled congestive 

heart failure, severe lower-urinary-tract symptoms, and 

erythrocytosis [1]. In addition, male infertility is a 

growing concern due to sharp decline of sperm 

concentration and total sperm count worldwide 

especially in the aging male [2, 3]. More importantly, 

several research have reported that increasing male age 

is significantly associated with bad reproductive 

outcome [4–6]. Despite aging being a universal, 

multifactorial, progressive, and irreversible process, 

there have been numerous attempts to delay or prevent 

aging in general. In the modern societies where paternal 
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ABSTRACT 
 

The male reproductive system experiences degradation with age, predominantly impacting the testes. 
Testicular aging can result in failure to produce physiological testosterone levels, normal sperm concentrations, 
or both. However, we cannot predict the onset of testicular aging in advance. Using single-cell RNA sequencing 
(scRNA-seq) from Gene Expression Omnibus (GEO) database, we conducted cell-cell communication network of 
human testis between older and young group, indicating Leydig cells’ potential role in spermatogenesis 
microenvironment of aging testis. And we depicted the senescence-Associated Secretory Phenotype (SASP) 
features of aging testis by identifying differentially expressed senescence-associated secretory phenotype 
(SASP)-related genes between two group. Notably, IGFBP7 mainly expressed in Leydig cells of those 
differentially expressed SASP-related genes in aging testis. Furthermore, IGFBP7 protein located in the 
interstitial compartment of older mice confirmed by immunofluorescence and highly expressed in both human 
seminal plasma and mouse testis in the older group confirmed through Western blot. Together, our findings 
suggest that IGFBP7 may be a new biomarker of testicular aging. 
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age is on the rise, research on testicular aging is 

increasing. Moreover, the age-related decline in 

testicular function also has a broader impact on overall 

health [7–9]. However, there has been limited 

consensus on the process of testicular aging [10, 11]. 

So, it is an urgency to find out marker of testicular 

aging. 

 

Both germ cells and the spermatogenesis micro-

environment play an important role in spermatogenesis. 

It has been observed that the testis of older man is more 

likely to have decreased in germ cell and malfunction in 

spermatogenesis microenvironment [12, 13]. For the 

spermatogenesis microenvironment, more and more 

studies pay attention to the role of Sertoli and Leydig 

cells [14, 15]. Sertoli and Leydig cells show significant 

abnormalities with age, such as decreased number, 

morphological variations, organelle aging, abnormal 

hormone secretion, and blood–testicular barrier defects. 

Cellular senescence is a cellular stress response 

triggered by molecular damage, such as replication 

failure, activation of abnormal oncogenes, or chemo-

therapy treatment.  

 

The senescence-associated secretory phenotype (SASP) 

is known as secreted by senescent cells which have the 

therapeutic potential to aging [16, 17]. Senolytic is a 

new approach to kill senescent cells selectively, SASP-

centered approaches are emerging as alternatives to 

target senescence-associated diseases. For now, there 

are few studies on SASP in aging testis. Herein, we 

downloaded single-cell RNA sequencing (scRNA-seq) 

from Gene Expression Omnibus (GEO) database. 

According to age stratification, patients were divided 

into older and young groups. And then, we analyzed  

the differences in testicular cell-cell communication 

networks between older and young groups, recognized 

the differential expressing SASP-related genes and 

provided a foundation for further exploration of treating 

testicular aging. 

 

MATERIALS AND METHODS 
 

Single-cell data acquisition and preprocessing 

 

All raw data files were downloaded from Gene 

Expression Omnibus (GEO) database, including NCBI 

accession number GSE120508 (Donor_1, Donor_2, 

Donor_3), GSE215754 (Y1, HA1, HA2), GSE153947 

(Normal_1, Normal_2, Normal_3) and GSE182786 

(Young_1, Young_2, Young_3, Young_4, Older_1, 

Older_2, Older_3, Older_4, Older_5, Older_6, Older_7, 

Older_8). Participants were categorized into two 

groups: the older group and the young group. We 

employed an age-based classification, with individuals 

aged over 60 assigned to the older group, and those 

under 60 categorized as the young group. The Cell 

Ranger (v.7.0.1, 10x Genomics) was used to 

demultiplex the FASTQ reads align raw reads to the 

human reference genome (GRCh38, 10x Genomics), 

and generated the gene-cell unique molecular identifier 

(UMI) matrix for each sample. R package Seurat 

(v.4.3.0.1) was used to processes the count matrices. 

First, we filtered cells with high mitochondrial gene 

expression (>8%) by fitting the expression of 

mitochondrial genes to a normal distribution and 

applying a false discovery rate (FDR) threshold of 

<0.01. Second, we removed cells with a low number of 

genes detected, specifically those with fewer than 1000 

genes. This step helped eliminate low-quality cells that 

may have been subject to technical artifacts. Third, we 

used the DoubleFinder (v. 2.0.3) to identify potential 

doublets and used a cutoff of the 92.5th percentile for 

the doublet score. Cells exceeding this threshold were 

considered potential doublets and were subsequently 

removed from the analysis. Following these quality 

control steps, we obtained a final dataset comprising 86, 

626 single cells for the following analysis. 

 

We used the harmony (v. 2.0.3) to integrate the individual 

samples and identify common sources of variation. The 

data were normalized by using “NormalizeData” function, 

ensuring that the number of UMIs in each cell was equal 

to the median UMI across the entire dataset. Additionally, 

a log-transformed was applied to the data. 

“FindVariableFeatures” function was used to identify the 

top 2,000 highly variable genes. Subsequently, the gene 

expression matrix was scale and center using the 

“ScaleData” function. For dimensionality reduction and 

visualization of the data, we performed principal 

component analysis (PCA) using the RunPCA function 

based on the highly variable genes. The resulting top 20 

principal components were then used for uniform 

manifold approximation and projection (UMAP) analysis 

to visualize the clusters in 2D space. Finally, clustering 

was performed using the Leiden community detection 

algorithm, which allowed us to identify distinct cell 

populations based on their transcriptional profiles.  

 

Annotation of cell clusters 

 

To assign the major cell types for each cluster, we 

followed a two-step approach. First, we performed 

differential expression analysis using “FindAllMarkers” 

function with default parameters. By comparing each 

cluster against all other clusters, we identified genes 

that showed significant differential expression. In the 

next step, we aimed to assign cell types to the clusters 

by examining the presence of known cell-type-specific 
genes among the top rank of differentially expressed 

genes in each cluster. By referencing established 

knowledge about marker genes for specific cell types, 
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we determined the most likely cell type for each cluster 

based on these differentially expressed genes.  

 

Cell-cell communication analysis by CellCall 

 

We conducted cell-cell communication analysis using 

CellCall [18] (v1.0.7). To ensure data integrity, we 

performed quality inspection and normalization on both 

the young and older datasets. Following the official 

workflow and default parameter settings, we loaded the 

young and older group datasets separately into CellCall. 

To identify potential ligand-receptor interactions 

between cell types in the young and older group 

datasets, developer of CellCall applied multiple 

databases including the NATMI [19], Cellinker [20], 

CellTalkDB [21], CellChat [22] and STRING v11 

databases [23] to conduct human L–R interactions. By 

leveraging this R package, we screened for specific 

interactions and examined their potential significance in 

the context of young and older samples. 

 

Differentially expressed gene analysis 

 

To evaluate the differentially expressed SASP-related 

genes between young and older group, first, we applied 

utilized the “FindMarkers” function from the Seurst 

package (v4.3.0.1). SASP-related genes were 

downloaded from AgeAnno database [24]. In the next 

step, we intersected the differentially expressed genes 

and SASP related genes. 

 

Animals 

 

Testes of 6 mice (3 C57/BL6 mice of 3-month-old and 3 

C57/BL6 mice of 20-month-old) were gathered in this 

experiment. All the mice were bought from the 

Laboratory Animal Center of Sun Yat-sen University. 

All experimental procedures involving animals were 

approved by the Institutional Animal Care and Use 

Committee of Sun Yat-sen University. 

 

Western blot analysis 

 

Total testis protein was extracted using RIPA lysis 

buffer (CW2333, CWBIO, China) containing proteinase 

and phosphatase inhibitors. Western blot analysis was 

conducted as previously described [25]. The primary 

antibodies included anti-IGFBP7 (#36930, 1:1000; 

SAB, USA) and anti-beta Actin Antibody (AF7018, 

1:5000; Affinity, USA) antibodies. Beta-ACTIN was 

used as the control. 

 

Semen collection 

 

Human seminal plasmas were obtained from healthy 

donors that announced no reproductive system diseases 

history. All donors have signed an approval consent 

form.  

 

ELISA 

 

Human seminal plasmas were collected and diluted 

100x and IGFBP7 level were detected through Human 

Insulin-like growth factor-binding protein 7 ELISA Kit 

(#EK4953, SAB, USA) in accordance with the 

manufacturer’s instructions. 

 

Statistical analysis 

 

Statistical analysis was performed using the R software 

(v.4.2.2). For all variables, we applied one-tailed 

Wilcoxon rank-sum test to assess the differences 

between groups. A significance threshold of p < 0.05 

was used to determine statistical significance. Results 

that met this criterion were considered to have a 

statistically significant difference. 

 

Data availability 
 

The RNA-seq matrix data used in this study were 

available in NCBI with accession number GSE120508 

(Donor_1, Donor_2, Donor_3), GSE215754 (Y1, HA1, 

HA2), GSE153947 (Normal_1, Normal_2, Normal_3) 

and GSE182786 (Young_1, Young_2, Young_3, 

Young_4, Older_1, Older_2, Older_3, Older_4, 

Older_5, Older_6, Older_7, Older_8). 

 

RESULTS 
 

scRNA-seq analysis of human testis samples 
 

We downloaded FASTQ files from GEO database. A 

total of 23 individuals scRNA-seq was obtained, 

including eight individuals in older group and 14 

individuals in young group (Supplementary Table 1). 

After quality control, we obtained a total of 86, 626 

high-quality single cells by scRNA-seq (Figure 1A). 

Based on the known markers (Figure 1A and 

Supplementary Figure 1A), we identified eight main 

clusters: Leydig cell, Sertoli cell, macrophage, 

peritubular myoid cells (PTM), endothelial cells, 

spermatogonia, spermatocyte, spermatid. Not 

surprisingly, germ cells significantly decreased in older 

samples, especially the spermatogonia. As for somatic 

cell, the number of PTM and endothelial cells increased 

remarkable in older group. No significant difference 

was observed in Macrophages, Leydig cell and Sertoli 

cell between older and young groups (Figure 1B and 

Supplementary Figure 1B, 1C). Together, these data 
indicated that we established a comprehensive single-

cell transcriptomic of human testis, tissue-structure 

associated cell types inferred by scRNA-seq provided a 
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proxy for dissecting molecular changes of tissue 

architecture of aging testis. 

 

Leydig cells highly expressed differentially expressed 

SASP-related gene in aging testis 

 

To further understand the characteristics of 

spermatogenesis microenvironment in older samples, 

we conducted cell-cell communication analysis using 

CellCall (v1.0.7). We found that the ligand-receptor 

pairs between Leydig cells and other germ cell were 

reduced in older group (Figure 2A), suggesting that 

the number of Leydig cells did not change 

significantly, but they did change functionally. To 

find out whether SASP plays a role in aging testis, we 

conducted differentially expressed gene (DEG) 

analysis between older and young group and labeled 

the SASP-related genes [24] in volcano plot (Figure 

2B). We identified IGFBP7 expression enriched and 

JUN, FOS and UBB were downregulated in older 

samples (Supplementary Table 2). Intriguingly, 

IGFBP7 was highly expressed in Leydig cells, 

indicating that Leydig cells is a key SASP-spreading 

cell and may contribute to aging testis in the 

spermatogenesis microenvironment. 

 

IGFBP7 protein highly expressed in older samples 

 

Senescent cells produce a series of profibrotic and 

proinflammatory factors, these factors are also known 

as SASP. IGFBP7 are important transcriptional 

inducers of the SASP. IGFBP7, derived from senescent

 

 
 

Figure 1. Overview of scRNA-seq transcriptomic profiles from young and old samples (You n=9, Old n=14). (A) Uniform 
manifold approximation and projection (UMAP) plot showing eight main clusters based on their expression of known markers (B). (C) Bar plot 
showing the percentage of major cell types for two group.  
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cells, plays a crucial role in inducing senescence in 

young mesenchymal stem cells. To verify whether 

SASP such as IGFBP7 are secreted by Leydig cells and 

travel cross the seminal tubular basement membrane, 

we collected human seminal plasma from healthy 

donors and measured IGFBP7 protein levels. By using 

ELISA, we found that IGFBP7 protein could be 

detected in seminal plasma, and interestingly, seminal 

plasma IGFBP7 expression levels were higher in the 

older group than in the young group (Figure 3A). We 

also measured the location by immunofluorescence and 

expression level of IGFBP7 in the testes of C57/BL6 

mice by Western blot. We found that IGFBP7 was 

mainly expressed in testicular interstitial compartment, 

and the level of IGFBP7 in the testes of mice in the 

older group was higher than that in the young group 

(Figure 3B, 3C), indicating that IGFBP7 may be a new 

biomarker of testicular aging. 

 

DISCUSSION 
 

In this study, we established a comprehensive single-

cell transcriptomic of aging testis in human. By 

conducting the cell-cell communication network with 

young and older samples, we were able to identify 

Leydig cells’ potential role in aging testis. The ligand-

receptor pairs between Leydig cells and other germ cell 

were significantly reduced in older samples. In line with 

that, multiple studies also reported that Leydig cells 

from older men display malfunction, including lower 

production of testosterone [13, 26]. So, application of 

TRT to treat male infertility was mentioned [27].

 

 
 

Figure 2. Leydig cells highly expressed differentially expressed SASP-related gene in aging testis. (A) Cell-cell communication 

between You and Old samples. (B) Volcano plot showing DEGs between You and Old samples, (Wilcoxon, adjusted p-values < 0.05, LogFC > 
0.5) (SASP-related genes, yellow). (C) Dot plot showing IGFBP7 expression enriched in older samples. 
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However, the concern of promoting prostate cancer 

limits the use of TRT [28]. And the sole unequivocal 

indication for TRT is as replacement therapy for men 

with pathological hypogonadism. It does not apply to 

older infertile men with normal testosterone levels. 

There is an urging to find out other therapeutic 

strategies for aging men.  

 

Nie recently generated single-cell transcriptomic 

sequencing and analysis in testes of young and old 

human exploring the correlation between testicular 

aging and elevated body mass index (BMI) and 

providing a comprehensive examination of functional 

changes in various cell types within aging testes [13]. 

However, they primarily focused on delineating 

functional changes in various cell types within the  

aging testes, with a notable absence of emphasis on 

senescence-associated secretory phenotype (SASP) 

factors in the context of testicular aging. 

 

Cellular senescence promotes tissue remodeling through 

three sequential processes: a stable proliferative arrest; a 

secretory phenotype (SASP) that recruits immune cells 

and modifies the extracellular matrix; and the 

mobilization of nearby progenitors that repopulate the 

tissue [29, 30]. Senescent cells produce a series of 

profibrotic and proinflammatory factors, including 

interleukin 6 (IL-6), plasminogen activator inhibitor-1 

(PAI-1), and transforming growth factor beta (TGF-β), 
these factors are also known as SASP [31]. SASP  

can have both beneficial effects and detrimental 

consequences. The SASP mediates the tumor suppressor 

functions of senescence [32]. On the other hand, aging 

cells can develop a characteristic pathogenic SASP that 

drives secondary senescence and disrupts tissue 

homeostasis, resulting in loss of tissue repair and 

regeneration [33, 34]. Identifying the key SASP factors in 

aging testis and developing a targeted drug to eliminate 

them may be a potential treatment for aging men 

 
 

Figure 3. IGFBP7 protein expression of human seminal plasma and mice testis. (A) ELISA was applied to detect the expression of 
IGFBP7 in human seminal plasma. (B) Immunofluorescence showed the localization of IGFBP7 protein in the interstitial compartment of older 
mice. Scale bar: 250 μm (C) Western blot was applied to detect the expression of IGFBP7 and the senescence marker P21 in testis of mice. 
Data depict the mean ± SD; *P < 0.05. **P < 0.01. 
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[35, 36]. Our study identifies differentially expressed 

SASP-related genes between young and older human 

testis samples. Compared with young human testis, we 

identified upregulated SASP-related genes IGFBP7 and 

downregulated SASP-related gene including JUN, FOS 

and UBB. IGFBP7 are important transcriptional 

inducers of the SASP [37]. IGFBP7 derived from 

senescent cell has been proved to be key components 

that triggers senescence in young mesenchymal stem 

cells [38]. IGFBP7 mainly expressed by Leydig cells 

from older men. And we confirmed the IGFBP7 protein 

both in human seminal plasma and mice testis sample. 

Named by GFBP-related proteins, insulin-like growth 

factor-binding protein 7 (IGFBP7) is one of the proteins 

belonging to the IGFBP superfamily. IGFBP7 is a high-

affinity insulin-binding protein, acting an inhibitory role 

by hindering proliferation and inducing apoptosis and 

senescence [39]. Wajapeyee and et al. reported 

melanocytes secreted IGFBP7, and it acted through an 

autocrine/paracrine pathway to induce senescence [40]. 

Previous studies have also identified dilp-binding protein 

ImpL2, a drosophila homolog of IGFBP7 blocked InR 

activation in stem cells of drosophila testis, inducing 

curb of somatic cell differentiation by downregulating of 

PI3K/Tor signaling [41]. Higher concentrations of 

IGFBP7 also indicate increasing risk of cardiovascular 

events [42]. These studies suggest that IGFBP7 has the 

potential to serve as a key factor in testicular aging and 

has significant drug development value. 

 

Removal of senescent cells increases healthy life span in 

murine models [43, 44]. Due to the potential of reducing 

the burden of senescent cells to prolong healthy lifespan 

and delay the onset of age-related diseases, there is 

increasing interest in developing sensory therapies that 

integrate multidisciplinary technologies such as biology, 

chemistry, nanotechnology, and immunology [45–49]. 

Senolytic tending to selectively deliminate senescent cell 

is a new therapeutic strategy to manage testicular aging. 

Multiple basic research have laid the foundation for 

human clinical trials [50–54]. For now, many senolytic 

strategies have been investigated, such as inhibitors of the 

antiapoptotic BCL-2 family proteins, HSP90 inhibitors, 

USP7 inhibitors, p53 modulators, Na/K-ATPase 

inhibitors. In our previous study we discovered FOXO4-

DRI, a specific FOXO4 blocker, selectively induced p53 

nuclear exclusion and apoptosis in senescent Leydig cells, 

which improved the testicular microenvironment and 

alleviated age-related testosterone secretion insufficiency 

[25]. Gypenoside XLIX, a type of dammarane-type 

saponins that have diverse biological properties, including 

anti-inflammatory, antithrombotic, anticancer, hepato-

protection, and neuroprotective effects, markedly 

suppressed the levels of IGFBP7 and reduced the binding 

of IGFBP7 to IGF1 receptor in an acute kidney injury 

model and showed great potential in releasing senescence. 

However, there were two limitations in our study. First, 

our conclusion was generated using retrospective data 

from public databases. Therefore, it should be validated in 

more prospective and multi-center aging cohorts in the 

future. Second, the underlying molecular mechanism of 

IGFBP7 still needs to be further explored. 
 

CONCLUSIONS 
 

In summary, here we provide new aspect concerning 

SASP factors in aging testis. Although there is limited 

understanding of the detailed molecular mechanisms so 

far, more investigation needs to be done. Collectively, 

our data implicate IGFBP7 as a promising aging 

suppressor protein in aging testis. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A) Expression of the senescence marker PTGS2 in the old and young groups. (B) Marker genes of eight main 

clusters. (C) Proportion of eight main cell types in the old and young groups. (D) Bar plot showing the percentage of major cell types for each 
sample.  
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Patient information. 

Name Age Data Old_name 

Young 

Young_1 17 GSE120508 Donor_1_rep2 

Young_2 24 GSE120508 Donor_2_rep1 

Young_3 24 GSE120508 Donor_2_rep2 

Young_4 25 GSE120508 Donor_3_rep1 

Young_5 25 GSE120508 Donor_3_rep2 

Young_6 26 GSE215754 Y1 

Young_7 56 GSE215754 HA1 

Young_8 31 GSE153947 Normal_1 

Young_9 33 GSE153947 Normal_2 

Young_10 55 GSE153947 Normal_3 

Young_11 17-22 GSE182786 Young_1 

Young_12 17-22 GSE182786 Young_2 

Young_13 17-22 GSE182786 Young_3 

Young_14 17-22 GSE182786 Young_4 

Old 

Old_1 67 GSE215754 HA2 

Old_2 >60 GSE182786 Older_1 

Old_3 >60 GSE182786 Older_2 

Old_4 >60 GSE182786 Older_3 

Old_5 >60 GSE182786 Older_4 

Old_6 >60 GSE182786 Older_5 

Old_7 >60 GSE182786 Older_6 

Old_8 >60 GSE182786 Older_7 

Old_9 >60 GSE182786 Older_8 

 

Supplementary Table 2. Differentially expressed genes between transcriptome obtained from scRNA-seq. 
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