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INTRODUCTION 
 

The development of statistical models that diagnose and 

predict the occurrence of disease outcomes is pivotal  

to inform clinical diagnosis and prognosis [1]. Such 

multivariable prediction models are increasingly built 

with individual participant data meta-analyses (IPDMA) 

[2]. Despite its benefits, using individual participant data 

often comes at the cost of introducing practical and 

methodological challenges, [3] such as systemically 

missing data [4]. Systematically missing data occurs 

when a variable is not measured in one or more included 

studies – often due to difference in survey instruments, 

measurement devices, or inadequate information [5, 6]. 

Such missing data poses a pivotal challenge for IPDMA 

in clinical and epidemiological research [5].  
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ABSTRACT 
 

Background: There is insufficient investigation of multiple imputation for systematically missing discrete 
variables in individual participant data meta-analysis (IPDMA) with a small number of included studies. 
Therefore, this study aims to evaluate the performance of three multiple imputation strategies – fully 
conditional specification (FCS), multivariate normal (MVN), conditional quantile imputation (CQI) – on 
systematically missing data on gait speed in the Swedish National Study on Aging and Care (SNAC). 
Methods: In total, 1 000 IPDMA were simulated with four prospective cohort studies based on the 
characteristics of the SNAC. The three multiple imputation strategies were analysed with a two-stage common-
effect multivariable logistic model targeting the effect of three levels of gait speed (100% missing in one study) 
on 5-years mortality with common odds ratios set to OR1 = 0.55 (0.8-1.2 vs ≤0.8 m/s), and OR2 = 0.29 (>1.2 vs 
≤0.8 m/s). 
Results: The average combined estimate for the mortality odds ratio OR1 (relative bias %) were 0.58 (8.2%), 
0.58 (7.5%), and 0.55 (0.7%) for the FCS, MVN, and CQI, respectively. The average combined estimate for the 
mortality odds ratio OR2 (relative bias %) were 0.30 (2.5%), 0.33 (10.0%), and 0.29 (0.9%) for the FCS, MVN, and 
CQI respectively. 
Conclusions: In our simulations of an IPDMA based on the SNAC where gait speed data was systematically 
missing in one study, all three imputation methods performed relatively well. The smallest bias was found for 
the CQI approach. 
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Methodological research is gradually advancing to 

address these challenges and provide substantiated 

recommendations across diverse scenarios. Researchers 

must weigh the trade-offs between losing power and 

information by excluding studies and using methods 

like multiple imputation (MI) to estimate missing values 

based on observed data [2, 6]. 

 

The Swedish National Study on Aging and Care 

(SNAC) is an example of four observational studies 

(i.e., four studies sites) using individual participant  

data, thus can be combined for an IPDMA. With over 

8,000 participants across the four cohorts, SNAC has 

facilitated the development of an innovative Health 

Assessment Tool that integrates indicators of both 

clinical and functional health in a population aged  

60+ years [7]. However, within SNAC, one variable, 

gait speed, is systematically missing in one study. 

Researchers must then decide between i) proceeding 

with complete data using only three studies, thus risking 

information loss and potential bias in combined 

estimates [4, 5], or ii) employing Multiple Imputation 

(MI), which could offer plausible values for the absent 

study based on observed data. If choosing option ii, 

selecting the most suitable MI approach becomes 

crucial, given the limited number of studies in the 

IDPMA [8]. Although the performances of MI methods 

for multilevel data with systematically missing data 

have been evaluated in previous simulation studies 

covering several scenarios (quantitative and binary 

predictors [2], magnitude of heterogeneity across 

studies [9]), few studies have evaluated different MI 

approaches with only a small number of included 

studies [2, 8]. A comprehensive overview of MI 

techniques in the context of systematically missing 

values in IPDMA has been documented by Audigier  

et al. [8]. Among one of the main challenges of  

dealing with systematically missing data in IPDMA  

is to preserve the structure and relationships within  

each study [6, 10]. In addition, the majority of MI 

methods are extensively tested for continuous variables, 

yet few studies have applied such methods to discrete 

data. 

 
The systematically missing values for gait speed data  

in one of the SNAC sites poses a unique methodological 

challenge in IPDMA involving four larger cohort studies. 

Consequently, there is a notable gap in identifying 

suitable MI methods for systematically missing discrete 

data with only a small number of included studies. 

 
Therefore, this study aims to investigate and assess  

the performance of different MI strategies specifically 

targeting the systematically missing discrete variable  

of gait speed in the SNAC IPDMA with only four large 

cohort studies. 

The remaining part of the paper is organised as follows 

I) a description of the data sources used to inform the 

simulation study; II) a presentation of the rationale of 

two popular imputation methods and one approach 

based on conditional quantiles to address systematic 

missingness; III) the design of the simulation study  

and mechanisms underlying the data; IV) reporting  

the results of the simulations; and V) a discussion of 

strengths and limitations of this paper. 

 

MATERIALS AND METHODS 
 

Study population and study variables 

 

This simulation study is grounded in data from SNAC, 

which is an ongoing longitudinal cohort study based 

on samples of the Swedish elderly population launched 

in 2001. A detailed description of the study structure 

and methods can be found elsewhere [11]. In brief,  

it consists of four study sites, namely Kungsholmen, 

Skåne, Nordanstig, and Blekinge. Data collection 

includes information on health determinants, disease 

outcomes, functional capacity, and social conditions 

[12]. A key predictor of all-cause mortality – gait 

speed (≤0.8, 0.8-1.2, >1.2 meters per second) – is 

systematically missing at one study site, Blekinge. To 

evaluate potential imputation methods to impute  

the systematically missing variable we defined the 

outcome as all-cause mortality (yes/no) within 5  

years from the examination date. Further, four key 

health indicators were chosen based on previous 

analysis [7] that included, severe disability (measured 

as the number of personal activities of daily living 

(ADL) a person was unable to perform independently, 

categorised into 0 and ≥1), mild disability (measured 

as the number of instrumental activities of daily  

living (IADL), categorised into 0 and ≥1), cognitive 

status measured with the Mini-Mental State 

Examination (MMSE) ranging from 30 (best possible 

score) to 0, categorised into ≤20, 20-25 and >25),  

and the number of chronic diseases (count of  

chronic diseases performed by a clinical examination 

(ICD-10 diagnostic criteria); categorised into ≤2,  

2-4, >4 chronic diseases). Two demographic factors 

were also included: sex (female/male), and age  

(59-70, 70-80, 80-90, 90+ years). The cut-offs  

were chosen based on a combination of avoiding 

numerical problems during the simulations (i.e., 

having a sufficient number of subjects in each category  

of the variables) and on clinical cut-offs used in 

Santoni et al. [7]. 

 

The following sections outline the structure of the 

simulation study, including a) the data generating 

mechanism, b) imputation methods, c) analytical methods, 

and d) estimands and performance measures [13].  
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Data generating mechanism  

 

In this paragraph we describe how we simulated  

one IPDMA. We created four synthetic data [14] sets 

based on the original data from the four SNAC sites 

(Kungsholmen, Skåne, Nordanstig, Blekinge), keeping 

their main statistical properties. The synthetic data sets 

included the five above mentioned predictors of 5-years 

mortality (gait speed, ADL, IADL, MMSE, number of 

comorbidities) and two demographic factors (sex and 

age). 

 

Our simulation strategy consisted of first reproducing 

marginal and conditional relationships of all the 

predictors separately within each study; and second, 

generating individual binary outcomes according to a 

common set of regression coefficients across all four 

studies. 

 

All predictors of mortality were randomly generated 

from a multivariate normal distribution given a  

set of observed means and variance/covariances. The 

variables were discretised using the inverse cumulative 

distribution function method based on observed 

frequencies [15, 16]. To simulate gait speed in the  

study with missing information (Blekinge), we used  

the inverse cumulative distribution function method 

based on an arithmetic average of observed frequencies 

available in the other studies (Kungsholmen, Skåne, 

Nordanstig). 

 

We denote with i the index for the studies included in the 

prospective MA data. In our simulated scenario, the 

index i ranges from 1 to 4 representing the Kungsholmen, 

Skåne, Nordanstig, and Blekinge studies, respectively. 

Data on seven possibly correlated predictors X (gait 

speed, ADL, IADL, MMSE, comorbidities, age, and sex) 

of 5-year mortality risk were randomly generated from 

single multivariate normal distribution [15] 
 

~ ( , )i i iX N   

 

where Σi is the symmetric observed variance/covariance 

matrix and μi is the observed vector of means for the  

i-th study. The variance covariance matrices are based 

on the real data with the same number of discretised 

variables (eAppendix A in the Supplement). Next, each 

variable in Xi was discretised using the inverse of  

the normal cumulative distribution given the empirical 

mean μi, its standard deviation (square root of the 

diagonal elements of Σi), and the observed probabilities 

shown in Table 1 of the original data [15, 16]. 
 

The individual binary outcome, 5-year mortality 

status, was randomly generated according to a 

Bernoulli distribution. The outcome probability varied 

conditionally on all the predictors modelled with 

indicator variables and a common set of regression 

coefficients. Independent observations within each 

study were described by the statistical model  

Yi|Xi ~ Bernoulli(πi) and /(1 )i iX X
i e e= +

   with Xiβ, 

the linear predictor of the logit (log odds) of the  

5-years mortality probability: 
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The values of the regression coefficients above were 

obtained by computing the inverse-variance weighted 

average of the regression coefficients estimated  

in the three studies with complete data. The common 

adjusted effects of gait speed on 5-year mortality  

risk comparing 0.8-1.2 vs ≤0.8 m/s was 

1 0.599
1 0.55OR e e−= = =

  and comparing >1.2 vs ≤0.8 

m/s was 2 1.237
2 0.29OR e e−= = =

 . These parameter 

values served as a benchmark to evaluate the 

performance of the different imputation strategies.  

Once the individual mortality outcomes were generated 

based on the above realistic values of the regression 

coefficients and data, we set gait speed to systematically 

missing in the study SNAC-Blekinge. Each of the  

three imputation strategies described in the following 

paragraph were then used for the same IPDMA to 

impute gait speed. 

 
Imputation methods 

 

This paragraph describes the three evaluated imputation 

methods. Based on an IPDMA of four studies,  

we evaluated two standard imputation methods of 

systematically missing discrete data, fully conditional 

specification (FCS) and multivariate normal (MVN). In 

addition, we evaluate a method based on conditional 

quantiles (CQI). We imputed the systematically missing 

variable 100 times for each imputation method given 

that the Monte Carlo Error (MCE) for 100 imputations 

and 1 000 repetitions is expected to be very small [17]. 

 
Fully conditional specification (FCS) 

FCS was first described in detail by van Buuren, 

Boshuizen and Knook [18]. It identifies a suitable 
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Table 1. Descriptive population characteristics for the key variables of the four 
studies (Kungsholmen, Skåne, Nordanstieg and Blekinge) from the Swedish 
National Study on Aging and Care. 

 Kungsholmen Skåne Nordanstieg Blekinge 

Variables (predictors) n=3,363 % n=768 % n=2,397 % n=1,402 % 

Gait speed (m/s)     

 ≤0.8 30 33 6 Missing 

 0.8-1.2 21 46 26 Missing 

 >1.2 49 21 68 Missing 

ADL     

 ≥1 vs 0 10 8 5 13 

IADL       

 ≥1 vs 0 24 28 24 44 

MMSE     

 ≤20 7 8 3 11 

 20-25 7 6 19 18 

 >25 86 86 78 71 

Comorbidities     

 ≤2 30 64 17 50 

 2-4 33 24 36 30 

 >4 37 12 47 20 

5-years mortality 22 27 12 26 

Female 65 54 54 58 

Age (years)     

 59-70 39 34 54 28 

 70-80 28 25 20 25 

 80-90 19 32 22 36 

 ≥90 14 9 4 11 

Column percentages (%) are reported. 
Legend: Variables included gait speed (in meters per second (m/s)), severe disability 
(ADL), mild disability (IADL), cognitive status measured with the Mini-Mental State 
Examination (MMSE), number of chronic diseases (comorbidities), all-cause mortality 
(5-years mortality), sex (female), and age (in years). 

 

conditional imputation model for each incomplete 

variable and iteratively imputes until convergence  

[10, 17–19]. We used FCS for one systematic missing 

discrete variable. As an imputation model for the discrete 

missing variable gait speed, we used multinomial logistic 

regression on joined (appended) datasets [20]. The model 

included all of the previously mentioned predictors: 

ADL, IADL, MMSE, number of comorbidities, sex, age, 

mortality outcome, and study-level indicator variables to 

identify the original structure of the data. 

 

Multivariate normal (MVN) 

MVN imputation assumes that variables being imputed 

follow a multivariate normal distribution [21]. The 

method uses an iterative Markov Chain Monte Carlo 

method to impute missing values [22]. The performance 

of MVN has also been investigated and evaluated for 

binary variables [23–25]. The MVN imputation model 

for gait speed included the same predictors as mentioned 

for the FCS. 
 

Conditional quantile imputation  

This paragraph provides a brief description of a 

conditional quantile imputation (CQI) approach [26]. A 

more detailed description of the imputation method  

can be found in Bottai et al. [27]. Based in Bottai et  

al. [27] the rationale of the imputation method consists  

of three main steps: I) quantification of the  association 

between the missing variable, gait speed in our example,  

and any other observed variable in the three studies 

(Kungsholmen, Skåne, Nordanstig) where the missing 

variable is available; II) prediction of the probabilities of 
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any level of the discrete missing variable conditionally on 

the observed variables in the study with missing data 

(Blekinge) based on the estimated average relationships 

obtained in the previous step; and III) imputation of 

individual missing values of the discrete variable by 

inverting the cumulative distribution function of a 

random uniform with quantiles equal to the cumulative 

predicted conditional probabilities. More technical details 

of the steps involved in CQI are noted in eAppendix B in 

the Supplement of this paper. 

 

Analytical methods 

 

The results of the imputation methods were analysed 

with the following analytical model. MI methods that 

heavily rely on random-effect models in the case of 

limited number of studies are difficult to estimate [8]. 

Moreover, the harmonisation in measurement and data 

collection between the four study sites of SNAC allow 

us to assume a common effect as opposed to a hetero-

genous (random) effect. Thus, the multivariable logistic 

model described above to predict 5-years mortality risk 

was estimated for any simulated IPDMA using a two-

stage common effect meta-analysis. Estimates of the 

regression coefficients were combined across imputations 

using Rubin’s rules [28].  

 

Simulation estimands and performance measure 

 

We simulated the mechanism described above 1 000 

times to obtain a sampling distribution of the adjusted 

effect of gait speed, the predictor that is systematically 

missing, on mortality risk. Gait speed was modelled 

with two indicator variables. The performance of the 

three imputation methods was assessed for the two 

corresponding regression coefficients (the conditional 

log odds ratios) of gait speed. The key numerical 

quantity used to assess the performance was the average 

relative bias comparing the estimated regression 

coefficients 1 2
ˆ ˆ( , )   with the parameter values in the 

outcome model previously specified (β1 = −0.599 and  

β2 = −1.237). In addition, we estimated the following 

performance measures including their Monte Carlo 

Error (MCE) described in Morris et al. [13] for all  

three methods: i) bias in point estimate, ii) model- 

based standard error (SE) (the mean of the SE from  

the 1 000 repetitions), iii) empirical SE (the standard 

deviation of the 1 000 estimates from the 1 000 

repetitions), and iv) nominal coverage level (proportion 

of CIs covering the reference value). 

 

Application 

 

We applied the three imputation methods to the 

original SNAC data. In addition to the adjusted odds 

ratio and 95% confidence interval, we calculated the 

predictive capacity of the model based on the area 

under the curve (AUC) [29]. The imputation and 

analytical strategy followed the same procedure as  

in the simulations. 

 

Availability of data and materials 

 

The datasets used and/or analysed during the current 

study are available from the corresponding author on 

reasonable request. 
 

RESULTS 
 

Table 1 shows the empirical frequency distribution (%) 

of all variables of the four original studies. The 5-years 

mortality risk ranged from 12% to 27% across the four 

studies. The distribution of gait speed also varied across 

the studies. In particular, the fraction of individuals with 

a gait speed above 1.2 m/s was 21%, 49%, and 68%  

in the Kungsholmen, Skåne, and Nordanstig studies, 

respectively. 
 

Simulation results 
 

Table 2 describes the combined adjusted estimates of 

the levels of gait speed on 5-years mortality and 

performance measures for the three imputation methods 

based on 1 000 simulations. We used the first level of 

gait speed as a reference (≤0.8 m/s). The average 

combined estimate for the mortality odds ratio and  

the relative bias (%) for the second level of gait speed 

(0.8-1.2 vs ≤0.8 m/s) were highest for the FCS method  

( 1 0.579OR = ; relative bias = 8.2%), and lowest for the 

CQI method ( 1 0.55OR = ; relative bias = 0.7%). For the 

third level of gait speed (>1.2 vs ≤0.8 m/s), estimates 

were highest for the MVN method ( 2 0.33OR = ; 

relative bias = 9.9%). Compared to FCS and MVN,  

CQI seems less efficient due what can be seen in a 

higher empirical SE (0.096 compared to 0.074 and 

0.079 for MVN and FCS, respectively. The fraction of 

simulated studies in which the parameter values were 

included in the confidence intervals were 95.80%, 

96.70%, and 94.90% for FCS, MVN, and CQI, 

respectively. 
 

For the third level of gait speed, the FCS method had a 

lower relative bias and more precise point estimate 

compared to its performance for the second level of gait 

speed ( 2 0.30OR = ; relative bias = 2.5%). Again, the 

lowest bias was shown for the CQI method with an 

average combined estimate for the mortality odds ratio 

of 2 0.29OR =  and a relative bias of 0.9%. The average 

estimated standard error of the combined estimates was 

similar across all three methods. A slightly higher 

average estimated spread could be found for the CQI 
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Table 2. Combined adjusted effect estimates (log odds ratios) ˆ ˆ
1 2( , )   of the 

non-reference levels of gait speed (0.8-1.2 vs ≤ 0.8 m/s and >1.2 vs ≤ 0.8 
m/s) on 5-years mortality for three multiple imputation (MI) methods based 
on 1 000 simulations. 

 FCS MVN CQI 

Gait speed 0.8-1.2 vs ≤ 0.8 m/s Estimate Estimate Estimate 

Average 1̂  -0.550 -0.555 -0.604 

Average 1( )SE   0.095 0.092 0.096 

Bias in point estimate 0.049 0.045 -0.004 

Relative bias (%) 8.236 7.484 0.711 

Empirical SE 0.079 0.074 0.097 

Nominal coverage (MCSE) 95.80 (0.634) 96.70 (0.565) 94.90 (0.696) 

Gait speed >1.2 vs ≤ 0.8 m/s    

Average 1̂  -1.205 -1.113 -1.243 

Average 1( )SE   0.095 0.094 0.096 

Bias in point estimate 0.032 0.124 -0.006 

Relative bias (%) 2.551 9.994 0.507 

Empirical SE 0.091 0.083 0.093 

Nominal coverage (MCSE) 94.80 (0.702) 77.10 (1.329) 95.50 (0.656) 

Included performance measures are the estimated standard error (Model-based SE) 

 1 2( ( ), ( ))SE SE , bias in point estimate, relative bias, empirical SE, and coverage of 

nominal 95% confidence interval. The reference parameters are β1 = −0.599, β2 = 
−1.237. Monte Carlo Error (MCE) was below ≤0.003 for all performance measures 
expect if indicated differently. 
Legend: The compared MI methods are fully conditional specification (FCS), 
multivariate normal (MVN), and conditional quantile imputation (CQI). Each 
simulation is based on 100 imputations including four synthetic data sets based on 
the Swedish National Study on Aging and Care. Adjustments were made for severe 
disability (ADL), mild disability (IADL), cognitive status measured with the Mini-
Mental State Examination (MMSE), number of chronic diseases (comorbidities), all-
cause mortality (5-years mortality), sex (female), and age (in years). 

 

method for the second and third level of gait speed (SE 

= 0.096). Similar to the second level of gait speed, CQI 

indicates a less efficient performance when comparing 

empirical SE. The nominal coverage seems sufficient 

for FCS and CQI, however is only at 77.10% for MVN. 

This is not surprising however, given the large bias in 

point estimate (0.124). 

 

Figure 1 shows the approximately symmetric and bell-

shaped simulated distribution of the combined adjusted 

effect estimates of the three levels of gait speed on 5-

years mortality. For comparing the second vs first level 

of gait speed (0.8-1.2 vs ≤ 0.8 m/s), all three methods 

share a similar distribution with a substantial overlap. 

CQI method indicates a better precision and is centred 

around the estimated common effect of gait speed on 

mortality (OR = 0.548). Both the FCS and MVN share  

a particularly similar distribution with less spread 

compared to the CQI method. The effect estimates  

for the MVN method show a larger divergence in 

distribution from the estimated common effect of gait 

speed on mortality for both levels of gait speed (0.8- 

1.2 vs ≤ 0.8 m/s and >1.2 vs ≤ 0.8 m/s).  

 

Application to SNAC data  

 

We applied the investigated MI methods to the  

four original data sets of the SNAC studies where  

gait speed was systematically missing at the study site 

in Blekinge. Table 3 shows that the three MI approaches 

show comparable effect sizes. As expected from the 

simulation results, there are no large differences between 

the three methods on the adjusted effect estimates of 

gait speed on 5-years mortality. For the second level of 
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gait speed (0.8-1.2 vs ≤ 0.8 m/s) the odds ratios for the 

FCS, MVN, and CQI method are 0.571, 0.568, and 

0.563, respectively. In addition, for the third level of 

gait speed (>1.2 vs ≤ 0.8 m/s) the odds ratios for the 

FCS, MVN, and CQI method are 0.309, 0.318, and 

0.301, respectively. All three methods share a similar 

predictive capacity around an AUC of 0.82 with CQI 

being slightly higher compared to FCS and MVN. 

There was no substantial difference between the MI 

methods and the complete case analysis including only 

the three complete data sets. 

 

DISCUSSION 
 

This simulation set out to assess the performance  

of three MI strategies for a systematically missing 

discrete predictor – gait speed – in an IPDMA based  

on data from SNAC. We compared two established 

methods, FCS and MVN, and one method based on 

conditional quantiles (CQI). The results of a large 

number of replications indicated that the relative bias 

was less than 1% for the CQI method, whereas it ranged 

from 2% to 10% for the other two common imputation 

methods, FCS and MVN. In addition, the results 

indicate that FCS and MVN show a slightly better 

precision compared to CQI. Despite differences in 

performance measures, from a substantive point of 

view, the differences in estimated odds ratios of gait 

speed on 5-years mortality were not substantial between 

the evaluated methods which ranged from 0.54 - 0.57 

for the first level of gait speed (0.8-1.2 vs ≤ 0.8 m/s) and 

0.29 - 0.33 for the second level of gait speed (>1.2 vs ≤ 

0.8 m/s). 

 

The investigated methods FCS and MVN show a 

relative bias between 2 to 10%. Previous studies 

comparing MI methods including FCS and/or MVN 

have shown lower relative biases. [8, 10, 23, 30]. 

However, none of the previous studies have assessed 

the MI approaches for a systematically missing discrete 

predictor in an IPDMA with only four included studies 

and a common-effect MA. Audigier et al. [8] presented 

a relatively small bias for the FCS method considering  

a minimal cluster size of seven. However, the authors 

 

 
 

Figure 1. Simulated sampling distribution of the combined adjusted odds ratio of gait speed on 5-years mortality. The black 
line represents the combined adjusted effect OR1 = 0.55 for the second level of gait speed (0.8-1.2 vs ≤ 0.8 m/s), and OR2 = 0.29 for the third 
level of gait speed (>1.2 vs ≤ 0.8 m/s). The three imputation methods that are compared are the fully conditional specification (FCS), 
multivariate normal (MVN), and conditional quantile imputation (CQI). Simulations are based on 1 000 replications with 100 imputations 
including four synthetic studies based on the Swedish National Study on Aging and Care. Adjustments were made for severe disability (ADL), 
mild disability (IADL), cognitive functional status measured with the Mini-Mental State Examination (MMSE), number of chronic diseases 
(comorbidities), all-cause mortality (5-years mortality), sex (female), and age (in years). 
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Table 3. Application of three multiple imputation methods to the Swedish National Study on 
Aging and Care. 

 FCS MVN CQI CC 

Area under the curve 0.842 0.841 0.843 0.840 

Gait speed 0.8-1.2 vs ≤ 0.8 m/s Estimate Estimate Estimate Estimate 

Adjusted Odds Ratio  0.571 0.581 0.563 0.549 

95% CI 0.465, 0.704 0.472, 0.715 0.456, 0.689 0.445, 0.678 

Gait speed >1.2 vs ≤ 0.8 m/s     

Adjusted Odds Ratio 0.309 0.332 0.301 0.290 

95% CI 0.242, 0.397 0.260, 0.422 0.239, 0.388 0.226, 0.373 

Legend: The adjusted odds ratio of gait speed on all-cause 5-years mortality. Gait speed was 
systematically missing at the study site of Blekinge. Fully conditional specification (FCS), multivariate 
normal imputation (MVN), and conditional quantile imputation (CQI) were applied based on 100 
imputations. Complete Case (CC) analysis was based on the three studies with complete data. The area 
under the curve was determined for each imputation method and the CC. Adjustments were made for 
severe disability (ADL), mild disability (IADL), cognitive functional status measured with the Mini-Mental 
State Examination (MMSE), number of chronic diseases (comorbidities), all-cause mortality (5-years 
mortality), sex (female), and age (in years). 

 

used a random-effects MA to evaluate multiple MI 

strategies. A comparison of results between the two 

studies has thus to be done with consideration of this 

major difference. Yet, the somewhat larger bias in this 

simulation could be potentially explained by a limited 

size of included studies. 

 

MVN was previously tested on binary variables for 

sporadically missing data by several studies [23–25] and 

for continuous variables in longitudinal studies [30], 

indicating a reasonable performance. Applying MVN  

to systematically missing discrete data in an IPDMA 

with a small number of studies in this simulation 

indicated the largest relative bias compared to the other 

two approaches. This highlights the challenges of using 

MVN in this specific context. Our findings suggest  

that applying MVN to impute systematically discrete 

data within IPDMA with a small number of studies 

might be more challenging compared to other contexts 

in previous studies. Future methodological work should 

explore broader scenarios and potentially include 

alternative methods like predictive mean matching for 

comparison. However, few simulation studies have 

evaluated these approaches in similar scenarios similar 

to the one presented in this study. 

 

Continuous efforts are needed to test various 

imputation approaches in realistic IPDMA scenarios, 

such as those encountered in aging research shown in 

the SNAC. The observed lower confidence interval 

coverage for specific levels of gait speed (77% 
compared to the expected 95%) indicates potential 

limitations of MVN in handling systematically missing 

discrete predictors within IPDMA with only a small 

number of studies. This is not a criticism in the method 

itself but rather the use in application in these specific 

circumstances. 

 

To the best of our knowledge, the method based  

on conditional quantiles has not yet been investigated  

in the context of a systematically missing discrete 

predictor in an IPDMA. One reason for the limited 

number of applications of CQI could be the lack of 

implementation in standard statistical software. Still, 

quantile imputations have been assessed in different 

contexts before [26] and indicate good performances. 

Our findings show a small relative bias, yet a larger 

model-based and empirical SE compared to the other 

two for the CQI method. 

 

Strengths and limitations 

 

We investigated one specific scenario of multiple 

imputation of a systematically missing discrete variable 

in an IPDMA with only four studies. The simulations 

were based on unique data from SNAC and have a 

practical relevance for researchers involved in working 

with SNAC and similar data. Further, this is one of  

the first specific simulations that investigate multiple 

imputation of systematic missing variables in the 

context of IPDMA with only a small (<5) number of 

studies. Last, the imputation method based on condition 

quantiles operated sufficiently well for small IPDMA 

and should be further explored. 

 

We acknowledge several limitations. First, the 
simulations in this paper may have restricted 

generalisability. Our simulations were specifically 

tailored to the SNAC studies and might perform 

differently in other scenarios. We chose to relate the 
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simulations to a specific example to have a direct 

impact on people working with SNAC data. General 

conclusions are reasonable to be extended to other 

IPDMA with only a small number of large observational 

studies. Second, we only explored one specific scenario 

as a probabilistic sensitivity analysis of multiple 

imputation for systematically missing data in IPDMA. 

Future research in this area should be directed towards  

a more general approach, including scenarios on 

varying clusters and sample sizes, varying levels  

for missing predictors, and combining systematically 

with sporadically missing data. Last, in our simulation 

settings we assumed a common effect of gait speed  

on mortality across the four studies. Although the 

homogeneity of effects can be easily relaxed, it would 

be very difficult to derive good estimates of variability 

across studies based on a limited number of studies. 

 

CONCLUSIONS 
 

Comparing three MI strategies for a systematically 

missing data on gait speed an IPDMA with four large 

observational studies from SNAC, we found that the 

conditional quantile imputation (CQI) approach showed 

the best performance. Under the characteristics of the 

IPDMA, the relative bias for the CQI was below 1%, 

whereas the fully conditional specification (FCS) and 

multivariate normal (MVN) methods showed biases 

between 2 and 10%. Moving forward, the CQI strategy 

should be further evaluated and critically scrutinised to 

be applied to different contexts. 
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