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INTRODUCTION 
 

Cutaneous melanoma (CM) originates from melanocytes 

in the skin and is the dominate type of melanoma  

[1]. Due to its high aggressiveness and significant 

resistance to chemotherapy drugs, CM accounts for 80% 

of skin cancer deaths [2]. Although immune checkpoint 

inhibitors have made great progress in the treatment of 

melanoma [3], the continued increase in CM incidence 

and mortality drives us to further explore the mechanisms 

of melanoma development and potential treatments [4]. 

 

Hypoxia is one common feature in many solid  

tumor types, including CM. Compared with cells in a 

physiological state, hypoxic cancer cells increased 

glycolysis and reduced oxidative phosphorylation [5].  

A pooled dataset of melanoma patients found that  

the presence of hypoxia within the tumor mass was 

positively associated with poor outcomes in these 

patients [5]. Hypoxia affects CM development through 

multiple mechanisms. As one main regulator of hypoxia 

response, hypoxia-inducible factor (HIF) consists of 

two subunits, HIF-α and HIF-β, which are able to bind 

to hypoxia response elements in DNA sequences [6].  

A variety of modifications can regulate the adaptation  

to anoxic environment by controlling the stability and 

transcriptional activity of HIF-1α [7]. Through the 

activation of PI3K, MAPK, NF-kB and other signaling 
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ABSTRACT 
 

Background: Cutaneous melanoma (CM) remains a significant threat to human health. There are clues to the 
potential role of hypoxia in CM progression. However, the role of hypoxia-related lncRNAs (HRLs) in CM has not 
been clarified. 
Methods: We obtained hypoxia related genes from MSigDB database and subsequently identified HRLs by 
applying TCGA database. LASSO-univariate and multivariate Cox analysis were used to comprehensively analyze 
the survival characteristics and HRLs expressions, and a novel HRLs-related prognostic risk model was 
subsequently established for comprehensive analysis. 
Results: The established risk model could evaluate the clinical outcome of CM accurately. The ability of the 
model-related risk score was also validated as an independent prognostic indicator of CM. Immune infiltration, 
TMB analysis, drug sensitivity analysis and immunotherapy evaluation were conducted to comprehensively 
assess the possible causes of the difference in prognosis. The reliability of bioinformatics results was partially 
verified by RT-qPCR. 
Conclusion: We established a new HRLs related risk model and discussed the potential role of hypoxia in the 
development of CM, which provided a novel basis for CM risk stratification. 
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pathways that promote tumor development, HIF-1α 

responds to growth factor and cytokine stimulation  

and promotes the survival of cancer cells in hypoxic 

environments [8]. In addition, when cells trigger  

HIF-1-dependent pathways under hypoxia conditions, 

neovascularization occurs [8]. The alteration of HIF-1a 

expression level in anoxic microenvironment decreased 

the expression of melanocyte marker and increased its 

invasiveness in melanoma cells [9]. 

 

In addition to HIF-1α, some evidence suggests other 

possible mechanisms by which hypoxia affects CM 

development. Hypoxic-induced cancer stem cell-like 

cells (CSCs) can recruit endothelial progenitor cells  

to construct pathological vasculature [10]. Metabolic 

reprogramming induced by low oxygen levels also 

influenced CM development and was associated with 

prognosis [11, 12]. In addition, hypoxia induces 

mutations in the gene encoding p53 through the AKT 

signaling pathway and is associated with poorer 

prognosis in melanoma patients [13]. Exposure to 

hypoxia and high glucose concentrations in mouse CM 

models showed upregulated expression of galectin-3 

and prevented tumor cell apoptosis [14]. Elevated levels 

of Bcl-2 interacting protein 3 (BNIP3) were detected  

in hypoxic melanoma cells, which was associated with 

reduced anti-PD-1 therapeutic response due to induced 

autophagy [15]. 

 
Although above evidences suggest a carcinogenesis role 

of hypoxia in CM. However, oxidative phosphorylation 

can be enhanced in some types of CM [16]. At the same 

time, several drugs that inhibit oxidative phosphorylation 

may be used to target specific subtypes of melanoma 

[17]. The presence of higher mitochondrial activity in 

metastatic cancer than in primary cancer also suggests a 

potential role for oxidative phosphorylation in tumor 

metastasis [18, 19]. Therefore, it is still necessary to 

further probe into the significance of hypoxia in the 

development of CM. 

 
Hypoxia is a prominent feature of the tumor micro-

environment (TME) and is also considered to be an 

important factor in immune escape [20]. The effects of 

hypoxia on TME include: impaired T cell infiltration, 

induced immunosuppression and immune tolerance, 

induced resistance to cell-mediated cytotoxicity and 

induced lymphocyte killing activity [21, 22]. Hypoxia 

has received increasing attention by modulating the role 

of TME in cancer treatment [23]. In melanoma, 

targeting HIF-1α has been reported to drive cytotoxic 

immune effector cells into the tumor and improve 

combination immunotherapy [20]. In addition, the effect 

of hypoxia and its metabolites on PD-L1 also suggests 

its role in CM immunotherapy [24, 25]. Further analysis 

of hypoxia related TME is of positive significance. 

In this study, we subtyped CM patients in the  

database based on HRLs and subsequently established  

a corresponding risk model. The effects of the novel 

risk model on immune infiltration and drug sensitivity 

were also analyzed to explore the role of hypoxia in the 

carcinogenesis of CM from a new perspective. 

 

MATERIALS AND METHODS 
 

Collection of CM transcriptome matrices 

 

The gene expression files of CM patient samples were 

acquired from public database The Cancer Genome Atlas 

Program (TCGA) under the Perl language environment. 

Utilizing the Perl script, we extracted the gene expression 

file of each CM samples and merged into a file. CM 

clinical information was also extracted from the TCGA 

database using Perl scripts and subsequently merged into 

the final file. Considering the lack of information on CM 

sample’s survival, the samples without OS time or less 

than 0 were deleted. A total of 454 CM samples were 

screened for subsequent analysis. 

 

Calculation and identification of HRLs 

 

The hypoxia genes were acquired from the  

MSigDB database (Supplementary Table 1) [26–28]. 

The coefficient of hypoxia genes and lncRNAs was 

calculated by using Pearson correlation algorithm. The 

selection threshold for identifying the HRLs was setting 

at |r| >0.5, p < 0.001. 

 

Prognosis characteristic and consensus clustering 

subtype exploration 

 

Integrated analysis of survival characteristics and HRLs 

expression in CM samples, the LASSO-univariate Cox 

algorithm was conducted to evaluate the prognostic 

value of HRLs. Moreover, the multivariate Cox analysis 

of HRLs was used to calculate the CM independent 

prognostic feature. For CM samples clustering, 

“ConsensusClusterPlus” script was performed based on 

the independent prognostic feature according to the 

optimal classification. 

 

Establishment of HRLs score for CM 

 

Based on the coefficient and expression feature of 

independent HRLs variables, the HRLs scores were 

established for CM samples. The optimal survival  

cutoff helped the CM samples to be classified into  

the low- and high HRLs score subtypes. To validate  

the independence of HRLs score for CM prognosis 

predicting, the training and testing subtypes were 

divided according to a 7:3 classification threshold by 

the “caret” package application [29, 30]. 
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Immune microenvironment characteristic estimation 

 

Based on the transcriptome matrices of CM samples, we 

estimated the immune microenvironment characteristic 

of CM samples utilizing the ssGSEA algorithm based 

on “GSVA” script. “ESTIMATE” script was employed 

to estimate the immune status of CM samples. The 

KEGG terms were calculated by the “GSVA” algorithm 

based on the “c2.cp.kegg.v7.2.symbols.gmt” file. 

 

TMB landscape and immunotherapy evaluation 

 

The tumor mutation burden (TMB) files of CM samples 

were downloaded and extracted from the public TCGA 

databased using the Perl script. Using the “maftools” 

script to exhibit the landscape of TMB for CM samples. 

The IPS file of CM was obtained from The Cancer 

Immunome Database (TCIA). The Tumor Immune 

Dysfunction and Exclusion (TIDE) database was used 

for TIDE score evaluating (http://tide.dfci.harvard.edu/). 

 

RT-qPCR analysis 

 

In this study, we employed RT-qPCR to assess the 

expression levels of the screened prognostic HRLs. RNA 

was isolated by TRIZOL (Thermo Fisher Scientific, USA) 

and Bestar™ qPCR RT Kit (DBI Bioscience, China) was 

used for cDNA synthesis following the manufacturer’s 

instructions from HFB4 and A375 cell lines. The relative 

gene expressions were calculated by the ΔΔCt method, 

normalizing to the expression of the reference gene and a 

control sample (Supplementary Table 2). 

 

Statistical data analysis 

 

All program performance and data analysis were 

performed in R language environment. For two groups 

comparison, T test and Wilcoxon rank-sum test were 

used for statistics. One-way ANOVA analysis was 

applied for statistical analysis among multiple groups. 

Pearson correlation analysis was used to calculate the 

correlation between two components and p less than 

0.05 was regarded as statistically significant. 

 

RESULTS 
 

The HRLs signature construction 
 

The Sankey diagram visualized the relationship between 

hypoxia related genes and HRLs (Figure 1A). By the 

 

 
 

Figure 1. Risk model construction based on the prognostic HRLs in CM. (A) The Sankey diagram shows the detailed connection 

between HRGs and HRLs. (B) Univariate Cox regression analysis of HRLs. (C) LASSO regression analysis displays the minimum lambda and 
optimal coefficients of prognostic HRLs. 
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least absolute shrinkage and selection operator (LASSO) 

utilizing, seven prognostic HRLs associated with the 

overall survival (OS) rate were identified based on the 

univariate Cox regression (Figure 1B, 1C). The multi-

variate Cox regression analyses subsequently selected 

four prognostic HRLs which differentially expressed in 

tumor and could independently evaluate the prognosis 

of CM. 

 

Consensus clustering analysis and immune 

infiltration landscape 

 

The molecular subtypes of CM samples were  

further explored using 4 prognostic HRLs. An  

optimal classification of K = 3 molecular subtypes  

was determined for CM patients using consensus 

clustering. This classification comprised 229, 129,  

103 samples in Cluster A, Cluster B and Cluster C 

respectively, as depicted in the heatmap (Figure  

2A). Based on the 4 prognostic HRLs, the result of 

principal components analysis (PCA) demonstrated  

a distinct separation of patients into Cluster A,  

Cluster B and Cluster C (Figure 2B). Kaplan-Meier 

survival curve analysis showed that CM patients in 

Cluster B had the highest overall survival (OS), which 

significantly different from the other two groups of 

patients. (Figure 2C). Differentially expressed genes 

(DEGs) between Cluster A and Cluster B were further 

enriched in immunodeficiency, antigen processing  

and presentation, and asthma by KEGG pathway 

analysis (Figure 2D). DEGs between Cluster B and  

C were enriched in the receptor signaling pathway, 

JAK-STAT signaling pathway and toll-like receptor 

signaling pathway (Figure 2E). 

 

The ESTIMATE assessment algorithm showed patients 

in Cluster B had the highest ESTIMATE scores, Immune 

scores, and Stromal scores among the three clusters 

(Figure 3A–3C). The results of ssGSEA algorithm 

showed a high level of immune cell enrichment in 

cluster B patients (Figure 3D). Furthermore, the results 

of immune function assessment indicated higher 

immune function scores in Cluster B patients (Figure 

3E). IPS results exhibited a best response potential  

to anti-CTLA-4, anti-PD-1, and the combination of  

anti-CTLA-4/anti-PD-1 in Cluster B patients, thereby 

indicating a greater benefit for immunotherapy (Figure 

3F–3H). In conclusion, these results provide valuable 

insights for future individualized precision therapy in 

CM patients from different subgroups. 

 

HRLs-based risk model development and validation 

 

A risk model was further developed based on 4 

prognostic HRLs to assess clinical prognosis. Patients  

in Cluster C exhibited the worst clinical prognostic 
 

 
 

Figure 2. Identification of molecular subtypes for CM. (A) Unsupervised consensus clustering analysis of CM. (B) PCA score plot 

depicting cluster subgroups. (C) Clinical survival outcomes of CM in the clusters. (D, E) GSVA comparing KEGG signaling pathways among 
CM subtypes. 
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outcome, as indicated by the highest risk score among 

CM cluster subtypes (Figure 4A). The Sankey plot 

demonstrated the relationship among clusters, risk 

scores and clinical survival status (Figure 4B). The 

samples in the established signature were subsequently 

divided into training cohort (n = 318) and test cohort 

(n = 136) using a 7:3 classification ratio. In the entire 

risk cohort, the CM samples were classified into low- 

and high-risk groups based on the median risk score. 

According to the median risk score, CM samples in the 

entire risk cohort were divided into low-risk and high-

risk groups. The results showed that the low-risk score 

samples had a more optimistic prognosis (Figure 4C). 

Kaplan-Meier analysis showed that OS rates of with 

low-risk score CM samples were significantly higher 

than that with high-risk scores (Figure 4D). Notably,  

the clinical survival outcomes of CM samples in the 

training cohort and test cohort were consistent with 

those of the entire cohort. CM samples categorized as 

low-risk had a better OS rate in comparison to the other 

group (Supplementary Figure 1A, 1B). Furthermore, the 

time-dependent ROC curves indicated that the area 

under the curve (AUC) for 1-, 3-, and 5-year survival 

was 0.726, 0.701, and 0.720 in the training group, and 

0.653, 0.595, and 0.691 in the test group, respectively 

(Supplementary Figure 1C, 1D). In conclusion, these 

results validated the reliability of established HRLs 

based risk model in assessing clinical outcomes. 

 

Independent prognostic analysis of HRLs based risk 

model in CM 

 

The study further explored the independence of the 

established risk model by combining with the clinical 

 

 
 

Figure 3. TME landscape and immunotherapy response of CM subtypes. (A–C) ESTIMATE score, Immune score, and Stromal score 

for Cluster A, B, and C. (D) Immune infiltration of 23 types of immune cells in Cluster A, B, and C. (E) TIDE score for Cluster A, B, and C. (F–H) 
IPS evaluation demonstrates the response of CM subtypes to PD-1 and CTLA-4. 
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characteristics. The results indicated a significant 

difference between fustat, stage (I, II, III, IV) and  

T stage (T0, T1, T2, T3, T4) (Figure 5A). Univariate 

Cox analysis in the entire cohort indicated that  

poor clinical prognosis was associated with the clinical 

characteristics including age (HR = 1.020 (1.009–

1.031), p < 0.001), stage (HR = 1.473 (1.217–1.782), 

p < 0.001), T (HR = 1.445 (1.243–1.681), p < 0.001), 

N (HR = 1.443 (1.234–1.688), p < 0.001) and HRL 

score (HR = 1.383 (1.247–1.532), p < 0.001) (Figure 

5B). The multivariate Cox analysis revealed that age 

(HR = 1.014 (1.002–1.025), p = 0.017), T (HR = 1.367 

(1.155–1.619), p < 0.001), N (HR = 1.531 (1.199–

1.956), p < 0.001) and HRL score (HR = 1.247 

(1.114–1.396), p < 0.001) as CM independent factors 

(Figure 5B). The results from the training and test 

cohorts suggesting that the risk score could be 

considered as an independent prognostic indicator  

for CM, which exhibited better predictive value in 

comparison to other clinical features (Figure 5C, 5D). 

 

The TME landscape and immunotherapy response 

by risk stratification 

 

The tumor microenvironment (TME) landscape and 

immunotherapy response analysis by risk stratification 

were further explored. The ESTIMATE results 

demonstrated that high-risk score CM patients had 

lower stromal, immune and overall ESTIMATE scores 

(Figure 6A–6C). The KEGG pathway analysis indicated 

that DEGs by risk stratification were enriched in 

biological processes including cytosolic DNA sensing 

 

 
 

Figure 4. Construction of HRLs risk model in CM. (A) HRL score in CM subtypes. (B) Relationship between HRL score, CM cluster, HRL 

score, and clinical survival status. (C) Construction of risk model for CM. (D) Clinical prognostic analysis of CM samples in low-risk and high-
risk groups. 
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pathway, the rig-like receptor signaling pathway  

and toll-like receptor signaling pathway (Figure  

6D). The immune infiltration assessment using semi-

supervised gene set enrichment analysis (ssGSEA) 

revealed significant differences in various immune 

cell populations between the two groups, including 

activated B cells, CD4+ T cells, CD8+ T cells,  

and MDSCs (Figure 6E). The correlation analysis 

revealed a positive relationship between LINC05260 

and EBLN3P expression levels and immune cells, 

whereas USP30-AS1, LINC00324, and the HRL score 

showed a negative association with immune cells 

(Figure 6F). 

 

Somatic mutation landscape and drug sensitivity 

analysis 

 

The following results showed a higher tumor mutational 

burden (TMB) level in low-risk group (Figure 7A). The 

genetic mutation landscape analysis demonstrated the 

somatic mutation frequency in both groups. As shown 

in Figure 7B, 7C, 214 (92.24%) out of 232 low-risk 

 

 
 

Figure 5. Independent prognosis analysis of risk score and predictive ability evaluation. (A) Clinicopathological characteristics of 

CM clusters. (B) Univariate and multivariate Cox analysis in the entire cohort. (C) Independence analysis in the training cohort. 
(D) Independence analysis in the test cohort. 
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patients and 197 (89.95%) out of 219 high-risk patients 

exhibited somatic mutations. For the low-risk patients, 

the mutation frequencies for TTN, MUC16, BRAF, 

DNAH5, and PCLO were 76%, 72%, 54%, 52%, and 

47%, respectively, which were higher than in the other 

group (Figure 7B, 7C). The TIDE results revealed that 

low-risk patients had higher TIDE scores (Figure 7D). 

Additionally, the IPS results indicated higher 

sensitivities to PD-1, CTLA-4, or combined treatments 

for low-risk patients (Figure 7E–7G). Figure 7H–7L 

displayed the drug sensitivity analysis results, which 

indicated significantly higher IC50 values of dasatinib, 

crizotinib, paclitaxel, imatinib, and cyclopamine in the 

high-risk group. These findings indicated differences in 

 

 
 

Figure 6. TME landscape and immunotherapy response of CM in the risk subgroups. (A–C) Stromal score, Immune score, and 
ESTIMATE score. (D) GSVA comparing KEGG signaling pathways between low-risk and high-risk groups. (E) Estimation of the proportions of 
23 immune cells using ssGSEA. (F) Correlation analysis of LINC02560, EBLN3P, USP30-AS1, LINC00324 with HRL score and immune cells. 
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drug sensitivity by risk stratification and provided new 

insights into precisely targeted therapy for CM patients. 

 

RT-qPCR validation of selected HRLs 

 

We used A375 melanoma cell line for RT-qPCR  

to verify the bioinformatics screening results in 

comparison to HFB4 control cell line. As shown Figure 

8A–8D, the mRNA expression levels of 4 screened 

HRLs according to public database showed significant 

differences with same tendency, which partially verified 

the reliability of bioinformatics results. 
 

DISCUSSION 
 

In this study, we established a new HRLs-related risk 

model in CM and comprehensively assessed the possible 

causes of the difference in prognosis by risk stratification. 

 

Although there is no direct evidence for the function  

of EBLN3P in CM carcinogenesis, the regulatory effect  

of EBLN3P on downstream targets may influence the 

prognosis of CM. EBLN3P has been reported to 

regulate the expression of U2AF homology motif kinase 

1 (UHMK1) targeting miR-323a-3p [31]. As an RNA 

processing kinase, UHMK1 controls protein synthesis 

by regulating the expression and phosphorylation levels 

of key genes in biological processes [32]. It has been 

reported in melanoma patients that UHMK1 regulates 

metabolic reprogramming during targeted therapy 

through selective mRNA processing and translation, 

resulting in resistance to targeted therapy [33]. This 

may be one of the reasons for the prognostic difference 

by risk stratification. 

 

Despite the lack of in-depth reports on mechanisms, 

USP30-AS1 has been reported to be associated with 

melanoma prognosis [34]. One of the main roles of 

USP30-AS1 is to regulate the expression level of 

ubiquitin-specific protease 30 (USP30) [35, 36]. USP30 

is regulated by post-translational modifications and 

takes an active part in many cellular events such as 

infection, autophagy, BAX/ bak-dependent apoptosis, 

and tumorigenesis [37, 38]. USP30 defects lead to 

 

 
 

Figure 7. Somatic mutation landscape and drug sensitivity in CM. (A) TMB analysis. (B, C) Genetic mutation frequency in the low-

risk and high-risk groups. (D) TIDE scores of CM patients in the low-risk and high-risk groups. (E–G) IPS results in the low-risk and high-risk 
groups. Distribution of IC50 values in the low-risk and high-risk groups for (H) dasatinib, (I) crizotinib, (J) paclitaxel, (K) imatinib, and 
(L) cyclopamine. 
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mitochondrial depletion, which significantly reduces the 

killing capacity of effector cytotoxic T lymphocytes 

(CTLs) [39]. Given the significance of CTLs in  

the development of melanoma [40], mitochondrial 

dysfunction caused by the USP30-AS1/USP30 axis 

may be an important cause. 

 

In addition to its classic function of complex  

ceRNA network forming, LINC00324 can also  

bind RNA-binding proteins and recruit transcription 

factors in order to regulate multiple downstream  

gene expressions [41]. Although no relevant studies 

have been conducted in CM, LINC00324 has been 

shown to be overexpressed in a variety of cancer  

types and to be associated with pathologic features and 

risk stratification [42]. Unlike most tumor types, we 

observed a significant reduction in LINC00324 mRNA 

level in the A375 melanoma cell line compared to  

the HFB4 control cell line, which is in line with the 

observation in breast cancer [43]. LINC00324 affects 

multiple miRNA/mRNA axles and is involved in  

the regulation of various signaling pathways, such as  

miR-139-5p/IGF1R, miR-615-5p/AKT1, Mir-799-5p 

/STAT3, and miR-10b-5p/E-cadherin [44]. Among 

them, miR-10b-5p was involved in the inhibition of e-

cadherin during EMT [45, 46]. By regulating miR-

10b-5p, LINC00324 can promote the expression level 

of E-cadherin, thereby inhibiting tumor progression 

[46]. This may partially explain the correlation between 

LINC00324 and prognosis in CM. 

 

 
 

Figure 8. In vitro validation of prognostic HRLs in HFB4 and A375 cell lines. RT-qPCR was used to test the mRNA levels of USP30-

AS1 (A), LINC02560 (B), EBLN3P (C) and LINC00324 (D) in HFB4 and A375 cell lines. 
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The adaptive mechanisms by which cancer cells  

survive prolonged oxygen deprivation often led to the 

emergence of drug resistance. Its mechanisms include 

HIF-1α induced tight packing of genetic material, 

decreased mitochondrial DNA damage levels of 

organelles, decreased reactive oxygen species levels, 

and activation of pro-survival pathways [12, 47, 48]. 

Our results again suggest the guiding value of hypoxia 

related prognostic models for immune response and 

sensitivity to specific chemotherapy drugs. Therefore, 

new therapeutic strategies targeting hypoxic tumor 

microenvironments, including HIF-1α inhibitors, hypoxia 

relief, oxygen sensitive therapy, etc., have clinical 

application potential of CM [49]. In addition, hypoxia 

can inhibit CTL cytotoxic activity, thus affecting 

immune response [50]. Our IPS results suggest poor 

response to immunotherapy in the high-risk group.  

This was consistent with the trend of reduced levels  

of immune components in high-risk patients. 

 

In summary, we establish a novel risk model related to 

HRLs and provide a new basis for CM risk stratification 

and target screening. Limited by the conditions, most of 

the conclusions in this paper are correlation studies 

rather than causation studies. Further in vitro and in vivo 

experiments can better reveal the effect of selected 

HRLs on the pathogenesis of CM in the future. 

Additionally, the sources of data in the database also 

lack of ethnic diversity and sample size. Further multi-

center studies worldwide investigation will help us to 

know better about the role of HRLs in tumorigenesis. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Clinical prognostic analysis of CM samples in the low-risk and high-risk groups in the (A) Training cohort and 

(B) Test cohort. (C) ROC curve in the training cohort and (D) Test cohort. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The gene list of hypoxia related genes signature. 
 

 

Supplementary Table 2. The primer sequences of hypoxia-related lncRNAs. 

LINC00324 
Forward primer TGTGGATGACAGTGTTCGGG 

Reverse primer ACGCTGACCAGAAACCGTAG 

USP30−AS1 
Forward primer GAACGTAGACCGCAGGACAG 

Reverse primer GACGTGGTCCGTCAGCTATT 

EBLN3P 
Forward primer TGAGGACCGAGTAGTCCTGG 

Reverse primer TCCTATGCCCAGATCGTCCA 

LINC02560 
Forward primer CACTCTACCAGCTTGGAGCC 

Reverse primer AATCAGCAGACCAGATGCCC 

 

 

3749


