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ABSTRACT 
 

Background: Breast cancer (BC) is a heterogeneous tumor with a variety of etiology and clinical features. 
Antibody-dependent cell phagocytosis (ADCP) is the last step of immune checkpoint inhibition (ICI), and 
macrophages detect and recognize tumor cells, then destroy and engulf tumor cells. Despite the large number, 
negative regulators that inhibit phagocytic activity are still a key obstacle to the full efficacy of ICI. 
Patients and methods: An ADCP-related risk score prognostic model for risk stratification as well as prognosis 
prediction was established in the Cancer Genome Atlas (TCGA) cohort. The predictive value of ADCP risk score 
in prognosis and immunotherapy was also further validated in the TCGA along with International Cancer 
Genome Consortium cohorts. To promote the clinical application of the risk score, a nomogram was 
established, with its effectiveness verified by different methods. 
Results: In this study, the genes collected from previous studies were defined as ADCP-related genes. In BC 
patients, two ADCP-related subtypes were identified. The immune characteristics and prognostic stratification 
were significant different between them. 
Conclusions: We identified two subtypes associated with ADCP gene expression in breast cancer. They have 
significant differences in immune cells, molecular functions, HLA family genes, immune scores, stromal scores, 
and inflammatory gene expression, which have important guiding significance for the selection of clinical 
treatment methods. At the same time, we constructed a risk model based on ADCP, and the risk score can be 
used as a good indicator of prognosis, providing potential therapeutic advantages for chemotherapy and 
immunotherapy, thus helping the clinical decision-making of BC patients. 
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INTRODUCTION 
 

The complete antibody of human immunoglobulin 

(IgG) consists of an antigen-binding fragment (Fab)  

and a crystal fragment (Fc) that binds to the Fcγ 

receptor. In the constant region of IgG1, IgG2,  

IgG3 and IgG4, IgG1 exhibits the highest FcγR  

binding affinity compared to IgG3, IgG2 and IgG4, 

particularly in the subclasses characterized by different 

hinge and CH2 domains [1]. The Fc region binds to 

FcγR on the surface of immune cells, and antibodies 

can cause some effector cells to produce strong 

cytotoxic effects [2]. Therefore, different subtypes 

possess distinct effector functions, such as ADCP. 

 

Antibody-dependent cell phagocytosis (ADCP) of 

tumor is a kind of antibody that binds to target  

cells (such as tumor cells) and effector cells (such  

as macrophages) at the same time, resulting in the 

phagocytosis of target cells by effector cells [3]. After 

phagocytosis, target cells are digested and degraded  

in effector cells by acidification. ADCP is considered 

to be the main MOA for a variety of biological  

drugs such as anti-CD20, CD38, EGFR, HER-2 [4].  

At the same time, macrophage-mediated tumor cell 

phagocytosis by using anti-CD47 antibodies to block 

the anti-phagocytic CD47-SIRPa interaction has 

shown promise in preclinical xenotransplantation of 

various human malignancies [5]. The satisfactory anti-

cancer effect of ADCP depends on early antibody 

administration, and drug resistance develops with 

cancer progression [6]. 

 

BC is a heterogeneous tumor with a variety of etiology 

and clinical presentations. Studies have revealed  

the presence of various subtypes involved in the 

development and progression of BC [7]. Our research 

introduces the research status of breast cancer subtypes 

in detail and identifies new subtypes by means of 

machine learning [8], which opens up new fields for 

breast cancer research. 

 
A large number of studies have proved the  

importance of ADCP in tumor treatment. In this  

study, we determined the ADCP-related subtypes of  

breast cancer, and comprehensively discussed the 

significance of ADCP in multi-omics. It provides an 

important basis for clinical precision treatment. 

 
In this study, genes defined as ADCP-related genes were 

collected from previous studies. In BC patients, two 

ADCP-related subtypes were identified. The immune 

characteristics as well as prognostic stratification were 

significant different between the two ADCP-related 

subtypes. Based on these findings, it can be inferred that 

there may be a significant relationship between ADCP in 

BC and TME (tumor microenvironment). Risk score 

could be used as a good indicator for prognosis, potential 

in offering therapeutic advantages for chemotherapy as 

well as immunotherapy, thereby aiding in the clinical 

decision-making process for BC patients. 

 

MATERIALS AND METHODS 
 

Data download and processing 

 

Study cohorts A and B were based on data obtained 

from two publicly available datasets that derived from 

The Cancer Genome Atlas (TCGA, https://portal.gdc. 

cancer.gov/) and Molecular Taxonomy of Breast Cancer 

International Consortium (METABRIC, https://www. 

cbioportal.org/study/summary?id=brca_metabric) data-

bases, respectively [9, 10]. Cohort A consisted of 103 

paracancerous samples and 903 breast cancer (BC) 

samples, which were used for gene expression profiling. 

On the other hand, cohort B included 154 paracancerous 

samples and 1826 BC samples for gene expression 

profiling. In order to evaluate the reliability of the 

prognostic model constructed in this study, cohort A 

was designated as the training set, while cohort B 

served as the validation set. This division allowed us  

to train the model on one dataset and validate its 

performance on an independent dataset.  

 

Identification of the survival-related ADCP genes 

 

To evaluate the prognostic significance of ADCP 

genes, Cox regression analysis was further adopted to 

evaluate the relationship of each gene with survival 

status in the TCGA cohort. To mitigate the risk of 

overlooking potentially important genes, a truncated  

p-value of 0.05 was set as a threshold, and a total of 

130 survival-related genes were identified for further 

analysis. 

 

Consensus clustering analysis of ADCP genes 

 

The unsupervised clustering ‘Pam’ method was 

applied to the identification of different molecular 

subtypes based on survival-related ADCP gene 

expression [11]. The R package Consensus Cluster 

Plus performs this process and determines the number 

of clusters in Queue A, with 1000 times repeated  

to make sure classification stability [12]. Principal 

component analysis (PCA) was employed to illustrate 

the distribution differences. To evaluate the clinical 

significance of ADCP subtypes, their relationship  

with prognosis and other clinicopathological features 

(including age, stage and cancer subtypes) were 

examined. In different cohorts, the overall survival 

(OS) of different clusters was compared using  

the Kaplan-Meier (K-M) survival chart, with P ≤  
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0.05 indicating statistical significance. Besides, the 

relationship between ADCP subtypes and other 

clinical variables was visualized using the Sankey plot 

and drawn using the ggalluvial R package [13]. The 

heat maps of different ADCP gene expression patterns 

were plotted by the pheatmap R package [14]. 

 

Identification and verification of the key ADCP 

genes 

 

Based on the TCGA, the ‘limma’ R package was 

adopted to identify the differentially expressed genes 

(DEGs) between group1 and group2 [15]. The fold 

change cut off was 1, and the adjusted p value was less 

than 0.05. We used the glmnet R package in the TCGA 

cohort to use the LASSO Cox regression model to 

screen out the best prognostic biomarkers in 130 ADCP 

genes [16]. A total of 39 ADCP genes with non-zero 

coefficients were screened by 10-fold cross-validation. 

We overlapped the ADCP genes screened by DEGs and 

LASSO regression to screen out the key ADCP genes. 

Risk scoring formula: 

 
n

i 1
Risk score coefi id

=
=   (1) 

 
Where Coefi represents the coefficient and id represents 

the normalized count for each gene. 

 
After constructing the risk score according to the 

LASSO regression model, the risk grouping and  

group were visualized through the Sankey diagram 

using the ggalluvial R package according to the 

survival situation. 

 
Univariate Cox regression together with K-M plot  

were used to analyze the prognostic significance of  

key ADCP genes. P-values less than 0.05 indicated 

statistical significance. Subsequently, multivariate Cox 

regression model was utilized to explore whether ADCP 

genes could be combined with other clinicopathological 

features as independent prognostic factors. 

 
Correlation of the ADCP genes with copy-number 

alterations and immune traits 

 

Gene Set Cancer Analysis (GSCA) is a multi- 

omics online analysis tool based on TCGA  

data. It was used to analyze the expression and  

prognosis of pan-oncogenes in key ADCP genes 

(http://bioinfo.life.hust.edu.cn/web/GSCALite/) [17]. 

Results are displayed in the bubble plot by the 

‘ggplot2’ package [18]. To analyze the expression 

characteristics of key ADCP genes in tumor and 

ADCP, t-test algorithm was used to compare their 

expression levels in different risk scores, groups and 

tumor groups in cohort A, respectively. The CAN 

(copy-number alterations) ratio as well as methylation 

level (β value) of key ADCP genes among TCGA-BC 

samples were verified by GSCA online tool. As a 

convenient online tool, TISIDB provides convenient 

access to correlation between genes and immune  

traits, such as lymphocytes, immunomodulators,  

and chemokines [19]. The scatter plots of ADCP  

genes with several tumor-infiltrating lymphocytes 

(TIL), immunosuppressants and immunostimulants 

were downloaded from TISIDB. 

 

Construction and verification of risk model 

 

For each patient, the risk score was predicted by the 

‘predict’ function in the survival R package [20]. 

Patients were then divided into high- and low-risk 

groups according to the median value. To test the 

accuracy of the Cox regression model, C-indexes  

as well as receiver operating characteristic curves 

(ROC) were adopted. Prognostic factors, including C-

indexes representing risk score, were visualized using 

histogram. ROC analysis was performed by the 

‘pROC’ package [21], with the area under the curve 

(AUC) values calculated and compared to evaluate  

the performance of the model. In addition, the K-M 

survival analyses were conducted for risk scores. 

Based on training and test datasets, 1-, 3- and 5- 

year ROC curve were plotted using the R package 

timeROC [22]. 

 

Nomogram construction 

 

To further investigate the prognostic significance of 

ADCP genes, the TCGA datasets were utilized to 

generate risk plots between high- and low-risk groups. 

To improve the predictive accuracy, a nomogram 

incorporating TNM stage, Cancer type and group was 

developed using survival and rms package [23]. To 

demonstrate the consistency between the predicted 1-, 

3- and 5-year endpoint events and the corresponding 

actual outcomes, calibration plots were generated 

using rms package. 

 

Evaluation of drug sensitivity 

 

To investigate the molecular characteristics  

associated with drug sensitivity/resistance, the 

Genomics of Drug Sensitivity in Cancer (GSDC) 

database (https://www.cancerrxgene.org/) [24], a public 

resource for identifying cancer cell biomarkers, was 

utilized. The pRRophetic package was adopted to 

determine the sensitivity data of two BC groups 
towards various drugs [25]. Furthermore, the drug 

sensitivity of BC patients with different phenotypes 

was predicted from gene expression data. 
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Quantitative reverse transcriptase PCR (qRT-PCR) 

 

The MCF-10A (human breast cancer paracancerous) 

and MDA-MB-453 (human breast cancer) cell lines 

were obtained (Shangcheng North Na Chuanglian 

Biotechnology Co., Ltd.). Control groups were created 

by combining MCF-10A with MDA-MB-453 cells to 

compare the expression of DEFB1, SIAH2, and SYT1 

between normal and breast cancer cell lines. Total RNA 

was extracted using the Redzol kit (Beijing SBS Gene 

Technology Co., Ltd.), and qRT-PCR was performed 

using the SYBR® Premix Ex Taq™ II Kit. The relative 

mRNA expression levels were calculated using the 

2−ΔΔCt method, with β-actin as the internal reference 

gene. The forward primer sequences were as follows: 

(1) DEFB1: F-5′-CTCAGGTGGTAACTTTCTCA-3′; 

(2) SIAH2: F-5′-CACTTGACAGGCTGTTGCAC-3′; 

(3) SYT1: F-5′-CGCTTCGGCAGCACATATACTAA 

AATTGGAAC-3′. (4) GAPDH: F-5′-GAGTCAACGG 

ATTTGGTCGT-3′. The reverse primer sequences were 

as follows: (1) DEFB1: R-5′-AAGCACTCCGGGTG 

ATTCAG-3′; (2) SIAH2: R-5′-AAGCACTCCGGGT 

GATTCAG-3′; (3) SYT1: R-5′-TTGGTCAGCACAG 

ATCATCG-3′. (4) GAPDH: R-5′-GATCTCGCTCCTG 

GAAGATG-3′. 

 
Western blot (WB) 

 

The WB analysis was performed following previously 

established protocols and the manufacturer’s recom-

mendations. The concentrations of extracted proteins 

were determined using the Bradford method. Proteins 

were separated on a 10% SDS-polyacrylamide gel, 

transferred to PVDF membranes, and blocked with 

5% skimmed milk. Primary antibodies against  

DEFB1 (1:500; catalog number ab115813; Abcam), 

SIAH2 (1:500; catalog number ab31234; Abcam), 

SYT1 (1:500; catalog number ab302627; Abcam),  

and GAPDH (1:500; catalog number ab181602; 

Abcam) were incubated with the membranes overnight 

at 4° C. Afterward, HRP-labeled secondary antibody 

was added and the membranes were washed with 

TBST. WB analysis was conducted using chemilumi-

nescence, and the protein bands were visualized using 

a film. 

 
Statistical analysis 

 

Statistical analyses were conducted using R  

software (version 4.2.1) [26]. A two-sided P-value 

less than 0.05 was considered statistically significant.  

The K-M survival curve was constructed using the 

survival curve function ‘ggsurvplot’ in the R package 

survminer (0.4.2 version) [27], and the bilateral log-

rank test was adopted to estimate the difference in OS 

between different groups. The cut-off value of ADCP 

genes, differentiating the high-risk group from the 

low-risk group, was determined as the median  

or calculated using the surv cutpoint function 

implemented in the R package survminer (0.4.2 

version) [28]. The LASSO Cox regression model was 

used to identify the ADCP genes that exhibited a 

significant association with OS, and multivariate Cox 

regression analysis was performed using the identified 

ADCP genes to calculate hazard ratios (HR), 95 % 

confidence intervals (CI), and corresponding p-values 

to construct ADCP genes. Additionally, multivariate 

Cox regression analysis was used to evaluate the 

independent prognostic value of clinical indicators, 

including the ADCP genes, and a nomogram visual 

risk prediction map was formed after scoring each 

factor using the rms package of R software. To 

evaluate the consistency of nomogram, the calibration 

plot was generated using the rms package of R 

software [29]. 

 

Availability of data and material 

 

Publicly available datasets were analyzed  

in this study. These data can be found here: 

https://portal.gdc.cancer.gov/, https://www.cbioportal. 

org/study/summary?id=brca_metabric. The names of 

the repository/repositories and accession number(s) 

can be found in the article/Supplementary Material. 

 

Consent for publication 

 

All authors approved the publication of the article. 

 

RESULTS 
 

Survival-related ADCP gene 

 

To investigate the prognostic significance of ADCP 

genes, a gene signature was established using data 

from cohort A. The workflow for the construction  

of gene signature is depicted in Supplementary  

Table 1. Based on univariate Cox regression, 130 

prognostic genes were screened out (p-value < 0.01, 

Supplementary Table 1). 

 

Consensus clustering analysis of ADCP genes 

 

Based on the expression levels of survival-related ADCP 

genes in the TCGA database, two distinct regulatory 

patterns were identified using an unsupervised clustering 

method. A total of 515 cases were classified into  

ADCP-related cluster 1 and 491 cases were classified 

into ADCP-related cluster 2 (Figure 1A). PCA analysis 

demonstrated that the patients can be classified into two 

distinct parts, providing further evidence of the existence 

of two significantly different subtypes (Figure 1B). To 
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Figure 1. Consensus clustering of ADCP-related genes in BC. (A) The consensus matrices and (B) PCA analysis were performed to 

assess the stability of clustering and explore coagulation subtypes. (C) Kaplan-Meier curves and (D) an alluvial diagram demonstrated the 
association between ADCP groups, tumor stage, age, grade, and survival state. (E) Unsupervised clustering of all coagulation-related genes in 
TCGA cohorts. 
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evaluate the survival difference between the two clusters, 

an analysis was conducted on a diverse range of patients 

from a variety of cohort A (TCGA) with complete 

survival information were analyzed. Subsequently, the 

relationship of these two clusters with various clinical 

features were analyzed (Figure 1D). The survival 

advantage of cluster 1 was higher compared to that of 

cluster 2. In cluster 1, the proportion of age less than 60, 

M0, N0-1, T1-2, Stagei-ii was higher. These suggest that 

ADCP genes may affect tumor development through 

some potential mechanisms. The heat map depicts the 

transcriptomic characteristics of different expressed 

ADCP genes in the two ADCP subtypes (Figure 1E). 

 
The immune landscape of ADCP subtypes 

 

To explore the disparity in pathway enrichment 

analysis between the two clusters of ADCP in cohort 

A, GSEA was performed, with different immune 

infiltration patterns identified within the two subtypes. 

The enrichment histogram showed that cluster 1 

significantly enriched hormone metabolism (including 

early estrogen response, late estrogen response) and 

inflammatory signal regulation pathways (allograft 

rejection, inflammatory response, kras signal and il6 

jak stat3 signal, tnfa signal conduction through NFKB)  

(Figure 2A). At the same time, GSEA confirmed that 

there were differences in the immune pathways of 

ADCP clusters. The results showed that DEGs with 

higher expression levels in cluster 1 were significantly 

enriched in early estrogen response, allograft rejection 

pathway, inflammatory response, interferon response, 

kras signaling pathway and tnfa signal transduction 

through NFKB (Figure 2B). Given the strong 

correlation between ADCP subtypes and immune 

activity, the TME of the two clusters in cohort A was 

investigated (Figure 2C). Cluster 1 subtype is featured 

with high infiltration of Natural Kill cells (resting) and 

Macrophages, while cluster 2 subtype exhibits elevated 

infiltration levels of B cells, Plasma cells, T cells, 

Natural Kill cells, Dendritic cells, Mast cells and 

Neutrophils. Based on TCGA expression profile, the 

stromal score, immune score as well as ESTIMATE 

score of malignant tumor tissues were calculated 

through ESTIMATE algorithm. ESTIMATE produces 

a matrix score that measures the presence of tumor-

associated matrices, as well as an immune score that 

reflects the level of immune cell infiltration. These 

scores are combined to produce an index called an 

‘estimated score’ which provides a comprehensively 

estimation tumor purity. Compared with cluster 1, 

samples in cluster 2 also showed significantly higher 

estimated scores (Wilcoxon test, P < 0.05, Figure  

2D). This trend was also observed for matrix scores  

as well as immune scores (Wilcoxon test, P < 0.05). 

Additionally, we studied the association between the 

two subtypes and major histocompatibility complex 

(MHC) and T cell stimulators. In addition to HLA-C, 

the expression levels of MHC as well as T cell 

stimulators exhibited a tendency to be higher in cluster 

2 (Figure 3E, 3F). 

 

Recognition of key ADCP genes 

 

Using the limma algorithm, a total of 432 degs 

(Differentially expressed gene) between group1 and 

group2 are identified under the filtering threshold of 

FDR q-value < 0.01 and the absolute value of logFC > 1 

(Figure 3A and Supplementary Table 2). Prognostic 

models were constructed for 1006 BC patients with  

OS information in cohort A. LASSO Cox regression 

analysis was utilized to determine the best prognostic 

features based on 130 survival-related ADCP genes. 

After the variables were included in the LASSO Cox 

regression model with the smallest lambda, the genes of 

39 ADCP-related features were chosen to construct the 

ADCP-related risk scoring model. Three key ADCP 

genes (DEFB1, SIAH2 and SYT1) by overlapped DEGs 

from cohort A and the model ADCP genes were 

identified (Figure 3B). The relationship of the expression 

levels with 3 ADCP-related signatures together with OS 

are also presented in the forest plot (Figure 3D). The 

expression of three key ADCP genes is of significance 

for survival (Figure 3E). 

 
Multidimensional analysis of key ADCP genes 

 

We studied the relationship of CNV with immune 

infiltration in BRCA. Additionally, we explored the 

association of gene methylation with immune 

infiltration. CNV and methylation of key ADCP genes 

were closely associated with the infiltration of key 

immune cells including T and B cells (Figure 4A,  

4B). At the same time, based on cohort A, the gene 

expression levels of 3 key ADCP genes were analyzed. 

In the data set, only DEFB1 was down-regulated in 

group1, while SIAH2 and SYT1 were up-regulated in 

group2 (Wilcoxon test, P > 0.05). Only DEFB1 was  

up-regulated in the high-risk group, while in the low-

risk group, SIAH2 together with SYT1 were down-

regulated (Wilcoxon test, P > 0.05). Only DEFB1 was 

up-regulated in the tumor group; in contrast, SIAH2  

and SYT1 were down-regulated in the low-risk group 

(Wilcoxon test, P > 0.05, Figure 4C). Among the three 

key ADCP genes, the frequency of copy number 

alterations (CNA) of SIAH2 was higher compared to 

that of the others. Specifically, CNA deletions were 

predominant among all types (Figure 4D). Methylation 

analysis showed that the beta value of SIAH2 was 

higher in the tumor group than in the normal group, and 

DEFB1 was the opposite (Figure 4E). It is well known 

that gene expression is negatively correlated with the 
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Figure 2. Clinical significance and immune landscape of ADCP groups in the TCGA cohort. (A) GSVA and Gene Set Enrichment 

Analysis (GSEA) revealed the activation or inhibition of biological pathways and (B) significant enrichment in immune-associated processes. 
(C) Immune cell infiltration, (D) stromal and immune scores, and gene expression of HLA and MHC gene sets were analyzed between ADCP 
groups. (E) The expression box plot of HLA family genes between the two subtypes. (F) The expression box plot of inflammatory genes 
between the two subtypes. Statistical significance at the level of * <0.05, ** <0.01, and *** <0.001. 
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level of methylation, while CNA has a positive effect on 

gene expression. In summary, CNA and methylation 

may be may be important in the up-regulation of SYT1 

expression in BC. 

 

ADCP-related signatures for the prognostic 

prediction of BC 

 

LASSO algorithm was used to establish a risk model. 

Finally, 39 genes related to prognosis were identified, 

and used to construct models based on risk scores 

using the training (n = 1006) and test (n = 1980) data 

sets of cohorts A and B patients, respectively. Survival 

analysis showed that a higher risk score of the training 

and the test sets was related with a lower survival  

rate (p < 0.0001) (Figure 5A, 5B). A time-varying 

ROC curve was generated for the assessment of the 

sensitivity of the model. The 3-year, 5-year, and 10-

year AUCs were found to be 0.743,0.754, and 0.79 in 

the training set, respectively (Figure 5C); in contrast, 

they were 0.546,0.678, and 0.716 in the test set, 

respectively (Figure 5C). 

 

 
 

Figure 3. Identification of key ADCP targets. (A) Volcano plots and (B) LASSO regression model were used to identify differentially 
expressed genes (DEGs) and select key CRGs. (C) An alluvial diagram illustrated the changes in risk groups, ADCP groups, and survival state. 
(D) Univariate Cox regression analysis and (E) Kaplan-Meier curves evaluated the associations between infiltrate levels of ADCP targets and 
overall survival. 

4021



www.aging-us.com 9 AGING 

The ADCP group served as an independent 

prognostic factor in BC 

 

Since ADCP genes are significantly associated with high 

malignancy and advanced tumors of BC, univariate and 

multivariate Cox regression analysis were carried out to 

determine the prognostic significance of ADCP genes 

for BC patients. ADCP group, age, TNM stage, stage 

together with risk score were included as covariates. 

Results showed that ADCP group, age, TNM stage, 

stage as well as risk score were independent prognostic 

factors for BC patients (Figure 6A, 6B). we constructed 

a nomogram by combining independent prognostic 

factors, serving as a clinically relevant quantitative 

method tool for predicting the mortality of individual  

BC patient (Figure 6C). Based on the c-exponential 

curve of different variables over time in the TCGA 

cohort, nomogram performed best compared to other 

single factors (Figure 6D). Add up the scores of each 

prognostic parameter and assign a total score to each 

patient. The higher the total score, the worse the 

prognosis of patients. The modal diagram has similar 

performance to the ideal model (Figure 6E). In addition, 

the DCA curve also indicated that the nomogram had 

good stability and reliability net benefit curve in age 

compared with other clinical factors (Figure 6F). 

 

 
 

Figure 4. Validation of key ADCP genes in expression level. (A, B) Correlation analyses were conducted between CNV/methylation 

and immune infiltrates in BC. (C) Expression levels and (D, E) CNA percentages of key ADCP genes were compared between ADCP groups, risk 
groups, and cancer types. Methylation levels of key ADCP genes in BC and normal samples were also examined. Statistical significance at the 
level of ns ≥ 0.05, *** <0.001 and **** <0.0001. 
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ADCP groups for the prediction of the 

chemotherapeutic response 

 

We evaluated the chemotherapy response and drug 

resistance of patients in the ADCP group. Figure 7 

shows the sensitivity of two ADCP subtypes to six 

anticancer drugs (AZD8055, A.443654, AMG.706, 

AKT.inhibitor.VIII, ABT.888, ATRA). Results showed 

that the IC50 level of group2 was higher compared  

to group1 (Figure 7A–7F), and small molecule  

drugs with therapeutic effects on BC could be found 

according to the results of drug sensitivity. Three-

dimensional structural tomography of AZD8055, 

A.443654, AMG.706, AKT.inhibitor.VIII, ABT.888 

and ATRA was found in PubChem (Figure 7G). 

 

Gene expression level verification via qRT-PCR 

and WB 

 

We verified the mRNA and protein levels of DEFB1, 

SIAH2 and SYT1 in BC cell lines and adjacent cell 

lines by qRT-PCR and WB. Results of qRT-PCR is 

 

 
 

Figure 5. Survival evaluation of ADCP-related risk scoring model in TCGA and METABRIC datasets. (A) Kaplan-Meier survival 
curves, (B) patient subgrouping based on risk scores, and (C) ROC curves assessed the performance of the ADCP-related risk scoring model in 
predicting overall survival at 1, 3, and 5 years. 
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shown in Figure 8A. In contrast with the normal 

control, DEFB1 level in BC cell line MDA-MB-453 

was lower, but the SIAH2 and SYT1 levels were higher. 

The protein expression levels of the three key ADCP-

genes based on WB analysis were consistent with the 

results of qRT-PCR experiments (Figure 8B, 8C).  

DISCUSSION 
 

Traditional cancer treatment methods such as 

chemotherapy are non-selective and increase the energy 

of the immune system, leading to serious side effects 

and tumor recurrence [30]. Since most tumor-associated 

 

 
 

Figure 6. A nomogram was developed to predict the probability of 1-, 3-, and 5-year overall survival (OS) in the training 
cohort. (A, B) Univariate and multivariate analyses were conducted, including the ADCP-related risk scoring model and clinical factors.  

(C) The comprehensive nomogram provided predictions for BC patients’ OS probabilities in the TCGA dataset. (D) The time-dependent c-
index plot compared the performance of the nomogram with other clinical factors. (E) Calibration plots assessed the accuracy of the 
nomogram’s predictions for 1-, 3-, and 5-year OS in the TCGA cohort. (F) Decision curve analysis evaluated the clinical utility of the nomogram 
and other factors for 1-, 3-, and 5-year risk assessment. 
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Figure 7. The ADCP-related groups were evaluated for their ability to predict therapeutic benefit. (A–F) The chemotherapy 

response of two ADCP-related groups to six common chemotherapy drugs was analyzed. (G) The 3D structure tomographs of six candidate 
small-molecule drugs for BC were examined. Statistical significance at the level of *** <0.001. 
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antigens are abundantly expressed in cancer cells  

and some normal cells, it is a challenge for the human 

immune system to produce cancer antigen-targeted 

antibodies in cancer patients [31]. The rise of ADCP-

related research has revolutionized cancer treatment. 

Changes, through ADCP-related targets can obviously 

improve the OS rate of cancer patients [32–36]. 

 

Despite the extensive understanding of the intercellular 

process of phagocytosis, specific genetic changes within 

cancer cells that drive / expel ADCP remains have not 

been fully determined. Recently, Kamber et al. [37] 

identified a collection of previously unknown cancer-

intrinsic genes that play a role in ADCP based on an 

unbiased CRISPR/Cas9 screen. In this investigation, 

Unsupervised consistent clustering was adopted to 

cluster gene expression patterns of Immune check-

point, immune microenvironment, inflammation related 

molecules, immune cells as well as stromal elements 

derived from BC datasets and ADCP cancer-intrinsic 

 

 
 

Figure 8. (A) RT-qPCR and (B, C) Western blotting analysis of DEFB1, SIAH2, and SYT1 expression in BC cell lines and adjacent cell lines. 

Statistical significance at different levels was reported for the results. Statistical significance at the level of * <0.05, ** <0.01, and *** <0.001. 
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genes. In this study, we successfully discovered a  

new ADCP-related BC category comprising 51.2% of 

BC patients. The ADCP-BC group, in contrast to the 

other group, showed lower immunological and stromal 

enrichment scores, suggesting a reduced presence of 

immune cells and stromal components. The ADCP- 

BC group exhibited distinct characteristics, including 

obvious immune cell infiltration, increased expression 

of multiple inflammatory genes and HLA family  

gene. At the same time, the three ADCP-related  

targets identified also showed significant differences 

in different groups and cancer-adjacent samples.  

This shows a potential advantage for them as targets 

for clinical treatment. Our findings have significant 

translational implications in the field. In addition to its 

prognostic value, our identified signature demonstrates 

a notable association with drug sensitivity, emphasizing 

its potential clinical relevance and applicability in 

therapeutic interventions. Based on these findings, it 

could be inferred that the ADCP group may benefit 

more from AZD8055, A.443654, AMG.706, AKT 

.inhibitor. VIII, ABT.888 and ATRA than from ICI, 

suggesting the combination of ZD8055, A.443654, 

AMG.706, AKT. inhibitor. VIII, ABT.888 and ATRA 

with ICI may be as potential therapeutic drug. 

 

DEFB1 has not been specifically reported in the 

context of phagocytosis. However, it has received 

significant attention within the field of cancer 

research. Defensins form a family of microbicidal  

and cytotoxic peptides made by neutrophils. Members 

of the defensin family are highly similar in protein 

sequence. This gene encodes defensin, beta 1, an 

antimicrobial peptide implicated in the resistance of 

epithelial surfaces to microbial colonization. This gene 

maps in close proximity to defensin family member, 

defensin, alpha 1 and has been implicated in the 

pathogenesis of cystic fibrosis. Results of a previous 

study suggested that the DEFB1 gene, which encodes 

human ß-defensin-1 (HBD-1), plays a role in innate 

immune responses and may act as a potential tumor 

suppressor in urological cancers [38]. Furthermore,  

it has been observed that DNA methylation pattern 

within non-CpG island promoter region of DEFB1 can 

influence epigenetic silencing of DEFB1 in tumor cells 

[39]. In colorectal cancer, SIAH2 has been identified 

as an oncogene [40]. SIAH2 (Siah E3 Ubiquitin 

Protein Ligase 2) is a Protein Coding gene. Diseases 

associated with SIAH2 include Dyskeratosis Congenita, 

Autosomal Dominant 3. Among its related pathways 

are Class I MHC mediated antigen processing and 

presentation and Nervous system development. Gene 

Ontology (GO) annotations related to this gene include 
ligase activity and transcription corepressor activity. It 

promoted various aggressive behaviors of colorectal 

cancer cells, such as proliferation, migration, invasion, 

as well as colony formation [41]. Interestingly, high 

mRNA levels of SIAH2 may be correlated with 

elevated Estrogen Receptor (ER) mRNA levels  

and improved progression-free survival (PFS) after 

initial tamoxifen [42, 43]. Studies have shown that 

cytoplasmic proteins interact with SYT1 on the 

endoplasmic reticulum and then are spatially localized 

in the SEC22B + vesicles of liver cancer cells.  

This gene encodes a member of the synaptotagmin 

protein family. The synaptotagmins are integral 

membrane proteins of synaptic vesicles that serve as 

calciumsensors in the process of vesicular trafficking 

and exocytosis. The encoded protein participates in 

triggering neurotransmitter release at the synapse in 

response to calcium binding. Therefore, SEC22B on 

the vesicles is secreted on the PM by Q-SNAREs 

(SNAP23, SNX3 and SNX4) [44]. In addition, 

inhibition of the interaction between protein kinase  

Cδ (PKCδ) and SYT1 by PKCδ antibody can reduce 

the secretion and tumorigenicity of PKCδ. PKCδ  

is a cytoplasmic protein specifically secreted by 

hepatocellular carcinoma [44]. The results revealed  

the significance of ER-PM contact sites in facilitating 

the secretion of cytoplasmic protein, establishing  

a foundation for targeted therapies of liver cancer  

[45]. As mentioned above, chemotherapy drugs as  

well as targeted drugs are the primary therapeutic 

approaches for treating BC [46]. In our study, a 

significant increase of ADCP targets was observed  

in BC patients, suggesting that ADCP targets can  

serve as an indicator for predicting the efficacy  

of BC patients. Furthermore, the IC50 values of 

certain chemotherapeutic drugs was compared with 

those of targeted drugs between ADCP groups, and 

results showed that BC patients in the low ADCP 

group may present with a more favorable response  

to the drugs. 

 

This study had certain limitations. The cohorts were 

obtained from high-throughput sequencing platforms  

in distinct public datasets, making the presence of 

intratumor/intrapatient tumor heterogeneity inevitable. 

Previous investigations have found that tumor hetero-

geneity might exert an influence on the efficacy of 

immunotherapy or chemotherapy. Unfortunately, owing 

to limitations in the available data, we were obliged to 

overlook the remarkable heterogeneity observed in 

cases of BC. Secondly, although immune interaction 

and survival effects associated with the inflammation 

pathway and ADCP-targets were observed among BC 

patients, their underlying biological/medical mechanisms 

remain obscure. Thus, it is imperative to conduct 

extensive large-scale prospective studies along with 
functional/mechanistic experiments to validate and 

elucidate the effect of the inflammation pathway on BC. 

Thirdly, the median cutoff of survival-related ADCP 
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genes was adopted to stratify BC samples into the high 

and low survival-related groups. Despite that, the optimal 

cutoff for the survival-related ADCP genes may be a 

superior stratification strategy for BC patients. Lastly, 

due to incomplete clinicopathological information, we 

organized and adjusted certain clinical data for survival 

and Cox regression analyses, which may introduce  

the possibility of potential biases and uncertainties in 

determining the prognostic significance of the ADCP-

related group. 

 
The demand for precision medicine in cancer treatment 

is urgent. Our article has hints for the classification and 

targets of breast cancer. These targets can help the 

development of chemotherapy drugs in computer-aided 

drug design. Our research content expands the research 

of ADCP in the field of breast cancer, and also provides 

reference for other types of cancer. The research on 

ADCP for other cancers can learn from this research 

method. 

 

CONCLUSIONS 
 
In summary, we identified a subtype and key 

pathogenic factor associated with antibody-dependent 

cellular phagocytosis in the pathogenesis of breast 

cancer, accounting for about 51.2 % of BC patients, 

showing better therapeutic effect on tumor drug treatment 

and unique immune molecular characteristics of tumor 

immune microenvironment. Our results offered novel 

insights into the molecular mechanisms underlying 

ADCP therapy, contributing to the development of 

personalized immunotherapy strategies. 
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Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

 

Supplementary Table 1. Results of single factor regression analysis. 

 

Supplementary Table 2. Results of gene differential expression analysis. 
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