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INTRODUCTION 
 

Prenatal maternal nutrition and environmental 

exposures influence birth outcomes and health in 

childhood and later in life [1]. Folate and B12 are  

two well-studied B vitamins involved in one- 

carbon metabolism (OCM) that are essential for  

fetal development [2, 3]. Deficiencies or imbalance of 

these micronutrients increase the risk of neural tube 

defects, preterm birth, spontaneous abortion, decreased 
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ABSTRACT 
 

Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be 
biomarkers of the intrauterine environment. We investigated the extent to which first-trimester folate, B12, 5 
essential, and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. Bohlin 
EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord 
blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one 
standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-
1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis 
suggested that a common source of essential metals was associated with Horvath EAA. We also observed evidence 
nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and 
blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated 
with greater EAA at birth and in childhood. Prenatal metals, including essential metals and arsenic, are associated 
with epigenetic aging in early life, which might be associated with future health. 
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birth weight, small-for-gestational-age birth, and other 

measures of altered fetal growth [4–11]. Prenatal folate 

and B12 are also associated with brain development  

and cognitive function in infants and children [12–14]. 

Essential metals, including copper (Cu), magnesium 

(Mg), manganese (Mn), selenium (Se), and zinc (Zn), 

are also crucial for biological processes involved in 

development and growth through their roles as cofactors 

or allosteric regulators of enzymatic reactions [15–19]. 

Conversely, prenatal exposure to non-essential toxic 

metals and metalloids, collectively referred to as 

“metals,” from diet and environmental sources, such  

as arsenic (As), cadmium (Cd), and lead (Pb), is a well-

established risk factor of adverse birth outcomes, 

including preterm birth [20] and decreased fetal growth 

[21–23]. Both non-essential metals and an excess of 

essential metals may act as neurotoxicants with adverse 

effects on infant and child neurodevelopment [24–28]. 

 
The epigenome is particularly sensitive to nutritional and 

environmental exposures during embryonic development 

[29]. In this period, epigenetic reprogramming occurs 

through the demethylation of DNA after fertilization, 

followed by the reestablishment of the methylome. 

Epigenetic clocks, i.e., DNA methylation (DNAm)-

based biomarkers developed to estimate gestational  

age [30, 31] and age in children [32] and adults [33], 

may also be sensitive to the intrauterine environment  

and reflect effects on long-term health. The difference 

between epigenetic gestational age and chronological 

gestational age at birth is referred to epigenetic 

gestational age acceleration (EGAA), and, similarly,  

the difference between epigenetic age and chronological 

age is referred to as epigenetic age acceleration (EAA). 

EGAA and EAA are strong predictors of developmental 

and aging-related outcomes. EGAA has been positively 

associated with birth weight [31, 34, 35] and negatively 

associated with pregnancy complications [36]. EAA 

derived from the Horvath pan-tissue clock (also known 

as the Horvath1 clock), an estimator of chronological 

age across most tissues and life stages [37], has been 

associated with physical development [38], onset of 

puberty [39], and psychiatric problems in children and 

adolescents [38–40], as well as with cancer, physical 

function, cognition, and life expectancy in adults  

[33, 41]. 

 
Understanding how prenatal exposures with well-

established associations with infant and child health 

may affect EAA can support the development of early-

life epigenetic biomarkers and increase understanding 

of how the intrauterine environment shapes health 

across the life course. This study used data from the 

Project Viva pre-birth cohort to investigate the extent to 

which first-trimester OCM micronutrients and essential 

and non-essential metals are associated with EGAA  

and EAA at birth and in childhood. We hypothesized  

that two OCM nutrients, folate and B12, as well as 

essential metals (Cu, Mg, Mn, Se, and Zn) would  

be associated with lower EAA while non-essential 

metals (As, barium (Ba), Cd, chromium (Cr), cesium 

(Cs), Hg, and Pb) would be associated with greater 

EAA. However, considering that EGAA is a measure of 

epigenetic maturity specifically at the time of birth, we 

hypothesized that OCM nutrients and essential metals 

would be positively associated with EGAA and non-

essential metals would be negatively associated with 

EGAA. We also investigated nonlinear associations and 

associations with mixtures of micronutrients and metals. 

 

RESULTS 
 

Maternal-child characteristics 

 

This study included 351 mother-child pairs with  

DNAm data available at birth and 326 mother-child 

pairs with DNAm data available at the mid-childhood 

timepoint (Supplementary Figure 1). Characteristics of 

mother-child pairs included in the primary analyses  

are summarized in Table 1 and characteristics of pairs 

with data at both timepoints (N = 185) are included in 

Supplementary Table 1. At enrollment, mothers had a 

median age of 32.4 years and 32.9 years for mother-child 

pairs with data available at birth and mid-childhood, 

respectively. Most mothers were college graduates (data 

at birth: n = 248 (70.7%); mid-childhood: n = 227 

(69.6%)) and had an annual household income > 

$70,000 (birth: n = 214 (61.0%); mid-childhood: n = 

205 (62.9%)). Approximately half of children were 

female (birth: n = 166 (47.3%); mid-childhood: n = 155 

(47.5%)). Based on mothers’ self-report, children were 

classified as Asian (birth: n = 8 (2.3%); mid-childhood: 

n = 8 (2.5%)), Black (birth: n = 38 (10.8%); mid-

childhood: n = 50 (15.3%)), Hispanic (birth: n = 20 

(5.7%); mid-childhood: n = 17 (5.2%)), more than  

one race or other (birth: n = 37 (10.5%); mid-childhood:  

n = 33 (10.1%)), or White (birth: n = 248 (70.7%); mid-

childhood: n = 218 (66.9%)).  

 

The medians (interquartile ranges (IQRs)) of first 

trimester OCM micronutrient and metal concentrations 

are shown in Table 1, and pairwise Spearman 

correlations between micronutrients and metals for 

participants included at each time point are shown  

in Supplementary Figure 2. All mothers were folate 

replete (median (IQR) data at birth = 19.4 ng/mL (14.2, 

29.2); data at mid-childhood = 18.3 ng/mL (13.3, 27.9)), 

with levels within or above the first trimester reference 

range of 2.6-15 ng/mL [42]. All but two mothers  

were B12 replete (median (IQR) data at birth = 486 

pg/mL (383, 592); data at mid-childhood = 464 (383, 

584)) compared to the first trimester reference levels of 
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Table 1. Characteristics of maternal-child pairs included in the study. 

 

Data available at birth  

(N = 351) 

Data available at mid-

childhood (N = 326) 

Median (IQR) or N (%) Median (IQR) or N (%) 

Maternal characteristics     

  Age at enrollment, median (IQR) (years) 32.4 (29.7, 36.0) 32.9 (29.7, 36.2) 

  Pre-pregnancy BMI, median (IQR) (kg/m2) 23.5 (21.3, 27.0) 23.5 (21.5, 26.6) 

  Nulliparous, n (%) 174 (49.6%) 146 (44.8%) 

  College graduate, n (%) 248 (70.7%) 227 (69.6%) 

  Annual Household income > $70,000, n (%) 214 (61.0%) 205 (62.9%) 

  Smoking status     

    Never smoker, n (%) 240 (68.4%) 224 (68.7%) 

    Former smoker, n (%) 73 (20.8%) 64 (19.6%) 

    Smoking during pregnancy, n (%) 38 (10.8%) 38 (11.7%) 

First-trimester maternal one-carbon metabolism nutrients     

    Plasma folate, median (IQR) (ng/mL) 19.4 (14.2, 29.2) 18.3 (13.3, 27.9) 

    Plasma B12, median (IQR) (pg/mL) a 486 (383, 592) 464 (383, 584) 

First-trimester maternal essential metals     

    Cu, median (IQR) (ng/g erythrocytes) 563 (517, 621) 560 (512, 622) 

    Mg, median (IQR) (ng/g erythrocytes) 41,300 (37,000, 46,350) 41,050 (36,500, 46,000) 

    Mn, median (IQR) (ng/g erythrocytes) a 15.8 (13.1, 19.7) 15.7 (12.8, 19.7) 

    Se, median (IQR) (ng/g erythrocytes) 249 (222, 279) 247 (221, 273) 

    Zn, median (IQR) (ng/g erythrocytes) 10,400 (9,380, 11,600) 10,350 (9,280, 11,475) 

First-trimester maternal non-essential metals     

    As, median (IQR) (ng/g erythrocytes) a 0.9 (0.5, 1.5) 0.8 (0.4, 1.6) 

    Ba, median (IQR) (ng/g erythrocytes) a 3.1 (2.1, 5.9) 3.1 (2.0, 5.6) 

    Cd, median (IQR) (ng/g erythrocytes) a 0.4 (0.3, 0.6) 0.4 (0.3, 0.5) 

    Cr, median (IQR) (ng/g erythrocytes) a 1.3 (0.8, 1.9) 1.3 (0.9, 2.1) 

    Cs, median (IQR) (ng/g erythrocytes) 2.6 (2.0, 3.1) 2.5 (2.0, 3.1) 

    Hg, median (IQR) (ng/g erythrocytes) a 3.2 (1.7, 6.8) 3.2 (1.8, 5.9) 

    Pb, median (IQR) (ng/g erythrocytes) 18.1 (13.9, 23.8) 18.0 (13.9, 23.0) 

Child characteristics     

   Female, n (%) 166 (47.3%) 155 (47.5%) 

   Gestational age, median (IQR) (weeks) 40.0 (39.0, 40.9) 39.9 (38.9, 40.6) 

   Preterm, n (%) b 14 (4.0%) 14 (4.3%)) 

   Sex-specific birth weight for gestational age z-score,  

   median (IQR) 
0.19 (-0.35, 0.86) 0.24 (-0.35, 0.97) 

   Age at sample collection, median (IQR) (years) - 7.7 (7.4, 8.3) 

Race and ethnicity     

    Asian, n (%) 8 (2.3%) 8 (2.5%) 

    Black, n (%) 38 (10.8%) 50 (15.3%) 

    Hispanic, n (%) 20 (5.7%) 17 (5.2%) 

    More than one race or ethnicity or other, n (%) 37 (10.5%) 33 (10.1%) 

    White, n (%) 248 (70.7%) 218 (66.9%) 

Epigenetic clocks    

   Bohlin EGA, median (IQR) (weeks) 40.6 (39.8, 41.1) - 

   Horvath EA, median (IQR) (years) 0.14 (0.03, 0.26) 8.63 (7.70, 10.11) 

   Skin and blood EA, median (IQR) (years) -0.35 (-0.41, -0.29) 6.36 (5.63, 7.28) 

a. Values < LOD replaced with LOD/√2. b. < 37 weeks gestation. EGA, epigenetic gestational age; EA, epigenetic age. 

3109



www.aging-us.com 4 AGING 

118-656 pg/mL [42]. Participant characteristics and 

micronutrient and metal concentrations were similar 

when comparing mother-child pairs with data available 

at birth to those with data at mid-childhood (Table 1)  

or data at both timepoints (Supplementary Table 1). 

 

Using the Bohlin clock [30], we calculated epigenetic 

gestational age (EGA) from cord blood DNAm. Using 

the Horvath pan-tissue clock [37] (referred to here as 

the Horvath clock; also known as the Horvath1 clock) 

and the skin and blood clock [43] (also known as the 

Horvath2 clock), we calculated epigenetic age (EA)  

in cord blood and blood collected in mid-childhood.  

We calculated EGAA and EAA using the residuals  

of regressing EGA or EA on chronological gestational 

age or chronological age at the mid-childhood visit. 

Performance and determinants of the epigenetic clocks 

in this cohort has previously been reported [44]. 

Pairwise Pearson correlation coefficients and scatter 

plots between chronological age and epigenetic age 

estimates at birth and in mid-childhood are shown in 

Supplementary Figures 3, 4, respectively. Bohlin EGA 

was highly correlated with chronological gestational age 

(rPearson = 0.82; p < 0.001), whereas Horvath and skin 

and blood EA at birth were positively but weekly 

correlated with gestational age (Horvath: rPearson = 

0.07; p = 0.22; skin and blood: rPearson = 0.09; p = 

0.11). Horvath and skin and blood EA were moderately 

correlated with chronological age at mid-childhood 

(Horvath: rPearson = 0.45; p < 0.001; skin and blood: 

rPearson = 0.56; p < 0.001). Bohlin EGAA was weakly 

but positively correlated with Horvath and skin and 

blood EAA in mid-childhood (rPearson = 0.13-0.14;  

p < 0.10), but stronger correlations were observed for 

EAA at birth and in mid-childhood (Horvath EAA at 

birth and in mid-childhood rPearson = 0.24; p < 0.001; 

skin and blood EAA at birth and in mid-childhood 

rPearson = 0.32; p < 0.001; Supplementary Table 2). 

 

Associations of prenatal micronutrients and metals 

with EGAA and EAA at birth 

 

Linear associations 

We tested for associations of first-trimester micronutrient 

and metal concentrations with EGAA and EAA using 

robust linear models controlling for child sex, race  

and ethnicity, nulliparity, maternal age at enrollment, 

pre-pregnancy body mass index (BMI), education, 

income, smoking, and estimated cell type proportions in 

cord blood. Neither folate nor B12 concentrations were 

associated with any EAA measures (Table 2 and Figure 

1). Among essential metals, Cu, Mn, and Zn were 

associated with lower Horvath EAA (B (95% confidence 
interval (CI)) for Cu = -0.96 weeks per one standard 

deviation (SD) increase (-1.90, -0.02); Mn = -0.94 

weeks (-1.83, -0.05); Zn = -1.20 weeks (2.09, -0.29)). 

Associations of all essential metals with Bohlin EGAA 

and essential metals except Se with skin and blood EAA 

were negative but not statistically significant (p > 0.05). 

Among non-essential metals, Cs was associated with 

lower Bohlin EGAA (B (95% CI) = -0.08 (-0.15, 0.00)), 

whereas Cd and Pb were associated with lower skin and 

blood EAA (B (95% CI) for Cd = -0.63 weeks (-0.96, -

0.30); Pb = -0.69 weeks (-1.27, -0.10)) and Ba was 

associated with greater skin and blood EAA (B (95% 

CI) = 0.42 weeks (0.08, 0.75)).  

 

We also analyzed associations with non-essential metals 

adjusting for first-trimester fish intake as a potential 

confounder and source of nontoxic organic arsenicals 

(N = 331) (Supplementary Table 3). Overall, results 

were consistent with analyses without fish intake as a 

covariate. However, As concentrations were associated 

with significantly greater Bohlin EGAA (B (95% CI = 

0.09 weeks (0.01, 0.16)) when we further adjusted for 

fish intake. 

 

Nonlinear associations 

We evaluated nonlinear associations using restricted cubic 

splines. We found significant nonlinear associations of 

two essential metals: Zn with Bohlin EGAA and Mg with 

Horvath EAA (p < 0.05) (Table 2). Both of these splines 

were U-shaped, indicating greater epigenetic aging at low 

and high Zn and Mg concentrations (Figure 2). Among 

non-essential metals, there was a significant nonlinear 

association of Pb with Horvath EAA and Cs with skin 

and blood EAA (p < 0.05). For Pb and Horvath EAA, the 

spline had an inverse U-shape, with lower predicted EAA 

at low and high Pb concentrations, whereas for Cs and 

skin and blood EAA, the spline was U-shaped. 

 

Exploratory factor analysis (EFA) of mixtures 

We evaluated associations of micronutrient and metal 

mixtures with EGAA and EAA using EFA, which is 

appropriate for analyzing related exposures with a 

known common source [45]. Vitamin B12, Ba, Cd, and 

Cr were excluded from EFA based on their measure of 

sampling adequacy (MSA) values. EFA was conducted 

using scaled micronutrient and metal concentrations 

with a two-factor model and an oblique rotation based 

on the scree plot and the Bayesian Information Criterion 

(BIC). Factors 1 and 2 were weakly correlated with 

each other (rPearson = 0.16) and together explained 

30% of variance in the prenatal micronutrient and metal 

exposures. Both factors had low loadings for folate, 

whereas, overall, Factor 1 had the greatest loadings for 

essential metals and Factor 2 had the greatest loadings 

for non-essential metals (Figure 3A). Similarly, folate 

had the greatest uniqueness (i.e., variance not explained 
by the EFA model) (u2 = 0.96). High uniqueness scores 

were also observed for Mn (u2 = 0.94) and Pb (u2 = 

0.92). Associations of continuous factor scores with 
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Table 2. Linear and nonlinear associations of first-trimester one-carbon metabolism nutrients and metals with 
Bohlin epigenetic gestational age acceleration (EGAA), Horvath epigenetic age acceleration (EAA), and skin and 
blood EAA at birth measured in cord blood (N = 351). 

 

Bohlin EGAA (weeks) Horvath EAA (weeks) Skin and blood EAA (weeks) 

B (95% CI) a p pNonlinear b B (95% CI) a p pNonlinear b B (95% CI) a p pNonlinear b 

One-carbon metabolism 

nutrients          

Folate 0.02 (-0.03, 0.07) 0.51 0.86 0.13 (-0.57, 0.83) 0.72 0.49 0.17 (-0.21, 0.54) 0.38 0.35 

B12 -0.01 (-0.09, 0.07) 0.82 0.78 -0.35 (-1.32, 0.62) 0.48 0.92 0.40 (-0.10, 0.91) 0.12 0.79 

Essential metals          

Cu -0.05 (-0.14, 0.04) 0.25 0.64 -0.96 (-1.90, -0.02) 0.046 0.88 -0.02 (-0.53, 0.49) 0.93 0.87 

Mg -0.03 (-0.11, 0.05) 0.44 0.35 -0.08 (-1.01, 0.85) 0.87 0.003 -0.10 (-0.62, 0.42) 0.70 0.18 

Mn -0.05 (-0.12, 0.02) 0.14 0.48 -0.94 (-1.83, -0.05) 0.039 0.09 -0.22 (-0.61, 0.16) 0.26 0.55 

Se -0.03 (-0.09, 0.03) 0.40 0.37 -0.47 (-1.18, 0.25) 0.20 0.42 0.18 (-0.40, 0.77) 0.54 0.19 

Zn -0.05 (-0.14, 0.03) 0.21 0.026 -1.19 (-2.09, -0.29) 0.009 0.37 -0.35 (-0.82, 0.12) 0.14 0.34 

Non-essential metals          

As 0.06 (-0.01, 0.13) 0.08 0.12 0.09 (-0.82, 1.00) 0.85 0.70 0.38 (-0.02, 0.79) 0.07 0.45 

Ba 0.00 (-0.06, 0.07) 0.90 0.80 -0.02 (-1.20, 1.17) 0.98 0.39 0.42 (0.08, 0.75) 0.015 0.97 

Cd -0.00 (-0.14, 0.14) 0.99 0.92 -0.59 (-1.22, 0.05) 0.07 0.73 -0.63 (-0.96, -0.30) <0.001 0.16 

Cr 0.01 (-0.04, 0.06) 0.75 0.90 -0.23 (-0.93, 0.47) 0.52 0.42 0.10 (-0.29, 0.49) 0.61 0.44 

Cs -0.08 (-0.15, 0.00) 0.050 0.79 -0.08 (-1.02, 0.85) 0.86 0.50 -0.23 (-0.70, 0.25) 0.35 0.025 

Hg 0.02 (-0.08, 0.13) 0.66 0.96 -0.47 (-1.22, 0.28) 0.22 0.88 -0.10 (-0.53, 0.33) 0.65 0.92 

Pb 0.02 (-0.08, 0.12) 0.69 0.91 -0.29 (-1.02, 0.43) 0.43 0.044 -0.69 (-1.27, -0.10) 0.021 0.73 

a. B (95% CI) per one standard deviation (SD) increase in concentration from robust linear models evaluated separately for 
each nutrient or metal adjusting for child sex, race and ethnicity, nulliparity, maternal age at enrollment, pre-pregnancy BMI, 
education, income, smoking, and estimated cell type proportions. b. P-value for nonlinearity of nutrients and metals modeled 
using restricted cubic splines with knots at the 10th, 50th, and 90% percentile and fit using ordinary least squares regression. 
Micronutrient and metal concentrations were scaled and Winsorized. Models included covariates described in a. EGAA, 
epigenetic gestational age acceleration; EAA, epigenetic age acceleration. 

 

EGAA and EAA were analyzed using adjusted  

robust linear models, including both factor scores 

simultaneously. Factor 1 was negatively associated 

with Horvath EAA (B (95% CI) = -1.01 weeks (-1.89, 

-0.13)) (Figure 3B). The effect estimate of Factor 1 

with Bohlin EGAA was also negative but not 

statistically significant (B (95% CI) = -0.06 weeks  

(-0.15, 0.02)). 

 

Associations of prenatal micronutrients and metals 

with EAA in mid-childhood 

 

Linear associations 

Overall, we did not observe significant linear 

associations of prenatal micronutrients and metals with 

Horvath or skin and blood EAA in mid-childhood 

(Table 3 and Figure 1). For non-essential metals, Cr was 

associated with significantly greater skin and blood 

EAA (B (95% CI) = 0.09 years (0.02, 0.17)). After 

adjusting for maternal fish intake, As was positively 

associated with Horvath EAA (B (95% CI) = 0.30 years 

(0.14, 0.46)) (N = 305) (Supplementary Table 4). 

 

Nonlinear associations 

We found a significant nonlinear U-shaped association 

of prenatal Se with Horvath EAA in mid-childhood (p < 

0.05) (Table 3 and Figure 2), similar to the greater 

epigenetic aging observed at birth related to low and 

high concentrations of the essential metals Zn and Mg. 

No other significant nonlinear associations of prenatal 

metals and micronutrients with EAA were observed in 

mid-childhood. 

 

Exploratory factor analysis (EFA) of mixtures 

Vitamin B12, Ba, Cd, Cr and Hg were excluded from 

EFA due to low MSA values. EFA of the remaining 

micronutrients and metals used a two-factor model  

with an oblique rotation. The factors were moderately 

correlated (rPearson = 0.39) and explained 29% of 

variance in exposure data. Similar to analysis of data 
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available at birth, Cu, Mg, Mn, and Zn had the greatest 

loadings on Factor 1 and As, Cs, and Pb had the greatest 

loadings on Factor 2 (Figure 3C). The exposures with 

the greatest uniqueness were folate (u2 = 0.96), As  

(u2 = 0.93), and Mn (u2 = 0.91). We did not observe 

significant associations of either factor with Horvath or 

skin and blood EAA (p < 0.05) (Figure 3D). 

 

Sensitivity analyses 

We did not observe persistence of effects between  

birth and mid-childhood, which may be due to the  

fact that datasets of mother-child pairs with data at  

each timepoint was slightly different and not fully 

overlapping. Therefore, we conducted sensitivity 

analyses of mid-childhood data restricted to children 

with data at birth (N = 185) (characteristics described  

in Supplementary Table 1). Prenatal As was positively 

associated with Horvath EAA at mid-childhood (B 

(95% CI) = 0.21 years (0.00, 0.42)) (Supplementary 

Table 5), with a slight increase in effect size after 

adjusting for maternal prenatal fish intake (B (95%  

CI) = 0.26 years (0.05, 0.47); data not shown), 

consistent with analyses of all children with mid-

childhood data. In addition, Cr was positively 

associated with skin and blood EAA at mid-childhood 

(B (95% CI) = 0.11 years (0.00, 0.23)). Using restricted 

cubic splines, we found suggestive evidence of a U-

shaped nonlinear association between Se and Horvath 

EAA at mid-childhood (p = 0.09) (Supplementary Table 

5 and Supplementary Figure 5), as also observed among 

children overall. In addition, there was a significant 

inverse U-shaped association between Cd and Horvath 

EAA at mid-childhood (p = 0.050). 
 

DISCUSSION 
 

Epigenetic aging biomarkers may be sensitive to 

prenatal environmental exposures; however, to date, 

studies investigating the impact of OCM micronutrients 

and metals on epigenetic gestational age acceleration 

(EGAA) at birth and epigenetic age acceleration (EAA) 

at birth or in childhood have been limited. In this study 

conducted in the Project Viva pre-birth cohort, we 

investigated the extent to which OCM micronutrients, 

essential, and non-essential metals measured in  

first-trimester maternal blood were associated with

 

 
 

Figure 1. Effect estimates and 95% confidence intervals (CIs) for associations of first-trimester one carbon metabolism nutrients 
and metals with epigenetic gestational age acceleration (EGAA) and epigenetic age acceleration (EAA) at birth and in mid-
childhood. EGAA and EAA were calculated from cord blood DNA methylation, and EAA was calculated from mid-childhood blood DNA 
methylation. Effect estimates (95% confidence intervals) are reported per one standard deviation (SD) increase in concentration from robust 
linear models evaluated separately for each nutrient and metal adjusting for child sex, race and ethnicity, nulliparity, maternal age at enrollment, 
pre-pregnancy BMI, education, income, smoking, and estimated cell type proportions. Significant associations (p < 0.05) are plotted in orange. 
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EGAA and EAA at birth and in childhood. Neither folate 

nor B12 were associated with EGAA or EAA. However, 

we found significant linear and nonlinear association 

between essential (Cu, Mn, and Zn) and non-essential 

(Ba, Cd, Cs, and Pb) metal concentrations and EGAA and 

EAA at birth. Moreover, patterns of exposures identified 

using exploratory factor analysis (EFA) suggested that a 

common source of essential metals was associated with 

lower Horvath EAA at birth. Although none of  

these associations persisted in mid-childhood, we found 

evidence of associations of prenatal Se and Cr with EAA 

in childhood.  

 

Our null findings regarding folate and B12 was in 

contrast to our a priori hypothesis and do not fully 

reflect previous research. Folate and B12 are coenzymes

 

 
 

Figure 2. Nonlinear associations of metals with epigenetic gestational age acceleration (EGAA) and epigenetic age 
acceleration (EAA) at birth and in mid-childhood. EGAA and EAA were calculated from cord blood DNA methylation, and EAA was 
calculated from mid-childhood blood DNA methylation. Metal concentrations were mean-centered, scaled, and Winsorized. Nonlinearity of 
nutrients and metals was modeled using restricted cubic splines with knots at the 10th, 50th, and 90% percentile and fit using ordinary least 
squares regression. Models were adjusted for child sex, race and ethnicity, nulliparity, maternal age at enrollment, pre-pregnancy BMI, 
education, income, smoking, and estimated cell type proportions. Metal-EAA associations with p-values for nonlinearity < 0.05 are shown. 

 

 
 

Figure 3. Factor loadings and associations with epigenetic gestational age acceleration (EGAA) and epigenetic age 
acceleration (EAA) at birth and in mid-childhood. (A) Factor loadings for samples with data available at birth (N = 351). (B) Effect 
estimates and 95% confidence intervals (CIs) for samples with data available at birth. (C) Factor loadings for samples with data available at 
mid-childhood (N = 326). (D) Effect estimates and 95% CIs for samples with data available at mid-childhood. EGAA and EAA were calculated 
from cord blood DNA methylation, and EAA was calculated from mid-childhood blood DNA methylation. Factor loadings were derived from 
exploratory factor analysis (EFA) of scaled nutrients and metal concentrations. Associations were evaluated using robust linear models 
including both factors and evaluated separately for each EGAA and EAA measure adjusting for child sex, race and ethnicity, nulliparity, 
maternal age at enrollment, pre-pregnancy BMI, education, income, smoking, and estimated cell type proportions. Significant associations (p 
< 0.05) are plotted in orange. 
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Table 3. Linear and nonlinear associations of first-trimester one-carbon metabolism nutrients and 
metals with Horvath epigenetic age acceleration (EAA) and skin and blood EAA in mid-childhood  
(N = 326). 

 

Horvath EAA (years) Skin and blood EAA (years) 

B (95% CI) a p pNonlinear b B (95% CI) a p pNonlinear b 

One-carbon metabolism nutrients       

Folate -0.03 (-0.19, 0.13) 0.68 0.95 0.05 (-0.05, 0.15) 0.34 0.74 

B12 -0.07 (-0.25, 0.11) 0.47 0.08 0.06 (-0.06, 0.17) 0.33 0.62 

Essential metals       

Cu 0.01 (-0.14, 0.16) 0.92 0.61 0.03 (-0.09, 0.15) 0.60 0.95 

Mg -0.01 (-0.17, 0.15) 0.90 0.38 -0.04 (-0.15, 0.06) 0.43 0.97 

Mn 0.04 (-0.15, 0.23) 0.69 0.18 0.01 (-0.11, 0.12) 0.88 0.29 

Se -0.07 (-0.21, 0.07) 0.33 0.028 0.01 (-0.10, 0.12) 0.88 0.74 

Zn -0.07 (-0.22, 0.07) 0.31 0.98 -0.03 (-0.15, 0.09) 0.64 0.36 

Non-essential metals       

As 0.20 (-0.01, 0.40) 0.06 0.33 0.06 (-0.07, 0.18) 0.37 0.87 

Ba 0.23 (-0.03, 0.49) 0.08 0.47 0.03 (-0.04, 0.10) 0.33 0.49 

Cd -0.10 (-0.28, 0.07) 0.26 0.15 -0.07 (-0.17, 0.04) 0.22 0.62 

Cr -0.05 (-0.16, 0.07) 0.44 0.57 0.09 (0.02, 0.17) 0.013 0.35 

Cs -0.09 (-0.26, 0.09) 0.32 0.72 -0.09 (-0.2, 0.03) 0.13 0.11 

Hg 0.01 (-0.13, 0.16) 0.88 0.14 -0.06 (-0.16, 0.03) 0.19 0.23 

Pb -0.09 (-0.23, 0.05) 0.23 0.35 -0.02 (-0.14, 0.09) 0.69 0.41 

a. B (95% CI) per one standard deviation (SD) increase in concentration from robust linear models evaluated 
separately for each nutrient or metal adjusting for child sex, race and ethnicity, nulliparity, maternal age at 
enrollment, pre-pregnancy BMI, education, income, smoking, and estimated cell type proportions. c. P-value for 
nonlinearity of nutrients and metals modeled using restricted cubic splines with knots at the 10th, 50th, and 90% 
percentile and fit using ordinary least squares regression. Micronutrient and metal concentrations were scaled 
and Winsorized. Models included covariates described in a. EAA, epigenetic age acceleration. 

 

necessary for OCM, the metabolic pathway that produces 

the universal methyl donor S-adenosylmethionine 

(SAM) [46]. In addition to participating in numerous 

reactions related to biological development and aging 

(e.g., hormone synthesis and regulation, neurotransmitter 

activity), SAM is necessary for the methylation of 

DNA. Consequently, OCM-related micronutrients have 

garnered interest in research related to aging and 

epigenetic aging biomarkers. In an intervention among 

older adults, folic acid + B12 supplementation was 

associated with lower Horvath EAA among a subset  

of participants [47]. These results suggested that  

OCM micronutrient supplementation is associated with 

decreased EAA, possibly attributed to the role of methyl 

donors in maintaining DNA methylome [48].  

 

Prenatal OCM nutrients are particularly important 

during pregnancy as fetal development increases the 

physiological demands for OCM [49]. Associations of 

early pregnancy maternal plasma folate and serum B12 

and homocysteine, an amino acid that increases with 

low folate levels [50], with EGAA were analyzed in  
the Generation R Study, a prospective birth cohort in 

the Netherlands (N = 1,346) [51]. Although folate  

and B12 were not significantly associated with EGAA, 

consistent with our results, maternal plasma 

homocysteine was associated with greater Bohlin 

EGAA (B (95% CI) = 0.07 weeks per one SD  

increase (0.02, 0.13)). When data were restricted to 

births with gestation age determined by last menstrual 

period (LMP) (i.e., more similar to the training set  

used by the Knight clock) (N = 380), higher maternal 

B12 levels were associated with lower Knight EGAA 

[51]. Our findings may differ from these results in  

part due to lower levels of maternal folate and B12 in  

the Generation R Study (median plasma folate = 19.8 

nmol/L; serum total B12 = 178.0 pmol/L); in Project 

Viva, median levels were approximately twice that 

reported in Generation R. In mothers that are replete in 

both folate and B12, variation in the concentrations of 

these micronutrients may not impact SAM availability 

or downstream pathways related to EAA. In fact, a 

mathematical model of the methionine cycle within 

OCM demonstrated that SAM concentrations within 

tissues are relatively stable to variation in plasma folate 

concentrations within normal ranges [52]. 

 
Essential and non-essential metals have been linked to 

differential EAA in adults, with linear and nonlinear 

associations observed for both individual metals and 
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metal mixtures [53–56]. Although it is difficult to 

compare results across studies due to differences in  

metals and epigenetic clocks measured, common trends 

emerge with negative associations of essential metals 

with EAA [53, 54, 56]. Expanding this research to study 

associations between prenatal metal exposures and EAA 

in early life is important as essential metals are crucial 

for fetal development due to their roles as electron 

donors and cofactors to enzymes active during this 

period. Prenatal micronutrient deficiencies, including 

low levels of essential metals, can also contribute to  

the risk of chronic diseases later in life, including 

cardiovascular disease and type 2 diabetes, through 

metabolic and hormonal changes [57]. At birth, we 

found negative associations of Cu, Mn, and Zn l 

evels with Horvath EAA, with on average 0.96, 0.94, 

and 1.19 weeks lower EAA per one SD increase in 

metal concentrations. We also found negative, but not 

statistically significant, trends in associations across 

essential metals with EGAA and EAA. Results from 

mixture analyses corroborated these findings, with the 

EFA factor dominated by a mixture of essential metals 

negatively associated with Horvath EAA at birth. 

Although preterm birth has been previously associated 

with lower EGAA and skin and blood EAA at birth, 

including in the current cohort [44, 58], indicating that 

lower EAA reflects decreased developmental maturity, 

these associations were only significant before cell  

type adjustment. In addition, preterm birth was not 

significantly associated with Horvath EAA in Project 

Viva [44]. Taken together, these findings suggest  

that prenatal essential metals may affect pathways 

independent of developmentally related variation in 

immune cell composition and with relevance to health 

later in life.  

 

Overall, associations with essential metals did not persist 

in mid-childhood. However, we observed a U-shaped 

association between Se and Horvath EAA among 

children overall. Similarly, in the Accessible Resource 

for Integrated Epigenomic Studies (ARIES) project, 

prenatal Se concentrations were negatively correlated 

with Horvath EAA in childhood (mean age = 7.5 years) 

but not at birth [59]. Selenium is an important essential 

metal due to its incorporation into selenoproteins, which 

are involved in hormone metabolism and have anti-

oxidant activities important for brain development and 

function [18]. Although adequate Se intake is necessary 

for supporting human health, excess levels may have 

adverse effects including increased risk of type 2 diabetes 

[60, 61] and cancer in adults [62]. Further research  

is needed to understand the long-term relationship of 

prenatal essential metals with EAA and health. 
 

We also found evidence of associations of prenatal  

non-essential metals with EGAA and EAA. At birth we 

found a negative association of Cs with Bohlin EGAA 

and Cd and Pb with skin and blood EAA, and a positive 

association of Ba with skin and blood EAA. In mid-

childhood, Cr was associated with greater skin and 

blood EAA. In contrast to our hypothesis that non-

essential metals would be associated with greater EAA, 

we found inconsistent directions of association and  

lack of persistence of associations between birth and 

mid-childhood. Studies of exposure to non-essential 

metals in adults have also found null or positive and 

negative associations with multiple EAA measures  

[53–56]. However, it is difficult to draw conclusions 

across studies due to differences in metals and EAA 

biomarkers analyzed. Additional reasons for lack  

of consistency across studies may include diverse 

populations studies, variation in exposure levels, and 

small sample sizes. 

 

Among non-essential metals studied, we observed the 

most persistent effects of As exposure. Prenatal As 

concentrations were associated with greater Bohlin 

EGAA at birth (B (95% CI) = 0.09 weeks (0.01, 0.16)) 

and Horvath EAA in mid-childhood (B (95% CI) =  

0.30 years (0.14, 0.46)) after adjusting for maternal  

fish consumption. Blood As concentrations have also 

been associated with Horvath EAA in cross-sectional 

analyses in older adults [55], and prenatal and early- 

life As exposure has been associated with Hannum, 

PhenoAge, and extrinsic EAA among adults in Northern 

Chile [63]. Our findings that prenatal As levels affect 

biomarkers associated with mortality and mortality later 

in life reflect existing evidence that As exposure during 

crucial developmental periods increases the risk of 

cancers and chronic diseases. Adults with prenatal and 

early-life As exposure through drinking water in Chile 

had elevated mortality rates due to lung and bladder 

cancer, bronchiectasis, and acute myocardial infarction 

compared to an unexposed control group [64–66].  

 

Overall, our results provide evidence that prenatal 

essential and non-essential metals are associated with 

EAA in early life. Lack of persistence of effects 

between birth and mid-childhood may be due in part to 

a population with good nutritional status and low toxic 

metal exposure. In addition, the relationship between 

EAA and health may differ by clocks and across early-

life developmental stages. EGAA has been associated 

with greater birth weight and length [31, 34, 35], 

although positive associations between EGAA at birth 

and anthropometric measures may attenuate or reverse 

when assessed in childhood and adolescence [35]. EAA 

as captured by the first-generation clocks (i.e., clocks 

trained to estimate chronological age), particularly  
the Horvath clock, have well-established relationships 

with mortality in adults [41, 43, 67, 68]; however,  

the relationship between early-life EAA and health in 
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children and later in life is less understood. The Horvath 

and skin and blood clocks have been correlated with 

gestational age and chronological age in children [37, 

43], and although the correlation between Horvath  

and skin and blood EA and chronological gestational 

age in our study was weak, Horvath and skin and blood 

EAA in cord blood were significantly correlated with 

EAA in mid-childhood (p < 0.01), indicating their 

relevance as an epigenetic marker of development at 

birth. Additionally, testing these clocks might provide 

insights for aging across tissues as trained by the 

original Horvath model. Horvath and skin and blood 

EAA measured at birth and in childhood has been 

positively associated with fat mass [38, 69], and 

Horvath EAA in adolescence has been associated with 

earlier pubertal development [39, 40]. In summary, 

these studies suggest that greater EGAA may be 

associated greater developmental maturity at birth, and 

therefore may represent decreased risk for chronic 

diseases in adulthood associated with low birth weight 

[70]. Conversely, greater EAA in at birth and childhood 

may be associated with greater adiposity, which is 

associated with increased chronic disease risk [71]. We 

chose not to focus on second-generation clocks that are 

designed to predict aging-related physiological outcomes 

since their training phenotypes may be less pertinent  

in early life and their training sets are restricted to  

adult samples (e.g., PhenoAge [72] and GrimAge [73]). 

Both Horvath EA and skin and blood EA, however, 

were trained on tissues representing multiple life stages, 

including cord blood and blood buccal cell samples 

from children and adolescents. Considering these 

caveats, future studies of early-life longitudinal data 

may provide insights to the relationships between early-

life second generation clocks and long-term health. 

 

A limitation or our study is that metal concentrations in 

erythrocytes may not accurately reflect concentrations 

in other blood compartments or biospecimens. For 

example, As accumulates in erythrocytes due to 

hemoglobin binding, with differential affinities by  

As species [74]; consequently, erythrocytes have a 

greater concentration of As compared to plasma and a 

different distribution of arsenic species compared to 

plasma or the gold-standard of urine, e.g., [75]. Lead, 

however, is most commonly measured in whole blood, 

and erythrocyte and whole blood Pb concentrations  

are highly correlated [76]. Therefore, results should  

be interpreted in the context of the extent to which 

erythrocyte metal concentrations reflect levels in 

maternal circulation. Our findings may be impacted by 

changes in exposures later in pregnancy or postnatally. 

In particular, nausea and/or vomiting in early pregnancy 
may affect nutrition [77] and intake of sources OCM 

nutrients, essential metals, and non-essential metals. 

However, available second-trimester maternal trimester 

Hg and Pb indicated consistent exposure to these  

metals during pregnancy (rSpearman = 0.61-0.65; p < 

0.001; data not shown). Metal concentrations in 

erythrocytes have also been measured in a subset of 

children in Project Viva in early childhood (N = 349; 

mean = 3.2 years of age) [78]. As previously reported, 

median early childhood concentrations of Zn and most 

non-essential metals were lower than maternal first-

trimester concentrations. Further research is needed to 

understand the effect of exposures at multiple prenatal 

and early-life stages. 

 

Another primary limitation of this study was our  

small sample size and reduced power to detect small 

effect sizes. Narrow ranges of exposures similarly 

restricted our ability to detect small effect sizes or  

non-linear relationships present at only more extreme 

values. Notably, all mothers were folate replete and  

all but two were B12 replete, so we were not able  

to evaluate relationships between low concentrations 

OCM micronutrients and EAA. Due to measurement of 

metals in maternal erythrocytes, rather than plasma or 

serum, it is difficult to compare observed concentrations 

to normal reference ranges for all metals; however, 

overall, the study population had high levels of essential 

metals and low levels of non-essential metals. We also 

had limited overlap in children with data available at 

both timepoints. This may have affected our ability to 

detect persistence of effects between birth and child-

hood; however, we found similar results (mostly null) in 

analysis restricted to children with data at both time 

points. Data were restricted to live births, which may 

have introduced selection bias, although, in this study 

population, we do expect OCM micronutrients or metals 

to be at levels that would affect fetal survival. The  

study population of predominantly White and college-

educated mothers also affects the generalizability of our 

results, particularly to populations with higher rates  

of poor nutritional status during pregnancy, higher 

exposures to toxic metals, or other health-related risk 

factors including socioeconomic inequalities. In addition, 

we also chose not to adjust the level of significance for 

multiple comparisons (i.e., multiple exposures analyzed) 

as this study was exploratory in nature.  

 

Our study was strengthened by having DNAm measured 

in cord blood and blood collected in mid-childhood, 

which allowed us to in investigate prenatal factors 

associated with epigenetic aging biomarkers at birth  

and their persistence in childhood. We used multiple 

biomarkers of epigenetic age, including the Horvath and 

skin and blood clocks, which were developed to estimate 

age across the life course by including training samples 
collected at birth and in childhood. This approach 

allowed us to evaluate common EAA endpoints in both 

cord blood and mid-childhood blood. We also applied 
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multiple analytical methods to investigate linear and 

nonlinear associations of prenatal nutrients and metals 

with EAA, as well as the effects of mixtures of nutrients 

and metals, which may better reflect exposures due to 

common dietary sources.  

 

In summary, we found evidence of an inverse 

association between prenatal essential metals and 

Horvath EAA at birth, although associations did not 

persist in childhood. Among non-essential metals, we 

found the most consistent associations with prenatal  

As exposure, suggesting that higher prenatal As is 

associated with greater EAA at birth and in childhood. 

Taken together, our findings support the hypothesis  

that the intrauterine environment, particularly essential 

and non-essential metals, affect epigenetic aging 

biomarkers across the life course. Further studies are 

needed including more diverse populations, larger 

sample sizes to investigate sex-specific effects, and 

long-term follow-up to understand the relationship 

between prenatal factors, EAA, and health in childhood 

and later in life. 

 

MATERIALS AND METHODS 
 

The Project Viva pre-birth cohort was established to 

examine the relationship between maternal nutrition, 

environmental factors, and maternal and child health 

[79]. In brief, we recruited pregnant women from Atrius 

Harvard Vanguard Medical Associates, a group practice 

in eastern Massachusetts, USA between 1999 and 2002. 

Research staff administered screeners at the initial 

obstetric visit (median gestation = 9.9 weeks). Women 

were excluded if they had a multiple gestation, were  

not English speaking, were ≥ 22 weeks gestation, or 

planned to leave the study area before delivery. We 

recruited 2,670 pregnancies (64% of those screened), 

and 2,128 live births remained in the study at the time 

of delivery.  

 

At recruitment, women completed a brief interview  

and received a questionnaire to return by mail. These 

analyses included data collected during visits conducted 

by research assistants during mid-pregnancy, at the 

hospital at birth admission, and in mid-childhood 

(median age = 7.7 years). Written informed consent was 

provided by mothers at enrollment during pregnancy 

and at the mid-childhood visit.  

 

Biospecimen collection, processing, and analysis 

 

Metals 

Methods for biospecimen collection and analysis have 

previously been detailed [80, 81]. Due to the aims of 

the larger cohort study, mothers were selected for 

analysis of prenatal metals based on (1) completeness 

of birth outcome and child neurodevelopmental and 

behavioral data and (2) availability of sufficient first-

trimester blood samples. Among 485 and 460 mother-

child pairs with DNAm data available at birth and in 

mid-childhood (described below), metal concentrations 

were analyzed in 363 and 336 maternal first-trimester 

blood samples, respectively. At recruitment, blood 

samples were collected from mothers. To separate 

erythrocytes and plasma, we centrifuged samples at 

2,000 rpm for 10 minutes at 4° C. Aliquots were stored 

at -70° C until analysis, and sample handling was 

performed in an ISO class 6 clean room with an  

ISO class 5 laminar flow clean hood. We digested  

0.5 ml of packed erythrocytes in 2 mL ultra-pure 

concentrated HNO3 acid for 48 hours and in 1 mL  

of 30% ultra-pure hydrogen peroxide for 24 hours 

prior to diluting to 10 mL with deionized water.  

The concentrations of aluminum (Al), arsenic (As), 

barium (Ba), cadmium (Cd), cobalt (Co), chromium 

(Cr), cesium (Cs), copper (Cu), magnesium (Mg), 

manganese (Mn), molybdenum (Mo), nickel (Ni), lead 

(Pb), antimony (Sb), selenium (Se), tin (Sn), thallium 

(Tl), vanadium (V), and zinc (Zn) in erythrocytes 

were measured with triple quadrupole inductively 

coupled plasma mass spectrometry (ICP-MS) (Agilent 

8800 ICP-QQQ) on a single run. Mercury (Hg) 

concentrations were measured separately with a 

Direct Mercury Analyzer 80 (Milestone Inc., Shelton, 

CT, USA). We did not have Hg measurement data  

for 3 individuals included in our cord blood DNAm 

dataset and 7 individuals in our mid-childhood DNAm 

dataset. 

 
Metal concentrations were measured in ng/g erythro-

cytes. Quality control (QC) for metal concentrations 

included: analysis of initial and continuous calibration 

verification, procedural blanks, repeated analysis of 

2% of samples, use of Senonorm-Blood L3 as QC 

samples, and one inclusion of one blinded sample at 

high and low concentrations run per batch. For all 

metals included in the current analyses, QC standards 

were recovered at 90-100%. Intraday coefficients of 

variation (CVs) were <5% for all analytes except for 

Se, which was <10%, and interday CVs were <15% 

except for concentrations near the limit of detection 

(LOD). Intraclass correlation coefficients (ICCs) were 

≥ 0.70 among duplicates, with the exception of Cr 

(ICC = 0.40) and Cu (ICC = 0.64). 

 
OCM micronutrients 

Folate and B12 were measured in plasma aliquots  

at the Boston Children’s Hospital’s Clinical and 

Epidemiological Research Laboratory (CERLab). 

Concentrations were measured with electrochemi-

luminescence binding assays (Elecsys Folate red blood 

cell (RBC) and Elecsys Vitamin B12 II, respectively, 
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Roche Diagnostics, Indianapolis, IN, USA) conducted 

on the Cobas 6000 system (Roche Diagnostics, 

Indianapolis, IN, USA) and approved by the US Food 

and Drug Association (FDA) for clinical use. The 

folate assay has day-to-day imprecision values of 3.9% 

(for 7.6 ng/mL), 3.1% (14.3 ng/mL), and 2.0% (19.2 

ng/mL), and the B12 assay has day-to-day imprecision 

values of 7.6% (203 pg/mL), 4.4% (481 pg/mL), and 

3.2% (1,499 pg/mL). Hemolysis and lipemia were 

observed in 13.7% and 3.4% of samples with data at 

birth and 13.8% and 5.8% of samples with data in mid-

childhood, respectively. We do not expect hemolysis 

or lipemia to affect folate or B12 concentrations,  

and neither hemolysis not lipemia was significantly 

associated with folate or B12 concentrations (Mann-

Whitney test p > 0.05). 

 

DNA methylation 

Cord blood samples were collected at delivery  

from the umbilical vein with a syringe and needle. 

Samples were collected from ~75% of mothers who 

delivered at study hospitals. Fasting blood samples 

were collected from children at the mid-childhood  

visit with ethylenediaminetetraacetic acid (EDTA)-

containing vacutainer tubes and put on ice. Samples 

were separated into plasma, RBCs, and nucleated cells 

(leukocytes and nucleated RBCs in cord blood and 

leukocytes in child blood) by centrifugation within 24 

hours of collection. 

 

Research staff extracted DNA using PureGene kits 

(Fisher, Qiagen) and stored aliquots at -80° C. DNA 

was bisulfite converted using Zymo DNA Methylation 

kits (Zymo Research, Irvine, CA, USA). For each 

sample, 1 mg of DNA was randomized across plates 

and BeadChips to minimize batch effects. DNAm was 

analyzed at Illumina Inc. (San Diego, CA, USA) with 

Illumina HumanMethylation450 (450K) BeadChips, 

which interrogates >485,000 methylation loci. 

 

Covariates 

 

We collected covariate data, including maternal 

demographics, education, household income, and 

smoking status, though interviews and self-

administered questionnaires during pregnancy. Pre-

pregnancy body mass index (BMI) in kg/m2 was 

calculated using maternal self-reported weight and 

clinically-measured height. Maternal fish intake 

(servings per week) during the first trimester was 

collected using a validated semi-qualitative food 

frequency questionnaire [82, 83]. We calculated 

gestational age using mothers’ last menstrual period 
(LMP). Gestational age determined by ultrasound,  

if available, was used if it differed from LMP by > 10 

days [79]. 

Data processing 

 

DNA methylation data processing 

DNAm data were processed separately at each timepoint 

using the minfi R package [84]. We dropped samples that 

were duplicates, had low individual call rates (< 0.98), 

and had a genotype or sex mismatch, leaving a total of 

485 cord blood samples with high-quality DNAm data 

(Supplementary Figure 1). Probes were dropped if they 

measured non-CpG sites or had detection p-values > 0.05 

for > 1% of samples. We used the normal-exponential 

out-of-band method (noob) for background and dye-bias 

correction [85], and the beta-mixture quantile method 

(BMIQ) for probe-type normalization [86], implemented 

through minfi. Cell type composition was estimated  

using the regression calibration method [87] through the 

minfi with reference panels developed from cord blood 

nucleated cells [88] and adult leukocytes [89]. 

 

Calculation of epigenetic clocks 

 

We estimated Bohlin EGA in cord blood using the 

predictGA function in the GAprediction package [30, 

90] with the minimum lambda Lasso penalty parameter, 

since this penalty minimized the median absolute error 

(MAE) between estimated and chronological gestational 

age in our data. We additionally estimated Knight  

EGA using R code provided with the manuscript [31]. 

However, we chose to use Bohlin EGA in downstream 

analyses because this clock was more highly correlated 

with and had a lower MAE relative to chronological 

gestational age among all available samples in Project 

Viva (Bohlin rPearson = 0.82 vs. Knight rPearson = 

0.58; p < 0.001; Bohlin MAE = 0.70 weeks vs. Knight 

MAE = 1.07 weeks) [44] and among samples included 

in the current analyses (Bohlin rPearson = 0.82 vs. 

Knight rPearson = 0.54; p < 0.001; Bohlin MAE = 0.69 

weeks vs. Knight MAE = 1.05 weeks) (Supplementary 

Figure 3). We calculated epigenetic gestational age 

acceleration (EGAA) as the residuals of regressing 

Bohlin EGA on chronological gestational age. To allow 

us to compare associations with EAA across timepoints, 

we calculated Horvath EA [37] and skin and blood EA 

[43] for cord blood and mid-childhood blood samples. 

Both Horvath EA and skin and blood EA were trained 

on tissues representing multiple life stages, including 

cord blood and blood buccal cell samples from children 

and adolescents. Horvath and skin and blood EA  

and residual epigenetic age acceleration (EAA) were 

calculated using Horvath’s new online calculator with 

normalization (http://dnamage.genetics.ucla.edu/). 

 

Data analysis 

 

Our primary analyses were restricted to mother-child 

pairs with DNAm data and complete data on prenatal 

3118

http://dnamage.genetics.ucla.edu/


www.aging-us.com 13 AGING 

folate, B12, and metal concentrations and covariates 

(data at birth: N = 353; mid-childhood: N = 328) 

(Supplementary Figure 1). For mothers with two 

children included in the current dataset, the second birth 

was excluded, leaving a total of 351 mother-child pairs 

with data at birth and 326 mother-child pairs with data 

at mid-childhood available for the current analyses. 

Analyses included metals with concentrations > the 

LOD in ≥ 80% of samples (As, Ba, Cd, Cr, Cs, Cu, Hg, 

Mg, Mn, Pb, Se, and Zn). Micronutrient and metal 

concentrations < the LOD were replaced with the 

LOD/√2; LODs for folate, B12, and metals and the 

number of samples < LOD are listed in Supplementary 

Table 6. One sample with B12 concentration above the 

assay upper limit (4,000 pg/mL) was set to 4,000 

pg/mL. 

 

We calculated descriptive statistics for participant 

characteristics and metal concentrations (medians and 

IQRs for continuous variables and frequencies and 

proportions for categorical variables). We evaluated 

performance of each clock by calculating Pearson 

correlation coefficients and MAEs between estimated 

EA and chronological ages. 

 

For interpretation of effect estimates, maternal  

plasma folate concentrations (mg/mL), plasma B12 

concentrations (pg/mL), and RBC metal concentrations 

(ng/g erythrocytes) were mean centered and scaled by 

dividing by the SD. For each metal and EGAA or EAA 

measure separately, we tested for linear relationships 

using robust linear regression implemented with the  

rlm function and the M estimator in the R MASS 

package, and calculated p-values and 95% CIs using  

the coeftest function in the lmtest package [91, 92] with 

the vcovHC covariance matrix estimation function with 

White’s estimator [93] from the sandwich package [94, 

95]. Models included potential confounders or precision 

covariates selected a priori based on previously 

reported associations with DNAm or epigenetic age 

measures [44, 58, 88, 96–102], including child sex  

and race and ethnicity (Asian, Black, Hispanic, or more 

than one race or ethnicity or other vs. White); maternal 

age at enrollment, pre-pregnancy BMI, nulliparity, 

education (college graduate vs. not), income (annual 

household income >$70,000 vs. ≤ $70,000 US dollars), 

and smoking (smoking during pregnancy or former 

smoker vs. never smoker); and sample estimated 

immune cell type proportions. For analyses of non-

essential metals, we also conducted analyses adjusting 

for maternal first-trimester fish intake. Fish is a source 

of both omega-3 fatty acids and toxic metals including 

Cd, Hg, and Pb, and therefore may confound 
associations between metal exposures and EAA. In 

addition, fish is a source of nontoxic organic arsenicals 

in the US population [103], which may contribute to 

total erythrocyte As concentrations [104], as measured 

in our study. 

 

To investigate the presence of nonlinear associations of 

micronutrient and metal concentrations with EGAA and 

EAA, we modeled the associations using restricted 

cubic splines. To minimize the influence of extreme 

outliers, scaled micronutrient and metal concentrations 

were Winsorized by replacing values beyond the 5th  

and 95th percentile with the next closest values within 

the 5th-95th percentile range. Splines were modeled with 

knots at the 10th, 50th, and 90th percentile of each 

micronutrient or metal distribution. The significance of 

nonlinear associations was evaluated by comparing the 

spline model with a linear model using analysis of 

variance for model fits. Restricted cubic spline analyses 

were performed using the rms R package [105]. 

 

We also evaluated associations of micronutrient and 

metal mixtures with EGAA and EAA. Considering 

that groups of micronutrients and metals likely have 

common sources (e.g., dietary factors, supplement use) 

which contribute to their correlation structure, we 

chose to perform exploratory factor analysis (EFA) as 

suggested for this type of relationship among exposures 

[45]. EFA was performed separately for samples with 

data available at birth and at mid-childhood. We 

calculated the Kaiser-Meyer-Olkin measure of sampling 

adequacy (MSA) for scaled micronutrient and metal 

concentrations. Variables with MSA < 0.60 were 

excluded (B12, Ba, Cd, and Cr in analyses of samples 

data at birth; B12, Ba, Cd, Cr, and Hg in analyses  

of samples with data in mid-childhood). To test  

that the exposure data are correlated, the Bartlett test 

was also performed to compare the correlation matrix 

of micronutrient and metal concentrations to the 

identity matrix. We performed maximum likelihood 

factor analysis with an oblique rotation to allow  

for correlated factors. Two factors were chosen by 

examining the scree plot and comparing the Bayesian 

Information Criterion (BIC) values for models with 2 

and 3 factors. Robust linear models were used to 

evaluate associations of both factor scores (continuous; 

included in the same model) with each measure of 

EGAA and EAA adjusting for covariates. 

 

We conducted sensitivity analyses of linear 

associations, nonlinear associations, and EFA restricted 

to mother-child pairs with data available at both birth 

and mid-childhood. All analyses were conducted in R 

4.1.2 [106]. 

 

Data availability 

 

Consent for public release of epigenetic data was not 

obtained from participants and data analyzed in this  
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study are not publicly available. However, data to 

generate figures and tables are available from the  

corresponding author with the appropriate permission 

from the Project Viva study team and investigators 

(project_viva@hphc.org) upon reasonable request and 

Institutional Review Board approval. Example R code for 

analyses is available at the study’s GitHub repository 

(https://github.com/annebozack/ProjectViva_EAA_metals

_OCMnutrients). 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Flow chart of mother-child pairs with DNA methylation data available for the study. 
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Supplementary Figure 2. Pairwise Spearman correlations between prenatal first trimester one-carbon metabolism nutrients (maternal 

plasma) and metals (maternal red blood cells) for paired child DNA methylation data (A) at birth (N = 351) and (B) at mid-childhood (N = 326). 
Correlation coefficients are shown for significant correlations (p < 0.05). 
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Supplementary Figure 3. Pairwise relationships between chronological gestational age, epigenetic gestational age, and 
epigenetic age at birth (N = 351). Epigenetic gestational age (EGA) was estimated using the Bohlin and Knight clocks, and epigenetic age 
(EA) was estimated using the Horvath and skin and blood clocks using cord blood DNA methylation. The upper panels show the Pearson’s 
correlation coefficient (r), p-value, and median absolute error (MAE) between each pair of variables. The panels on the diagonal show the 
distributions of each variable. The lower panels show scatter plots of each pair of variables; the linear trendline and 95% CI is plotted as a 
solid line and shaded area, and the identity line is plotted as a dashed line. To evaluate performance of the Horvath clock and skin and blood 
clock at birth, we converted gestational age in weeks to years using the formula gestational ageyears = (gestational week – 39)/52, as 
previously applied by Horvath et al. [43]. 
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Supplementary Figure 4. Pairwise relationships between chronological age and epigenetic age at mid-childhood (N = 326). 
Epigenetic age (EA) was estimated using the Horvath and skin and blood clocks. The upper panels show the Pearson’s correlation coefficient 
(r), p-value, and median absolute error (MAE) between each pair of variables. The panels on the diagonal show the distributions of each 
variable. The lower panels show scatter plots of each pair of variables; the linear trendline and 95% CI is plotted as a solid line and shaded 
area, and the identity line is plotted as a dashed line. 
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Supplementary Figure 5. Nonlinear associations of metals with Horvath epigenetic age acceleration (EAA) in mid-childhood 
among children with data at birth and mid-childhood (N = 185). EAA was calculated from mid-childhood blood DNA methylation. 

Metal concentrations mean-centered, scaled, and Winsorized. Nonlinearity of metals was modeled using restricted cubic splines with knots 
at the 10th, 50th, and 90% percentile and fit using ordinary least squares regression. Models were adjusted for child sex, race and ethnicity, 
nulliparity, maternal age at enrollment, pre-pregnancy BMI, education, income, smoking, and estimated cell type proportions. Metal-EAA 
associations with p-values for nonlinearity < 0.05 among all children (Cd) or among children with data at birth and childhood (Se) are shown. 
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Supplementary Tables 
 

Supplementary Table 1. Characteristics of maternal-child pairs with DNA 
methylation data available at both birth and in mid-childhood (N = 185). 

 Median (IQR) or N (%) 

Maternal characteristics   

Age at enrollment, median (IQR) (years) 32.9  (29.6, 36.2) 

Pre-pregnancy BMI, median (IQR) (kg/m2) 23.5  (21.5, 26.4) 

Nulliparous, n (%) 90  (49%) 

College graduate, n (%) 131  (70.8%) 

Annual Household income > $70,000, n (%) 114  (61.6%) 

Smoking status   

Never smoker, n (%) 127  (68.7%) 

Former smoker, n (%) 39  (21.1%) 

Smoking during pregnancy, n (%) 19  (10.3%) 

First-trimester maternal one-carbon metabolism nutrients   

Plasma folate, median (IQR) (ng/mL) 19.2  (14.0, 30.8) 

Plasma B12, median (IQR) (pg/mL) a 470  (384, 575) 

First-trimester maternal essential metals   

Cu, median (IQR) (ng/g erythrocytes) 564  (517, 633) 

Mg, median (IQR) (ng/g erythrocytes) 41,100  (37,000, 46,700) 

Mn, median (IQR) (ng/g erythrocytes) a 15.8  (13.1, 19.7) 

Se, median (IQR) (ng/g erythrocytes) 253  (223, 282) 

Zn, median (IQR) (ng/g erythrocytes) 10,500  (9,450, 11,700) 

First-trimester maternal non-essential metals   

As, median (IQR) (ng/g erythrocytes) a 0.8  (0.5, 1.7) 

Ba, median (IQR) (ng/g erythrocytes) a 3.1  (1.9, 5.6) 

Cd, median (IQR) (ng/g erythrocytes) a 0.4  (0.3, 0.6) 

Cr, median (IQR) (ng/g erythrocytes) a 1.3  (0.9, 1.9) 

Cs, median (IQR) (ng/g erythrocytes) 2.5  (1.9, 3.2) 

Hg, median (IQR) (ng/g erythrocytes) a 3.5  (2.1, 6.2) 

Pb, median (IQR) (ng/g erythrocytes) 18.0  (13.7, 23.3) 

Child characteristics   

Female, n (%) 83  (44.9%) 

Gestational age, median (IQR) (weeks) 40  (39.0, 40.9) 

Preterm, n (%) b 6  (3.2%) 

Sex-specific birth weight for gestational age z-score, median (IQR) 0.29  (-0.27, 1.02) 

Age at mid-childhood sample collection, median (IQR) (years) 7.7  (7.4, 8.3) 

Race and ethnicity   

Asian, n (%) 5  (2.7%) 

Black, n (%) 28  (15.1%) 

Hispanic, n (%) 11  (6.0%) 

More than one race or other, n (%) 14  (7.6%) 

White, n (%) 127  (68.6%) 

Epigenetic clocks   

Bohlin EGA, median (IQR) (weeks) 40.5   (39.8, 41.0) 

Horvath EA at birth, median (IQR) (years) 0.14  (0.03, 0.29) 

Skin and blood EA at birth, median (IQR) (years) -0.35  (-0.42, -0.29) 

Horvath EA in mid-childhood median (IQR) (years) 8.63  (7.83, 10.16) 

Skin and blood EA in mid-childhood, median (IQR) (years) 6.35  (5.64, 7.45) 

a. Values < LOD replaced with LOD/√2. b. < 37 weeks gestation. IQR, interquartile range; EGA, 
epigenetic gestational age; EA, epigenetic age. 
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Supplementary Table 2. Correlations of EGAA and EAA at birth with EAA in mid-childhood  
(N = 185). 

 Horvath EAA in mid-childhood skin and blood EAA in mid-childhood 

 rPearson p rPearson p 

Bohlin EGAA 0.13 0.09 0.14 0.06 

Horvath EAA at birth 0.24 <0.001 0.13 0.08 

Skin and blood EAA at birth 0.07 0.35 0.32 <0.001 

 
Supplementary Table 3. Linear associations of first-trimester non-essential metals with Bohlin 
epigenetic gestational age acceleration (EGAA), Horvath epigenetic age acceleration (EAA), and 
skin and blood EAA at birth measured in cord blood adjusting for first-trimester maternal fish 
intake (N = 331). 

 

Bohlin EGAA (weeks) Horvath EAA (weeks) Skin and blood EAA (weeks) 

B (95% CI) a p B (95% CI) a p B (95% CI) a p 

As 0.09 (0.01, 0.16) 0.021 0.04 (-0.94, 1.02) 0.94 0.37 (-0.05, 0.79) 0.09 

Ba 0.00 (-0.08, 0.07) 0.95 0.06 (-1.15, 1.27) 0.92 0.45 (0.12, 0.79) 0.008 

Cd 0.01 (-0.15, 0.16) 0.95 -0.63 (-1.3, 0.04) 0.06 -0.56 (-0.87, -0.25) <0.001 

Cr 0.01 (-0.05, 0.06) 0.80 -0.24 (-0.92, 0.44) 0.49 0.10 (-0.29, 0.48) 0.62 

Cs -0.06 (-0.14, 0.01) 0.11 0.07 (-0.88, 1.02) 0.88 -0.13 (-0.65, 0.39) 0.62 

Hg 0.06 (-0.03, 0.15) 0.19 -0.54 (-1.42, 0.35) 0.23 -0.01 (-0.43, 0.41) 0.96 

Pb 0.02 (-0.08, 0.13) 0.63 -0.22 (-0.96, 0.52) 0.57 -0.65 (-1.24, -0.06) 0.03 

a. B (95% CI) per one standard deviation (SD) increase in concentration from robust linear models evaluated 
separately for each nutrient or metal adjusting for child sex, race and ethnicity, nulliparity, maternal age at 
enrollment, pre-pregnancy BMI, education, income, smoking, and estimated cell type proportions; EGAA, 
epigenetic gestational age acceleration; EAA, epigenetic age acceleration. 

 
Supplementary Table 4. Linear associations of first-trimester non-essential 
metals with Horvath epigenetic age acceleration (EAA), and skin and 
blood EAA at mid-childhood adjusting for first-trimester maternal fish 
intake (N = 305). 

 

Horvath EAA (years) Skin and blood EAA (years) 

B (95% CI) a p B (95% CI) a p 

As 0.30 (0.14, 0.46) <0.001 0.11 (-0.04, 0.25) 0.16 

Ba 0.22 (-0.04, 0.48) 0.10 0.04 (-0.03, 0.11) 0.27 

Cd -0.06 (-0.23, 0.12) 0.51 -0.05 (-0.18, 0.08) 0.44 

Cr -0.04 (-0.16, 0.07) 0.48 0.10 (0.02, 0.18) 0.011 

Cs -0.09 (-0.27, 0.10) 0.36 -0.08 (-0.21, 0.04) 0.19 

Hg 0.04 (-0.11, 0.19) 0.60 -0.06 (-0.15, 0.04) 0.25 

Pb -0.08 (-0.22, 0.07) 0.29 -0.03 (-0.15, 0.10) 0.68 

a. B (95% CI) per one standard deviation (SD) increase in concentration from robust 
linear models evaluated separately for each nutrient or metal adjusting for child 
sex, race and ethnicity, nulliparity, maternal age at enrollment, pre-pregnancy BMI, 
education, income, smoking, and estimated cell type proportions. EAA, epigenetic 
age acceleration. 
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Supplementary Table 5. Linear and nonlinear associations of first-trimester one-carbon metabolism 
nutrients and metals with Horvath epigenetic age acceleration (EAA) and skin and blood EAA in mid-
childhood among children with DNA methylation data at both birth and mid-childhood (N = 185). 

 

Horvath EAA (years)  Skin and blood EAA (years) 

B (95% CI) a p pNonlinear b B (95% CI) a p pNonlinear b 

One-carbon metabolism nutrients       

Folate 0.08 (-0.08, 0.24) 0.35 0.70 0.10 (-0.01, 0.21) 0.08 0.23 

B12 0.05 (-0.25, 0.34) 0.76 0.34 0.08 (-0.08, 0.25) 0.34 0.26 

Essential metals       

Cu -0.13 (-0.32, 0.05) 0.16 0.48 0.13 (-0.07, 0.34) 0.21 0.36 

Mg -0.13 (-0.36, 0.11) 0.29 0.83 -0.05 (-0.24, 0.15) 0.63 0.48 

Mn 0.03 (-0.26, 0.32) 0.84 0.82 0.01 (-0.14, 0.16) 0.90 0.49 

Se -0.04 (-0.26, 0.19) 0.76 0.09 0.08 (-0.03, 0.18) 0.15 0.25 

Zn -0.14 (-0.33, 0.06) 0.16 0.78 0.03 (-0.17, 0.23) 0.75 0.82 

Non-essential metals       

As 0.21 (0.00 0.42) 0.050 0.09 0.06 (-0.05, 0.17) 0.31 0.14 

Ba 0.1 (-0.26, 0.46) 0.60 0.82 0.07 (-0.01, 0.14) 0.07 0.40 

Cd 0.01 (-0.24, 0.26) 0.94 0.050 -0.03 (-0.16, 0.1) 0.65 0.85 

Cr -0.07 (-0.3, 0.17) 0.58 0.34 0.11 (0.00, 0.23) 0.06 0.67 

Cs -0.09 (-0.33, 0.15) 0.45 0.20 -0.05 (-0.20, 0.09) 0.47 0.10 

Hg 0 (-0.19, 0.18) 0.98 0.09 -0.06 (-0.18, 0.05) 0.28 0.40 

Pb -0.13 (-0.34, 0.07) 0.20 0.38 0.05 (-0.11, 0.20) 0.54 0.33 

a. B (95% CI) per one standard deviation (SD) increase in concentration from robust linear models evaluated separately 
for each nutrient or metal adjusting for child sex, race and ethnicity, nulliparity, maternal age at enrollment, pre-
pregnancy BMI, education, income, smoking, and estimated cell type proportions. b. P-value for nonlinearity of nutrients 
and metals modeled using restricted cubic splines with knots at the 10th, 50th, and 90% percentile and fit using ordinary 
least squares regression. Micronutrient and metal concentrations were scaled and Winsorized. Models included 
covariates described in a. EAA, epigenetic age acceleration. 
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Supplementary Table 6. Limit of detection (LOD) and number of samples < LOD for maternal one-carbon 
metabolism nutrients (plasma) and metals (erythrocytes) measured in the first trimester. 

  
Data available at 

birth (N = 351) 

Data available at mid-

childhood (N = 326) 

 LOD Below LODn (%) Below LODn (%) 

One-carbon metabolism nutrients    

   Plasma folate, median (IQR) (ng/mL) 6.0 ng/mL 0 (0%) 0 (0%) 

   Plasma B12, median (IQR) (pg/mL) 150 pg/mL 1 (0.3%) 1 (0.3%) 

Essential metals    

   Cu, median (IQR) (ng/g erythrocytes) 1.85 ng/g erythrocytes 0 (0%) 0 (0%) 

   Mg, median (IQR) (ng/g erythrocytes) 4.15 ng/g erythrocytes 0 (0%) 0 (0%) 

   Mn, median (IQR) (ng/g erythrocytes) 0.422 ng/g erythrocytes 4 (1.1%) 3 (0.9%) 

   Se, median (IQR) (ng/g erythrocytes) 1.73 ng/g erythrocytes 0 (0%) 0 (0%) 

   Zn, median (IQR) (ng/g erythrocytes) 7.74 ng/g erythrocytes 0 (0%) 0 (0%) 

Non-essential metals    

   As, median (IQR) (ng/g erythrocytes) 0.153 ng/g erythrocytes 35 (10.0%) 32 (9.8%) 

   Ba, median (IQR) (ng/g erythrocytes) 0.412 ng/g erythrocytes 5 (1.4%) 5 (1.5%) 

   Cd, median (IQR) (ng/g erythrocytes) 0.0569 ng/g erythrocytes 19 (5.4%) 16 (4.9%) 

   Cr, median (IQR) (ng/g erythrocytes) 0.685 ng/g erythrocytes 56 (16.0%) 54 (16.6%) 

   Cs, median (IQR) (ng/g erythrocytes) 0.0587 ng/g erythrocytes 0 (0%) 0 (0%) 

   Hg, median (IQR) (ng/g erythrocytes) 0.3 ng/g erythrocytes 8 (2.3%) 9 (2.8%) 

   Pb, median (IQR) (ng/g erythrocytes) 0.0746 ng/g erythrocytes 0 (0%) 0 (0%) 
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