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INTRODUCTION 
 

Alzheimer’s Disease (AD) causes neuroinflammation 

characterized by the progressive degradation of 

neurological functions that eventually result in memory 

loss and confusion [1–3]. AD pathology has widely 

pointed to amyloid-beta (Aβ) production in the brain to 

be a primary source for neurodegeneration and has been 

the key therapeutic target for AD treatment [4]. Over 

6.5 million Americans currently fall victim to 

Alzheimer’s dementia with the number of victims 

projected to grow year over year as AD remains the 6th 

leading cause of death in the United States [5, 6]. 

Activated Protein C (APC) is a plasma zymogen that has 

shown promising cytoprotection, anti-inflammation, and 

anti-apoptotic properties [7]. APC is neuroprotective, 

and the anti-inflammatory property particularly is 

attributed to neuroprotection in translational studies  

[8–10]. APC treatment in our preceding studies have 

been found to positively treat ischemia/reperfusion (I/R) 

injury and cardiac dysfunction in myocardial infarction 

mice [11]. We aim to modulate AD and reverse many  

of its symptoms using exogenous APC treatment. 

Preeminently, APC treatment has been found to act on 

Aβ production by regulation of β-Secretase in 5xFAD 

transgenic mice, possibly providing rationale towards 
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ABSTRACT 
 

Single-Cell RNA sequencing reveals changes in cell population in Alzheimer’s disease (AD) model 5xFAD (5x 
Familial AD mutation) versus wild type (WT) mice. The returned sequencing data was processed through the 10x 
Genomics CellRanger platform to perform alignment and form corresponding matrix to perform bioinformatic 
analysis. Alterations in glial cells occurred in 5xFAD versus WT, especially increases in microglia proliferation were 
profound in 5xFAD. Differential expression testing of glial cells in 5xFAD versus WT revealed gene regulation. 
Globally, the critical genes implicated in AD progression are upregulated such as Apoe, Ctsb, Trem2, and Tyrobp. 
Using this differential expression data, GO term enrichment was completed to observe possible biological 
processes impacted by AD progression. Utilizing anti-inflammatory and cyto-protective recombinant Activated 
Protein C (APC), we uncover inflammatory processes to be downregulated by APC treatment in addition to 
recuperation of nervous system processes. Moreover, animal studies demonstrated that administration of 
recombinant APC significantly attenuated Aβ burden and improved cognitive function of 5xFAD mice. The 
downregulation of highly expressed AD biomarkers in 5xFAD could provide insight into the mechanisms by which 
APC administration benefits AD. 
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the transcriptional regulation observed in this study [12]. 

In current amyotrophic lateral sclerosis (ALS) and stroke 

human trials, APC treatment resulted in positive 

hemorrhage reduction paving the way for future studies 

of APC for AD in humans [13, 14]. We believe our 

study utilizing Single-Cell RNA sequencing (scRNA 

seq) will provide additional rationale towards the effects 

on APC treatment observed in previous studies on 

5xFAD AD mice. 

 

In our investigation, we utilized transgenic mice that 

contain expression for five major amyloid pathologies 

that allow for rapid progression of AD and Aβ deposition 

known as 5xFAD mice [15, 16]. Previous research in the 

field has identified crucial pathological differences 

between wild type (WT) and 5xFAD mice that provide 

insight towards genetic variables correlated with AD 

[17]. Specifically, 5XFAD mice overexpress the 

K670N/M671L (Swedish), I716V (Florida), and V717I 

(London) mutations in human APP (695), as well as 

M146L and L286V mutations in human PS1. Our goal is 

to employ an innovative approach to not only uncover 

differential transcriptional expression between 5xFAD 

and WT mice but also identify specific neurological cell-

types impacted by the onset of AD. The method of choice 

to complete this study was scRNA seq which will allow 

us to examine differential expression on a cell-type level 

versus previous studies that employed inferior methods 

observing global transcriptional variations [18]. 

 

Evolving our previous approach to scRNA seq analysis, 

the essential integration feature of Seurat v4 once more 

allowed us to do a comprehensive study between 

samples [19, 20]. Using canonical marker genes to 

annotate cells into six neurological cell-types for 

comparison between samples: Astrocytes, Endothelial 

cells, Microglia, Neuron, Oligodendrocyte, and 

Oligodendrocyte Precursor Cells (OPC). While many 

preceding studies have investigated AD progression 

transcriptionally [21–23]. Our sc-RNA seq approach 

provides a new unique perspective on the treatment of 

AD using exogenous APC. Our study not only observes 

the transcriptome of 5xFAD mice compared to WT on 

six main neurological cell-types but measures the impact 

of APC treatment on the same cell-types. The changes in 

cell population and transcriptome regulation in each cell-

type allows for a greater investigation into phenotypic 

and physiological alterations occurring during the onset 

of AD and a five-month APC treatment.  

 

RESULTS 
 

Integration and annotation 

 

Generally following the Satija Lab integration vignette 

[19], integrated datasets were made utilizing four 

sample conditions from wild type C57BL/6 mice w/o 

the administrator of APC (WT, WT+APC), and 5xFAD 

C57BL/6 mice with the administrator of APC (5xFAD, 

5xFAD+APC). These integrated datasets allowed for 

observing transcriptional differences between 5xFAD + 

APC, 5xFAD, and WT mice and 20 unsupervised 

clusters were generated (Figure 1A). Additionally, a 

control dataset was generated to compare WT + APC 

versus WT (Supplementary Figure 1A). The Seurat 
integration workflow generates a combined dataset that 

achieves the maximum overlap of cells from both 

samples to annotate cell-types [19]. This ensured that 

each cluster annotated contained cells from both samples 

within the integrated dataset as much as possible. 

 

The top three highly expressed conserved genes in each 

unsupervised cluster were used for cell-type annotation 

(Figure 1B, 1C). Of the 20 unsupervised clusters, only 

17 expressed at least three canonical marker genes and 

were retained for further downstream analysis. 

Astrocyte cell populations were annotated by high 

expression of Slc1a2, Plpp3, and Clu. Endothelial cell 

populations were annotated with remarkable 

expressions of Flt1, Cldn5, and Ly6a. Microglial cell 

populations were chosen based on expression of 

markers Btg2, Kctd12, and Cx3cr1. Neuron cell 

populations were annotated with expression of Gria2, 

Nrxn1, and Syne1, though overlap with astrocyte cells 

were noted. Oligodendrocytes were annotated by 

Enpp2, Plp, and Ptgds markers and OPCs were 

annotated on expression of Fabp7, Apod, and Ptn. The 

top marker gene can be visually observed in the 

dimensional projection (Figure 1D). 

 

Cell population 

 

After cell-type annotation, the proportion of cell-types 

that form each sample can be observed and provide 

insight on critical alterations in cell population between 

samples (Figure 1E). Notably, the proportion of 

microglia in 5xFAD mice is significantly greater than 

their WT counterparts, making up over half the cells 

recovered. Decreases in astrocyte and neuron 

populations are also observed in 5xFAD mice, both 

populations reducing to ~4%. After introduction of 

exogenous APC, a rebound of impacted cell-types can 

be observed. Astrocyte and neuron cell populations 

return to near-WT levels as well as an incredible 

decrease in microglia cell population in APC-treated 

5xFAD mice. The astrocyte population returns to 

roughly 11% of cells and neurons reached their greatest 

proportion after APC treatment at nearly 10%. 

Microglial cells are cut in half, decreasing from ~53% 
in 5xFAD mice to 24% in APC treated mice. Notably, 

oligodendrocytes are also at their largest proportion 

following APC treatment at ~35%. 
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Globally, some 59,000 cells are contained in the main 

integrated dataset, ~15,000 from WT, ~22,000 from 

5xFAD, and ~22,000 from 5xFAD with APC treatment 

(Figure 1C). Of these cells, 6,254 astrocyte cells were 

identified, making up just over 10% of the overall 

dataset. 5,643 endothelial cells were identified at just 

under 10% globally. Most of the dataset is made up of 

microglial cells with 21,618 cells identified and making 

 

 
 

Figure 1. (A) Uniform Manifold Approximation and Projection (UMAP) dimensional plot of the primary integrated dataset split by sample; list 

of unsupervised clusters colored by cell-type annotated. Wildtype (left), 5xFAD (center), 5xFAD + APC (right). (B) Heatmap of top two conserved 
marker gene expression in each cluster used for cell-type annotation. Gene color corresponds to cell-type annotation. (C) Heatmap of top two 
conserved marker gene expression in each dataset used for cell-type annotation. Gene color corresponds to cell-type annotation. Number of 
cells shown per sample. (D) Feature plot of top marker genes, coloring cells by expression of the top marker gene for each cell-type 
annotated. (E) Proportion and percentage of each cell-type observed in each individual sample as well as the overall integrated dataset. 
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up ~37% of total cells. The least number of cells 

identified were neurons with 4,331 cells that form ~7% 

overall. Oligodendrocytes are the second most abundant 

cell-type with 16,480 cells identified making up ~28% 

overall. Finally, OPCs make up 8% of the total cells  

in the dataset with 4,715 cells identified (Figure 1E).  

In the control dataset, APC-treated WT mice do not 

exhibit drastic changes in cell populations (Sup-

plementary Figure 1B). Astrocyte, endothelial cell, 

microglia, neuron, oligodendrocyte, and OPC 

populations remain largely unaffected by exogenous 

APC nullifying major adverse effects in the baseline. 

We observed 19 DEGs (Log2FC > ± 0.3, adj. p-value 

< 0.05) globally between WT with APC treatment and 

WT (Supplementary Figure 1C). 

 

Differential expression 

 

Once stable cell-types were established, a wide variety 

of differentially expressed genes (DEGs) in all cell-

types were found. The top five DEGs per cell-type were 

identified and cross-referenced with bulk-RNA seq 

(Figure 2A). We obtained the bulk RNA sequencing 

data from GSE140286. The log2FC for each gene were 

calculated by comparison of 6-month 5xFAD to  

6-month WT using Limma Package. We mapped genes 

in GSE140286 with the top DEGs list from scRNA 

sequencing. Comparing the DEGs between bulk and 

single-cell sequencing reveals that genes we observed to 

be upregulated in single cell-types in 5xFAD mice have 

been found to be generally upregulated in bulk 

sequencing (Figure 2A). We did not observe the DEGs 

that were downregulated in 5xFAD mice in our dataset 

to broadly match in the bulk sequencing data. 

 

Consequently, we focused on genes that are greater 

expressed in 5xFAD compared to WT and later strongly 

downregulated by APC treatment (Supplementary Figure 

2A, 2B). Generally, we highlighted exceptionally 

expressed genes meeting a threshold of Log2FC values 

~1 resulting to 77 total DEGs across all cell-types. Many 

DEGs are globally upregulated in all cell-types in 5xFAD 

compared to WT. We identified 46 global DEGs that are 

all remarkably expressed in all 5xFAD cell-types and 

downregulated with APC treatment (Figure 2B). Many of 

these globally expressed genes are associated with the 

transgenic nature of 5xFAD and the onset of AD, their 

roles in each cell-type are of particular interest. The 

implications of these global DEGs may be more 

impactful in a specific cell-type versus another such as 

Ctsb in microglia, further investigation is needed to 

verify the physiological impact of specific genes in AD 

treatment. 
 

Within astrocytes, Gfap particularly is abundantly found 

in the astrocyte cell population and profusely 

upregulated in 5xFAD (Figure 2C). Compared to WT, 

AD astrocytes have a 2.68 log2FC increase in Gfap 

expression; after APC treatment, Gfap became 

significantly downregulated with a 2.52 log2FC 

decrease in expression (Figure 2D). Many global DEGs 

including B2m, C1qa, Ctsb, Trem2, and Tyrobp are all 

impressively down regulated in 5xFAD + APC (Figure 

2B). We find the DEGs found in endothelial cells 

appear to be non-exclusive. Plxdc2 are broadly 

expressed in other cell-types; however, are only 

strongly differentially expressed in endothelial cells 

(Figure 2C). Plxdc2 receives a 1.11 log2FC expression 

increase followed by a 0.91 log2FC decrease in 

expression with APC (Figure 2D). Like found in 

astrocytes, Apoe, C1qa, Ctsb, Trem2, Tyrobp, etc. were 

found to be especially upregulated in endothelial cells 

of 5xFAD mice (Figure 2B). These genes are not 

necessarily specific to endothelial cells; however, the 

effects of these DEGs on endothelial cells may provide 

insight on neurodegeneration. These DEGs get 

significantly downregulated after APC treatment in 

endothelial cells. The importance of any single gene in 

endothelial cells specifically is not well understood.  

 

Microglial cells are widely associated with the 

progression and pathology of AD. Many DEGs that are 

globally upregulated are the most implicated in 

microglia regarding AD. These include genes: Apoe, 

Cst7, Cd63, Cd68, cathepsins (Ctsa, Ctsb, Ctsd, ect.), 

Irf8, Trem2, and Tyrobp. Though most of the DEGs are 

modulated by APC treatment, interestingly, C1qa, 

C1qb, C1qc, Hexa/b, Laptm5 and Ly6e do not seem to 

alter in expression level extensively in microglia 

(Figure 2B). The microglial-exclusive DEGs most 

significantly modulated by APC were Aplp2, Axl, 
Baiap2l2, Cacna1a, Ccl3, Ccl4, Ccl6, Lpl, Cd74, 

Cox6a2, Csf1, Fabp5, Gnas, Hif1a, Ifitm3, Igf1, Itgax, 

Lilrb4a, Myo1e, Nceh1, Pld3, and Spp1 (Figure 2C). 

The downregulation of the cathepsin family of genes by 

APC treatment is distinctly remarkable (Figure 2C). 

 

In neurons, like endothelial cells, the DEGs found  

are expressed in various cell-types though firmly 

differentially expressed in neurons (Figure 2C). Robust 

DEGs in 5xFAD neurons with a greater than ~1.4 

log2FC increased expression include Rpl35, Rpl36, and 

Rpl6 (Figure 2D). It was found that APC treatment 

downregulated all the mentioned genes in neurons with 

greater than a 1 log2FC decrease in expression (Figure 

2D). Oligodendrocyte DEGs in 5xFAD also widely 

consist of global upregulated genes (Figure 2B). The 

vast majority of global DEGs in oligodendrocytes were 

also found to be downregulated by APC treatment 
(Figure 2B). This may implicate the roles of these 

DEGs in the large oligodendrocyte proliferation found 

in APC treated 5xFAD mice (Figure 1D). Global DEGs  
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Figure 2. (A) Top 5 most significant DEGs (p-value = 0) per cell type in 5xFAD versus WT (left) and corresponding expression with APC-

treatment (right). Bulk RNA-seq shown in column furthest left (6-month 5xFAD vs. WT). (B) Stacked violin plot of the top global DEGs  
(p-value < 0.05) found in multiple cell-types. (C) Stacked violin plot of unique DEGS highly differentiated within a particular cell-type. 
(D) Corresponding heatmap of unique DEGs highly differentiated in a particular cell-type (Figure 2C) plotted with Log2FC value in that cell-
type. 5xFAD versus WT (left), 5xFAD + APC versus 5xFAD (right). 
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were also found in OPCs including B2m, C1qa, Cst7, 

cathepsins, Syngr1, Trem2, and Tyrobp (Figure 2B). We 

found Aif1 and Itgb5 to be remarkably differentially 

expressed in OPCs of 5xFAD mice (Figure 2C) 

Measuring a ~1 log2FC increased expression in 5xFAD 

mice compared to WT and a corresponding ~1 log2FC 

decreased expression with APC treatment (Figure 2D). 

Accordingly, wide downregulation of global DEGs 

were also observed in OPCs of APC treated mice akin 

to oligodendrocytes (Figure 2B). 

 

Microglial alterations 

 

Sub-setting the microglial population allowed for 

further transcriptome analysis of the ~22,000 cells 

identified in the original dataset (Figure 3A). We 

discovered ~900 significant DEGs (adj. p-value < 0.05) 

between the samples (Supplementary Figure 2C). As 

with our comprehensive study, we targeted DEGs that 

were strongly impacted by APC-treatment. We 

identified 36 microglial DEGs with a Log2FC > 1 and 

an adjusted p-value of 0 (Figure 3B, 3C). A large 

portion of these DEGs were previously identified in the 

comprehensive differential expression testing (Figure 

2B, 2C) including Aplp2, Ccl4, Fabp5. 

 

We measure that the top genes (Log2FC >2) that were 

expressed in 5xFAD microglia were Apoe, Cst7, Lyz2, 

and Lpl (Figure 3C–3F). These were all strongly 

downregulated with APC treated microglia (Figure 3C) 

as observed in multiple cell-types during the 

comprehensive results (Figure 2B). Many of the broadly 

regulated DEGs found previously (Figure 2B) remain 

largely implicated in the microglial population. Major 

lysosomal factors Ctsb, Ctsd, and Ctsz were found to be 

significantly differentially expressed in microglia (adj. p-

value = 0) of 5xFAD and APC treated mice. Our subset 

further uniquely found additional DEGs that were not 

found during the differential expression testing of all cell-

types. Ank, Crlf2, Rpl35, and Rpl38 were differentially 

expressed in the microglial cell population but were not 

found during previous testing comprehensively. 

 

GO term enrichment 

 

The data generated by differential expression testing 

allowed for GO term enrichment. This enrichment data 

provides insight towards the roles of each cell-type in 

AD progression as well as during APC treatment. 

Universally, every enriched GO term for 5xFAD cells 

as a reciprocal in APC treatment (Figure 4A–4C). Our 

enrichment data shows 5xFAD oligodendrocyte and 

OPCs downregulate axonogenesis followed by counter 
upregulation in APC treated mice. Endothelial cells and 

microglia upregulated axonogenesis in addition to  

the oligodendrocyte and OPCs in APC treatment 

(Figure 4A). Central nervous system and nervous 

system development is downregulated in astrocyte, 

neuron, and oligodendrocytes in 5xFAD mice (Figure 

4A). Corresponding upregulated nervous system 

development in APC treated mice can be found in every 

cell-type except for microglia. Downregulation of 

neuron generation is found in astrocyte and OPCs in 

5xFAD mice and is regulated in endothelial cells, 

neurons, and OPCs of APC treated mice (Figure 4A). 

5xFAD astrocyte and endothelial cells were found to 

downregulate blood-brain barrier (BBB) maintenance 

and compelling upregulation of BBB maintenance was 

found in the microglia, neuron, and oligodendrocytes of 

APC treated mice (Figure 4A). AD mice exhibit 

considerable neuron death (Figure 4A). Neuron 

development is downregulated in OPCs, and neuron 

death is upregulated in oligodendrocytes in 5xFAD 

mice. Endothelial cells, microglia, neurons, 

oligodendrocytes, and OPCs all are implicated in the 

rebound of neurons of APC treated mice. Neuron 

development is upregulated, and neuron death is down-

regulated with APC treatment (Figure 4A). 

 

We found that astrocytes, endothelial cells, and neurons 

play roles in inflammatory response in 5xFAD mice. 

Furthermore, many interleukin processes are 

upregulated across all cell-types in 5xFAD mice (Figure 

4B). These inflammatory processes are well implicated 

with AD progression and receive broad downregulation 

in all cell-types of APC treated mice. Interleukin-1 beta 

is upregulated in astrocyte, endothelial cells, and 

neurons of AD mice. Astrocytes, endothelial cells, 

oligodendrocytes, and OPCs of APC treated mice 

contribute to the downregulation of interleukin-1 beta 

production (Figure 4B). The production of interleukin-2 

and interleukin-10 in 5xFAD mice is implicated with 

endothelial cells, neurons, and oligodendrocytes. The 

downregulation of interleukin-2 and interleukin-10 

following APC treatment are handled by the same 

production cell-types in 5xFAD (Figure 4B). Every cell-

type was found to participate in the production of 

interleukin-6 in 5xFAD mice and following APC 

treatment, every cell-type contributed towards the 

downregulation of interleukin-6 (Figure 4B). 

 

Microglial cell activation in 5xFAD mice were found to 

be upregulated in the microglia and OPCs. It appears 

that every cell-type except oligodendrocytes contributes 

to downregulating the microglial activation found in 

APC treated 5xFAD mice (Figure 4C). Myeloid cell 

activation in 5xFAD mice were upregulated in neurons 

and oligodendrocytes and downregulated in astrocytes, 

endothelial cells, and oligodendrocytes in APC 
treatment (Figure 4C). Amyloid fibril formation and 

amyloid-beta clearance is upregulated in 5xFAD mice 

in microglia, neurons, and OPCs and microglia, 
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Figure 3. (A) UMAP dimensional plot of the microglial cell subset from the primary integrated dataset (Figure 1A) split by original sample, 

WT (left), 5xFAD (middle), 5xFAD + APC (right). (B) Dot plot of the top DEGs impacted by APC-treatment (Log2FC > 1, p-value = 0) in the 
microglial subset. (C) Corresponding heatmap of the top DEGs most impacted by APC-treatment in the microglial subset. Plotted with 
Log2FC value, 5xFAD versus WT (left), 5xFAD + APC versus 5xFAD (right). (D–F) Split feature plot of the top 3 microglial DEGs: Apoe, Cst7, 
and Lyz2 expression in each sample respectively. 
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oligodendrocytes, and OPCs respectively (Figure 4C). 

Focal adhesion in 5xFAD mice is downregulated in 

microglia; all cell-types except for astrocytes upregulate 

focal adhesion assembly in APC treatment (Figure 4C). 

 

Administration of APC attenuates the Aβ burden 

and improves cognitive function in AD mice 

 

To determine whether APC treatment can reverse the 

amyloid plaques aggravation in AD, the 5xFAD and 

C57BL/6 WT mice (10 weeks old) were treated with 

recombinant APC daily (100 µg/kg/d i.p.) or vehicle 

(saline) for 5 months. We examined whether 

administration of recombinant APC influences the 

development of Aβ pathology in AD. The results 

demonstrated that APC treatment effectively inhibited 

the Aβ burden in both hippocampus and cortex (Figure 

5A). Compared with vehicle, APC treatment reduced 

load by 53% in hippocampus and 50% in cortex, it 

suggests that APC efficiently delay the development of 

 

 
 

Figure 4. (A) Enriched GO terms in each cell-type from 5xFAD versus WT (left) and 5xFAD + APC versus 5xFAD (right) pertaining to neural 

development and nervous system. (B) Enriched GO terms in each cell-type from 5xFAD versus WT (left) and 5xFAD + APC versus 5xFAD 
(right) pertaining to immune response and inflammation. (C) Miscellaneous enriched GO terms in each cell-type from 5xFAD versus WT 
(left) and 5xFAD + APC versus 5xFAD (right).  
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Aβ pathology and amyloid angiopathy. Considering the 

Aβ aggregation devastating cognitive function, we 

further analyzed the effects of APC treatment on the 

hippocampal-dependent spatial memory function with 

radial arm water maze. The results showed that APC 

treatment normalized the performance of 5xFAD mice on 

spatial learning and memory ability in the radial-arm 

water maze test (Figure 5B). Consistent with Aβ 

pathology, APC treatment benefits the cognitive function 

in AD model mice. These data indicated that APC exerts 

potent neuroprotective activity against AD pathology. 

 

DISCUSSION 
 

The incidence of AD continues to grow and remains as 

the most common neurodegenerative condition [5]. 

Activated Protein C (APC) treatment has recently been 

proven to positively treat ALS and stroke in human 

 

 
 

Figure 5. (A) Representative images and quantification of Aβ stained with thioflavin S in the hippocampus and cortex of 5xFAD mice 

treated with or without APC. (B) Radial arm water maze test showed the latencies to hidden platform and the errors happens in arms in WT 
and 5xFAD mice. N = 8, *p < 0.05, 5xFAD-Vehicle vs. WT-Vehicle; #p < 0.05, 5xFAD-APC vs. 5xFAD-Vehicle. 
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trials [13, 14]. The neuroprotective effects of APC  

have been studied as potential future therapeutics for 

AD [12, 24]. Using single-cell RNA sequencing and 

bioinformatic analysis, we analyze the effects of APC 

treatment on AD transgenic mice. To best test the 

impact on AD pathophysiology, we experimented with 

APC on 5xFAD mice, furthering the research performed 

in the field [12]. 5xFAD mice exhibit many behavioral 

and physiological symptoms parallel to human AD 

including amyloid deposits, increased aggression, and 

depressive behavior, decreased social interactions and 

sleep [25]. 

 

Initial bioinformatic analysis of cell populations in our 

samples reveal drastic changes in the physiology of AD 

mice. Over half of 5xFAD sample contained microglia 

compared to just over 30% of the WT sample. Previous 

research indicates that the Aβ deposits trigger 

neuroinflammation and microglial activation leading to 

eventual metabolic reprogramming [26]. APC treatment 

sample uncovers a large decrease in the microglial 

population suggesting reversal of the immune response 

towards Aβ. Recent research utilizing APC has found 

it’s antiinflammation properties and reduction of 

microglial activation in ocular inflammation, these 

mechanisms most likely are implicated in the results we 

observe in our study [27]. We note that Cx3cr1, a 

marker gene used for microglial cell annotation was 

expressed in all samples. Deficiency of Cx3cr1 has 

shown increased Aβ pathology as well as cognitive 

decline [28], 5xFAD mice did not show a decrease in 

Cx3cr1 expression. During the cell-type annotation 

process we also encountered a substantial overlap of 

astrocyte and neurons, this has been observed in other 

studies have found the sharing of transcriptomic 

signatures between these cell-types [29]. This close 

transcriptional pattern made differentiating astrocyte 

and neuron populations challenging and downstream 

testing shows yielded related results. Ultimately, we 

find that APC treatment notably increases the 

population of every cell-type compared to no treatment 

and larger proportions of endothelial cells, neurons, and 

oligodendrocytes were recorded compared to WT. 

These extensive alterations of cell populations by APC 

treatment demonstrate significant impact towards AD 

progression. 

 

The differential expression testing revealed that C1qa, 

C1qb, and C1qc are widely upregulated in 5xFAD. We 

observed downregulation of these genes by APC in 

every cell type except for microglia. Studies have 

proven that microglia are the dominant source of C1q in 

the murine brain [30]. Though inhibition of C1q has 
known to reduce the number of microglia [31, 32], C1q 

likely is not solely involved in microglial reduction due 

the expression level of C1q not exceedingly changing 

APC treated microglia. C1qc specifically when 

downregulated has been found to impact other 

microglial activation genes Lpl, Lyz2, and Ccl4 [32]; all 

of which we also observe as being downregulated after 

APC treatment especially in microglia. The astrocyte 

population notably expresses two DEGs that are 

modulated by APC treatment. C4b expression was 

found to be greater in 5xFAD mice and is considered a 

biomarker for AD in humans [33]. The expression of 

C4b in human AD has confirmed the inflammation 

hypothesis regarding AD [34]. We observed a 

downregulation of C4b in APC treatment, while further 

study is needed, the anti-inflammatory properties of 

APC seem to mediate C4b levels in the brain. 

Additionally, the exclusive differential expression of 

Gfap in astrocytes is compelling. Like C4b, we observe 

a downregulation of Gfap with APC treatment. Gfap is 

implicated in astrocytes of neurodegenerative diseases 

[35]. Furthermore, Gfap also serves as a biomarker for 

AD in humans [36–40]. Knockout of Gfap in AD 

neuropathies has been shown to improve physiological 

decline and as a result has been a novel therapeutic 

target [41]. Continued research into the physiological 

impact of Gfap is needed as it could point towards glial 

activation in AD progression which we observe in 

5xFAD mice [42]. 

 

APC treatment shows return to near WT levels of 

expression of Cd63 and Cd68. Both genes are 

implicated and found to be expressed in AD models, 

however the mechanisms these genes impact is unclear 

in AD progression [43–45]. It is unknown if the 

downregulation of these genes is beneficial in the 

treatment of AD. The downregulation of the cathepsin 

family of genes by APC shows tremendous modulation 

of inflammatory symptoms from AD. Cathepsin B 

(Ctsb) is exceptionally recognized in not only in AD but 

in other brain disorders such as traumatic brain injury 

(TBI) [46]. Particularly, microglial Ctsb has been 

recognized to actively progress inflammatory disease 

and aging in the brain [47]. Moreover, Ctsb has been 

found to be upregulated in the serum of AD patients and 

is considered a biomarker of AD [48]. Other members 

of the cathepsin family such as Ctsd and Ctss have been 

found to play roles in amyloidosis and neuro-

inflammation in relation to AD as well as degrade the 

BBB [49, 50]. In 5xFAD transgenic mice, Ctsb has been 

found to be generally upregulated globally [46, 51]. It 

is believed that Ctsb plays a major role in lysosomal 

leakage and is a powerful lysosomal protease leading 

to neurodegeneration observed in brain disorders and 

aging [52]. Regarding Aβ production, Ctsb is thought 

to interact with the β-secretase site of amyloid 
precursor protein (APP) [53]. Previous study of Ctsb 

in AD and other neurological disorders have proven 

that Ctsb knockout (KO) transgenic mice as well as 
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inhibition of Ctsb have improved behavioral deficits 

[54, 55]. APC treatment has previously been shown to 

directly impact the β-secretase pathway and the broad 

downregulation of Ctsb further implicates APC as a 

plausible method of mediating AD pathology and 

symptoms [12]. 

 

Coinciding with the cathepsin family of genes in 

microglia, Cst7 is also implicated in the neuro-

inflammation that occurs with Alzheimer’s and prion 

disease [56, 57]. Expression of Cst7 is notably 

expressed in microglia of AD pathology and has 

recently been considered a sex-dependent indicator 

for AD [58, 59]. Cst7 expressing microglia tend to 

surround Aβ in the brain and increase inflammation 

[56]. The significant decrease in microglial Cst7 by 

APC treatment may prove a strong decrease in Aβ 

presence in the brain and consequently a decrease in 

the population of microglia and neuroinflammation. 

Though this decreased expression may only prove to 

be beneficial to males as knockout of Cst7 in males 

decreases pro-inflammatory mediators while females 

increased pro-inflammatory and endolysosomal 

expression in microglia [58]. Further important AD 

risk genes were also found to be upregulated in 

5xFAD mice and later downregulated by APC 

treatment. Irf8 and Hexb notably have been 

researched as therapeutics for AD with inhibition/ 

deletion of the genes being beneficial [60, 61]. It was 

proven that Irf8 is involved in microglial activation  

in response to Aβ and leads to interleukin-1β 

inflammation [61]. The downregulation of Irf8 by 

APC treatment might provide further rationale 

towards the decreased microglial population and 

mediation of AD symptoms. Hexb was also 

downregulated in multiple cell-types after APC 

treatment. Compared to knock-in Hexb mice, Hexb 

heterozygotic mice showed improved behavior and 

decrease in Aβ deposition [60]. Though Hexb 

knockout can be detrimental [62], the modulation of 

its expression may prove to be useful in AD 

treatment. Several microglial genes were also found 

to be regulated by APC treatment. Many DEGs that 

were found exclusively in microglia have been noted 

in neuro-degeneration and some in specific response 

to Aβ known as disease-associated microglia (DAM). 

Axl, Ccl3, Ccl4, Ccl6, Csf1, Igf1, Itgax, Lpl, Lilrb4, 

Spp1 were all found exclusively in microglia and 

known to upregulated in AD [21, 45, 63, 64]. Though 

Apoe, Cd63, Fcer1g, Grn, Laptm5, Lgals3, and 

Timp2 were found differentially expressed in other 

cell-types, their microglial expression has been found 

linked to Aβ as well [45, 63–66]. APC treatment 
shows incredible downregulation of almost all these 

genes indicating the decreased Aβ deposition found 

in APC treated 5xFAD mice [12]. 

Our study comprehensively quantified the 

transcriptomes in different cell types of mouse brains, 

including wild-type mice, 5xFAD mice, and 5xFAD 

mice treated with APC. To further identify differences 

in the genome of wild type, 5xFAD, and APC-treated 

5xFAD mice, the study of a genomic variant at a single 

base position is necessary. We believe that in the future, 

completing a deep single-cell RNA-seq approach  

will be essential. The use of different sequencing 

technologies that allow for the collection of whole 

genomes would be immensely helpful in advancing our 

study. Additionally, other omics data such as 

metabolomics and proteomics study of APC treatment 

on AD would be able to provide further observation of 

the physiological changes occurring. We plan to do 

further biochemical experimentation as well as 

investigate multiple DEGs uncovered in knockout mice. 

In future single-cell RNA seq studies, we would also 

like to collect brain tissue along the 5-month APC 

treatment course and observe transcriptomic changes 

that occur during treatment. In the future, we plan to 

obtain this derivative and experiment with not only 

5xFAD transgenic mice but other strains such as those 

expressing tau physiology. APC treatment in AD 

Tg2576 transgenic mice has also been found to inhibit 

Aβ production by a different mechanism and improve 

memory deficits through promotion of α-secretase [24]. 

This discrepancy could be attributed to the use of 

Tg2576 versus 5xFAD transgenic mice. Sc-RNA seq of 

APC-treatment on Tg2576 mice may be useful for 

understanding further AD mechanisms that are 

impacted by APC treatment. 

 

MATERIALS AND METHODS 
 

Selection of individual and sample preparation 

 

Both male and female C57BL/6 wild type mice and 

5xFAD C57BL/6 mice were supplied from Jackson 

Laboratory (Bar Harbor, ME, USA). Three biological 

replicates (whole brain tissue) were used per sample. 

All animal protocols used for this study were approved 

by the Institutional Animal Care and Use committee of 

the University of South Florida and comply to the NIH 

guide for the care and use of laboratory animals. 

 

At 2 months of age, recombinant WT murine APC (100 

μg/kg) was injected daily via i.p. for 5 months, 

collecting brain tissue in 5xFAD and WT mice. Four 

brain tissue samples were subject to dissociation to be 

sent for sequencing: WT, WT with APC, 5xFAD, 

5xFAD with APC. Mice’s brains were excised and 

rinsed with PBS, subsequently minced with Miltenyi 

Biotec Adult Brian Dissociation kit for mouse and rat 

following the manual protocol. First, mice brain 

samples were minced into 2 mm by 2 mm pieces with 
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Enzyme Mix 1, after adding Enzyme Mix 2, samples 

were incubated using program 37C_ABDK_01 with 

gentleMACS Octo Dissociator. After the completion of 

the program, FBS was added to stop the reaction, and 

the suspension was filtered by a 70 µm MACS 

SmartStrainer on top of a Falcon 40 µm cell strainer. 

Cells were pelleted at 600 × g for 5 mins at 4ºC for 

debris removal. Second, cold PBS and Debris Removal 

Solution were used following the manual protocol to 

remove the debris. Third, Red blood cell lysis was 

carried out with PEB buffer and Red Blood Cell Lysis 

Solution to remove erythrocytes. At last, after samples 

were washed with cold PBS with 0.05% BSA buffer 

three times and filtered through Flowmi Top Strainer, 

single-cell samples were counted with an automated 

CellCounter. 

 

Analysis of scRNA seq data 

 

Cells were processed using the Chromium Next Gem 

Single Cell 3′ Reagent V3.1 kit from 10x Genomics. A 

total of 10,000 cells per sample were loaded into a  

Chip G for GEM generation. Reverse transcription, 

barcoding, complementary DNA amplification and 

purification for library preparation were performed 

according to protocol. Sequencing was performed on a 

NovaSeq 6000 platform (Illumina) targeting 100,000 

reads per cell and received as Sanger/Illumina 1.9 

encoded FASTQ files. Quality scores (>28) of each 

FASTQ file were confirmed by FASTQC 0.11.15 

(Babraham Bioinformatics, Cambridge). Processing of 

raw FASTQ files for bioinformatic analysis was 

completed by the 10x Genomics Cellranger [67] 

platform using the 10x Genomics mm10 reference 

genome using default parameters for the count function 

for each sample. Raw and processed data can be 

accessed under the GEO accession GSE227157. 

 

The Seurat 4.0 [68] package in Rstudio 2022.12.0 + 353 

IDE (R Core Team, 2022 and Posit Team, 2022) was 

applied to normalize and dimensionally reduce data. 

Raw samples contained ~21,000 features. Samples were 

log-normalized and top variable features were 

determined by the “vst” selection method for the top 

2000 variable features with 30 dimensions from the 

canonical correlation analysis (CCA). The Seurat 

integration protocol was selected for this study to 

compare datasets while retaining biological variability 

and minimizing technical differences. The various tools 

provided by Seurat are recommended to correct for 

batch effects in scRNA-seq data [69]. The integration 

protocol was used for “anchoring” cells between 

datasets (batches) utilizing mutual nearest neighbors 
(MMN) approach [19]. These “anchors” group cells 

based on similar expression profiles and therefore likely 

to be of the same cell-type to be identified after 

dimensional reduction and clustering. Integration code 

is available in Supplementary File 1 (Integration.txt). 

 

Cell clustering 

 

The integrated dataset contains ~24,000 features and the 

top 2000 variable features which were scaled using the 

default linear model and a PCA reduction. Based on the 

amount of standard deviation (Supplementary Figure 

3A), reduction to 10 principal components were used 

for the remaining downstream analysis to capture most 

variation within the dataset. UMAP was run on the top 

10 principal components (PCs) (Supplementary Figure 

3B). Clustering resolution (0.3) was determined by 

visually examining the incoming proportion of cells as 

resolution increased (Supplementary Figure 3B) using 

Clustree 0.5.0 [70]. 

 

Cell type annotation 

 

Utilizing the (FindConservedMarkers) function in 

Seurat, we identified conserved marker genes in each 

unsupervised cluster to use for cell-type annotation. 

This function outputs a data frame containing all genes 

expressed in each sample and their corresponding 

Log2FC and adjusted p-values. Adjusted p-values are 

generated in Seurat by statistically comparing 

expression with other genes in the assay and performing 

Bonferroni correction [71]. These conserved genes were 

found to be expressed in each sample and the top three 

genes were used for annotation (Figure 1C). 

 

Cross-analysis with the Human Protein Atlas [72] was 

used to verify marker genes for annotation. Clusters that 

did not highly express (Log2FC >3) canonical marker 

genes for Astrocytes, Endothelial cells, Microglia, 

Neurons, Oligodendrocytes, or Oligodendrocyte 

Precursor Cells (OPC) were not included for further 

downstream analysis to retain accuracy of annotations. 

Cell-type annotation code available in Supplementary 

File 2 (Cell-Annotation.txt). 

 

Differentially expressed genes analysis 

 

The Seurat vignette for differential expression testing 

was followed for differentially expressed gene (DEG) 

identification. In our testing parameters, two samples 

within the dataset were isolated compared with each 

cell-type at a time. The RNA data assay was used in 

contrast to the integrated assay as the RNA assay retains 

the original expression profiles of cells prior to 

“correction” that occurs during the integration protocol 

[19]. The original sample identities of the cells were set 
as the identities in the (FindMarkers) function with cell-

type set as the subset identity. This function outputs a 

data frame containing all differentially expressed genes 
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between the two identities set and their corresponding 

Log2FC and adjusted p-values. Adjusted p-values are 

generated in Seurat by statistically comparing 

expression with other genes in the assay and performing 

Bonferroni correction [71]. All genes possessing an 

adjusted p-value of greater than or equal to 0.05 were 

omitted from further downstream analysis. Lists of 

significant DEGs (Log2FC > ± 1, adj. p-value < 0.05) 

per cell-type available in Excel format in 

Supplementary Files 3 and 4 (DEG-Dataset 1_5xFAD 

vs. WT.xlsx, DEG-Dataset 2_5xFAD APC vs. 5xFAD 

Vehicle.xlsx). 

 

Bulk RNA-sequencing data was retrieved from the 

GEO accession GSE140286 [73]. Utilizing data from 

5xFAD and WT mice at 6 months of age that aligns 

closely to the 7-month age of our mice. Differential 

expression testing between 6-month-old 5xFAD and 

WT mice bulk RNA-seq data was completed using 

Limma 3.16 [74] in RStudio 2022.12.0 + 353 IDE (R 

Core Team, 2022 and Posit Team, 2022). Enrichment 

data was processed by EnrichR. A data frame 

containing all associated GO biological processes and 

corresponding adjusted p-values is produced from the 

data obtained from the differential expression testing 

performed previously. EnrichR produces Benjamini-

Hochberg adjusted p-values [75, 76]. All GO terms 

possessing an adjusted p-value of greater than or equal 

to 0.05 were excluded and terms representing 

developmental alterations and immune responses in the 

brain were selected. Differential expression testing and 

enrichment code available in Supplementary File 5 

(DE_Enrichment.txt). 

 

Amyloid plaques deposit staining 

 

Heparin IV for anticoagulation was given by 

intraperitoneal injection with 1,000 units/kg 10 min 

before the experiment [77]. 5xFAD and C57BL/6 WT 

mice (10 weeks old) were treated with recombinant 

APC daily (100 µg/kg/d i.p.) or vehicle (saline) for  

5 months. The experimental mice underwent 

anesthesia with 2–3% isoflurane and 100% O2. The 

mice were transcardially perfused with ice-cold PBS. 

Brains were rapidly removed and fixed with 4% 

paraformaldehyde overnight at 4°C. Subsequently, the 

hemisphere was subjected to dehydration with 10, 20, 

and 30% sucrose and then embedded in a cutting 

temperature compound (Tissue-Tek). The fixed brains 

were sectioned at 25 µm thickness setting on a 

cryostat and postfixes. After washing with PBS, the 

sections were blocked with 5% normal donkey serum 

(Vector Lab)/0.1% Triton-X/PBS for 1 h and 
incubated with mouse anti-human 6E10 amyloid 

plaque antibody (Biolegend, CA, USA) diluted in 

blocking solution overnight at 4°C. After three PBS 

washes, sections were incubated with secondary 

antibodies in diluted blocking solution for 1 h at room 

temperature. Each stained section was incubated in 

500 µM of Tiofavin S (TS, Sigma-Aldrich, MO, USA) 

dissolved in 50% ethanol for 7 min for TS double-

staining. Finally, sections were washed with PBS 

three times and mounted onto slides with mounting 

medium, and observed on an SP8 confocal 

microscope (Leica). ImageJ was used to quantify the 

amyloid plaques load in the hippocampus and cortex. 

 

Radial arm water maze behavior test 

 

The experimental group mice were put into the behavior 

room in darkness 1 h prior to the start of the 

experiments. For 15 consecutive days, the experiment 

was started around the same time, and each mouse was 

in the same order. This experiment was carried out in the 

dark. WT or 5xFAD mice were put into the water maze 

one at a time at the starting arm. Each day, the platform 

was placed at the end of the goal arm. For each trial, 

mice were placed at the center of the starting arm, facing 

forward. As it started swimming, the experimenter timed 

for 60 seconds and stopped timing once it reached and 

climbed up the platform. Errors were counted as: (1) 

each time the mouse entered the wrong arm, the 

experimenter gently grabbed its tail and pulled it back to 

its starting position; (2) if the mouse stayed in the center 

and did not enter any arm for 15 seconds; (3) if the 

mouse entered the goal arm without climbing up the 

platform for 15 seconds; (4) if the mouse did not reach 

the platform within 60 seconds, while only entering 1 or 

2 arms continuously. After the mouse reached the 

platform, it was allowed to stay on the platform for 30 

seconds to gain familiarity with the surrounding. For 

each trial, the time the mouse took to reach the platform 

and the number of errors it made were recorded. After 

the 4th trial, the mouse waited for 30 min to run the 5th 

trial. After each trial, the water was stirred to avoid the 

remaining scent that would affect the next mouse. Male 

and female mice were tested separately and were given 1 

h in between to let the scent dissipate. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. (A) UMAP dimensional plot of control dataset: WT + APC versus WT. (B) Proportion of each cell-type observed 

in each sample of the control dataset. (C) Heatmap of all DEGs globally in the control dataset (p-value < 0.05). 
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Supplementary Figure 2. (A) Global heatmap of all DEGs in the primary dataset (~500 DEGs) (p-value < 0.05). (B) Heatmap of top ~30 
DEGs found in every cell-type in the primary integrated dataset. (C) Heatmap of all DEGs found within the microglial subset (p-value < 0.05). 

3157



www.aging-us.com 22 AGING 

 
 

Supplementary Figure 3. (A) Elbow plot of variance per PC in the primary integrated dataset. (B) Cluster Tree of unsupervised clustering 
performed by Seurat. 
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Supplementary Files 
 

Please browse Full Text version to see the data of Supplementary Files 1 to 5. 

 

Supplementary File 1. (Integration.txt): R code used to complete the Seurat integration dataset that combines 
the wildtype, 5xFAD, and 5xFAD + APC samples. 

 

Supplementary File 2. (Cell-Annotation.txt): R code used to identify the types of cells contained in the 
integrated Seurat dataset across wildtype, 5xFAD, and 5xFAD + APC samples. 

 

Supplementary File 3. Excel files containing significant differentially expressed genes (Log2FC > ± 1, adj. p-value 
< 0.05) between 5xFAD and wildtype (DEG-Dataset 1_5xFAD vs. WT.xlsx) and 5xFAD + APC and 5xFAD (DEG-
Dataset 2_5xFAD APC vs. 5xFAD Vehicle.xlsx) organized by cell-type. 

 

Supplementary File 4. Excel files containing significant differentially expressed genes (Log2FC > ± 1, adj. p-value 
< 0.05) between 5xFAD and wildtype (DEG-Dataset 1_5xFAD vs. WT.xlsx) and 5xFAD + APC and 5xFAD (DEG-
Dataset 2_5xFAD APC vs. 5xFAD Vehicle.xlsx) organized by cell-type. 
 

Supplementary File 5. (DE_Enrichment.txt): R code used to complete Seurat differential expression testing 
within the integrated dataset as well as generate the GO biological processes enrichment using EnrichR. 
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