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ABSTRACT 
 

Background: Energy metabolism has a complex intersection with pathogenesis and development of breast 
cancer (BC). This allows for the possibility of identifying energy-metabolism-related genes (EMRGs) as novel 
prognostic biomarkers for BC. 7-dehydrocholesterol reductase (DHCR7) is a key enzyme of cholesterol 
biosynthesis involved in many cancers, and in this paper, we investigate the effects of DHCR7 on the 
proliferation and mitochondrial function of BC. 
Methods: EMRGs were identified from the Gene Expression Omnibus (GEO) and MSigDB databases using 
bioinformatics methods. Key EMRGs of BC were then identified and validated by functional enrichment 
analysis, interaction analysis, weighted gene co-expression network analysis (WGCNA), least absolute shrinkage 
and selection operator (LASSO) regression, Cox analysis, and immune infiltration. Western blot, qRT-PCR, 
immunohistochemistry (IHC), MTT assay, colony formation assay and flow cytometry assay were then used to 
analyze DHCR7 expression and its biological effects on BC cells. 
Results: We identified 31 EMRGs in BC. These 31 EMRGs and related transcription factors (TFs), miRNAs, and 
drugs were enriched in glycerophospholipid metabolism, glycoprotein metabolic process, breast cancer, and 
cell cycle. Crucially, DHCR7 was a key EMRG in BC identified and validated by WGCNA, LASSO regression and 
receiver operating characteristic (ROC) curve analysis. High DHCR7 expression was significantly associated with 
tumor immune infiltration level, pathological M, and poor prognosis in BC. In addition, DHCR7 knockdown 
inhibited cell proliferation, induced apoptosis and affected mitochondrial function in BC cells. 
Conclusions: DHCR7 was found to be a key EMRG up-regulated in BC cells. This study is the first to our 
knowledge to report that DHCR7 acts as an oncogene in BC, which might become a novel therapeutic target for 
BC patients. 
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INTRODUCTION 
 

Breast cancer (BC) ranks first in incidence and fifth in 

mortality among all cancers worldwide [1]. ER+, 

HER2+, and triple-negative breast cancer (TNBC)  

are the major clinical subtypes for BC, of which  

ER+ cancers account for approximately 70% of total 

cases [2]. Many risk factors contribute to BC’s high 

incidence rate and mortality. These factors include 

increased age, being female, genetics, hormones, 

higher alcohol consumption, obesity, and diabetes [3, 

4]. Although many of the most effective diagnostic 

methods and targeted drugs are used for BC patients, 

the survival outcomes are still poor [5]. Therefore, it  

is critical to identify novel tumor biomarkers and 

therapeutic targets for BC diagnosis and treatment. 

 

Altered energy metabolism is a hallmark of the 

occurrence and development of cancers [6], and 

previous studies have suggested that gene expres- 

sion regulates energy metabolism and influences 

pathogenesis, microenvironment, and therapy in 

tumors [7]. LINC00242 has been found to be highly 

expressed in gastric cancer, and silencing of 

LINC00242 has likewise been shown to inhibit gastric 

cancer cells proliferation significantly by regulating 

cells aerobic glycolysis [8]. Furthermore, the 

GTPBP4-PKM2 regulatory axis contributes to cells 

proliferation and metastasis, which is involved in 

glycolysis and the TCA cycle in hepatocellular 

carcinoma (HCC) [9]. Researchers have also found 

that metabolic reprogramming and immune evasion 

played important roles in BC cell proliferation through 

regulated glucose metabolism and lipid metabolism 

[10]. In addition, increasing amounts of evidence  

has indicated that mitochondrial metabolism is an 

important therapy target in many cancers and that 

altering metabolic pathways may inhibit cancer 

growth, especially for TNBC [11–14]. Therefore, 

identification of EMRGs in BC may provide novel 

strategies to improve prognosis and treatment. 

 

7-Dehydrocholesterol reductase (DHCR7) is a 

cholesterol epoxide hydrolase involved in fetal 

development and growth, tumor cell differentiation, 

and apoptosis [15, 16]. Gabitova et al. found that 

emopamyl-binding protein (EBP) in a complex with 

DHCR7 catalyzes the production of cholesterol 

epoxide hydrolase (ChEH), which is closely related to 

tumor cells growth [17]. DHCR7 is already recognized 

as a risk factor in several tumors via regulating 

circulating vitamin D concentration, including ovarian 

cancer [18], nonmelanoma skin cancer [19], and 

thyroid cancer [20]. In addition, DHCR7 has been 

shown to be an oncogene and its high expression 

regulates the proliferation, migration, and invasion as 

well as apoptosis of tumor cells, such as in bladder 

cancer [21] and gastric cancer [22]. Additionally, 

DHCR7 is a vitamin D-related gene that interacts with 

25(OH)D to increase the risk of BC [23]. However, 

DHCR7 expression and its related molecular functions 

remain unclear in BC. 

 

In this study, EMRGs were identified in public 

databases using bioinformatics methods. Gene ontology 

(GO) is widely used in annotating genes with  

such properties as biological process (BP), cellular 

component (CC), and molecular function (MF), and 

the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) is utilized to predict signaling pathways of 

genes by linking genomic information with higher 

order functional information [24, 25]. We used both 

GO, KEGG and interaction analysis to reveal the 

potential biological function of the identified EMRGs. 

After integrated analysis consisting of LASSO 

regression, WGCNA, Cox analysis, and ROC curve 

analysis, DHCR7 was identified and validated as a key 

EMRGs in BC. Finally, we investigated the biological 

role of DHCR7 in BC cells proliferation and 

mitochondrial function. The flow diagram of this study 

is shown in Figure 1. This study aims to provide a 

novel potential therapeutic target for BC treatment. 

 

METHODS 
 

Data processing and identification of common 

EMRGs 

 

Two microarray data sets (breast cancer, GSE42568; 

diabetes, GSE29221) were downloaded from the Gene 

Expression Omnibus (GEO) database (accessed in 

January 2023). The “limma” R package was utilized  

to identify the differentially expressed genes (DEGs), 

and |logFC| > 1.5 and P-value < 0.05 were used as  

the criteria for DEGs screening [26]. 592 energy 

metabolism related genes (EMRGs) were obtained 

from the MSigDB database (http://www.broad.mit. 

edu/gsea/msigdb/, accessed in January 2023) as  

well, and an UpSet Venn diagram was used to  

intersect common genes using the image GP website 

(https://www.bic.ac.cn/ImageGP/index.php/Home/Ind

ex/UpsetView.html, accessed in January 2023). 

Detailed microarray data sets information is presented 

in Supplementary Table 1. The DEG and EMRG lists 

are shown in Supplementary Table 2. 

 

GO and KEGG enrichment analysis of common 

EMRGs 

 

In order to reveal the underlying functions and 

mechanisms of common EMRGs, the DAVID database 

(accessed in January 2023) was used to perform GO and 
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KEGG pathway enrichment analysis of common 

EMRGs for annotation and visualization. The top 10 

statistically significantly enriched GO and KEGG terms 

were identified with P < 0.05 as the threshold for 

statistical significance. 

 

Interaction analysis of common EMRGs, miRNAs, 

TFs, and drugs 

 

We used the NetworkAnalyst website (http://www. 

networkanalyst.ca/faces/home.xhtml, accessed in January 

2023) to obtain interaction network and KEGG pathways 

of common EMRGs, miRNAs, TFs, and drugs. All of 

our identified common EMRGs were uploaded into  

the NetworkAnalyst tool. After the organism (H. 

sapiens) and Set ID type (official Gene symbol) were 

chosen, the analysis of TF-gene interactions, TF-miRNA 

coregulatory networks, and protein-drug interactions 

were each performed. The KEGG database was used as 

function explorer for all nodes. The top 10 KEGG terms 

criteria were determined by the following criteria: P < 

0.05 and node degree >5. 

 
Identification and validation of key EMRGs 

 

The weighted gene co-expression network (WGCNA) R 

package was used to identify the key genes from breast 

cancer samples and the corresponding clinical data [27],

 

 
 

Figure 1. Flow diagram of overall study. 
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and LASSO regression was performed to obtain the 

expression values of gene diagnosis using the “glmnet” 

R package (seed = 100, cross-validation (CV) = 5) [28]. 

Independent risk genes associated with the overall 

survival of breast cancer patients were determined  

using Cox regression. Furthermore, we also used ROC 

curves to evaluate the specificity and sensitivity of the 

EMRGs. The validation datasets were acquired from the 

GEO database (GSE124646) and The Cancer Genome 

Atlas (TCGA) database (BRCA). 

 
DHCR7 expression in immune and molecular 

subtypes of BC 

 

Immune infiltrates are very important to the  

cancer initiation and progression. Hence, the  

TISIDB (http://cis.hku.hk/TISIDB/index.php, accessed 

in January 2023) was used to analyze the relationship 

between DHCR7 expression and immune subtype, 

molecular subtype, tumor-infiltrating lymphocytes 

(TILs), immunomodulators chemokines, and receptors, 

including immunoinhibitor, immunostimulator, and 

MHC molecule. P-values < 0.05 were considered  

to indicate statistically significant test results. 

 

Correlation and GSEA analysis 

 

RNA sequencing data and clinicopathological 

information for BRCA were downloaded from the 

TCGA (https://xena.ucsc.edu, accessed in January 

2023). 11 genes (BIRC5, CCNB1, CDC20, NUF2, 

CEP55, NDC80, MKI67, PTTG1, RRM2, TYMS, and 

UBE2C) related to breast cancer proliferation that had 

been validated by experiment were obtained from the 

published articles [29]. After this, correlation analysis 

of DHCR7 expression and tumor stage, survival 

analysis, proliferation related genes was performed 

using “ggcorrplot” R packages [30, 31]. The Kaplan-

Meier plotter was used for gene survival analysis 

(http://kmplot.com/analysis, accessed in January 2023). 

Gene set enrichment analysis (GSEA) was performed 

using GSEA software v4.2.3 (http://www.gsea-

msigdb.org/gsea/index.jsp, accessed in January 2023) 

[32], and once again P-values less than 0.05 were  

used to indicate statistically significant test results. 

 

Cell culture and siRNA transfection 

 

The following human breast cancer cell lines were 

obtained from Genechem (Shanghai Genechem Co., 

Ltd., Shanghai, China) in this study for practical 

experimentation: MCF-7, MDA-MB-231, and DU4475, 

and we also used the breast epithelial cell line  
MCF-10A. MCF-7, MDA-MB-231, and DU4475 were 

cultured in DMEM medium (PAA Laboratories GmbH, 

Pasching, Austria) supplemented with 10% fetal bovine 

serum (FBS, PAA Laboratories GmbH), and MCF-10A 

was cultured in DMEM/F12 medium supplemented 

with 10% FBS (Procell Life Science and Technology, 

Wuhan, China), and incubated in a humidified 5% CO2 

incubator at 37°C. The small interfering RNA (siRNA) 

to target DHCR7 was designed and synthesized  

from Sangon Biotech (Shanghai, China). Non-sense 

siRNA was used as a control, and this siRNA was 

transfected into the cells using Lipofectamine 2000 

(Invitrogen, USA). All siRNA sequences are shown in 

Supplementary Table 3. 

 

Cell viability and colony formation assay 

 

The MTT assay (Sigma, USA) was used to measure cell 

proliferation. MDA-MB-231 cells were seeded into 96-

well plates (3000 cells per well). At 24, 48, and 72 h 

after transfection, the MTT kit was added to the 96-well 

plates (10 μL per well). The 96-well plates were then 

incubated at 37°C for 4-6 h, and the supernatant in each 

well was replaced with 150 μL DMSO. Finally, the 

absorbance was detected by a microplate reader (OD: 

492 nm). Cells were then seeded into 6-well plates with 

2 mL complete medium (200 cells per well) and 

cultured for 10–14 days. Colonies were then fixed with 

methanol and stained with a crystal violet solution 

(Sigma-Aldrich, USA) for 20 min. Finally, the colonies 

were photographed and counted using Quantity One 

software (Bio-Rad Laboratories, USA). Each assay was 

carried out in triplicate. 

 

Cell cycle and apoptosis assays 

 

The MDA-MB-231 cells were also cultured in 6-well 

plates at 2×105 per well in order to facilitate cell cycle 

and apoptosis assays. Cells were treated with siRNA 

transfection, washed, and fixed with 70% ethanol  

for 24 h. Afterwards, 100 μL Rnase A and 400 μL 

propidium iodide (PI) (7Sea Biotech, Shanghai, China) 

were added to the 6-well plates. Finally, cell cycle 

distribution was analyzed by flow cytometer. The cell 

apoptosis assay was performed by flow cytometer 

according to the manufacturer’s instructions for the 

Annexin-VFITC Apoptosis Detection Kit (Invitrogen, 

USA). Each measurement was performed in triplicate. 

 

ROS detection 

 

For ROS detection, the MDA-MB-231 cells were 

seeded into 6-well plates treated with DHCR7  

siRNA at 37°C in 5% CO2. After 48 h, the cells  

were harvested, washed with phosphate-buffered 

saline (PBS) for three times, and then stained with  
10 μM DCFH-DA at 37°C for 20 min according to  

the directions for the ROS Assay Kit (Beyotime, 

China). The stained cells were then analyzed using a 
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flow cytometer and fluorescence microscope. All 

experiments were performed in triplicate. 

 
Mitochondrial membrane potential (MMP) detection 

 

The MDA-MB-231 cells were seeded into 6-well 

plates and cultured in DMEM supplemented with 10 % 

FBS. After transfection for 48 h, the mitochondrial 

transmembrane potential (ΔΨm) of the MDA-MB-231 

cells was determined using a JC-1 Mitochondrial 

Membrane Potential Assay Kit (Yeasen, Shanghai, 

China). Low ΔΨm indicates green fluorescence, and 

high ΔΨm indicates red fluorescence. Briefly, MDA-

MB-231 cells were stained with JC-1 (diluted 1:200)  

at 37°C for 20 min following the manufacturer’s 

instructions. Flow cytometer and fluorescence micro-

scope were then used to measure the mitochondrial 

membrane potential of the cells. Each measurement 

was performed in triplicate. 

 

Immunohistochemistry (IHC) 

 

Paired human breast cancer samples were collected 

from patients who had undergone mastectomy at 

Shaanxi Provincial Tumor Hospital, all samples were 

frozen in liquid nitrogen after operation. Both tumor 

and non-tumor tissues were validated via pathological 

examination. The study was approved by the Ethics 

Committee of Shaanxi Provincial People’s Hospital, 

and informed consent was obtained from all patients. 

The tissues were fixed for 24–36 h with 4% 

paraformaldehyde, and then embedded in paraffin.  

The samples were made into 5 μm sections, and then 

the sections were treated, deparaffinized, hydrated, 

subjected to antigen retrieval, also subjected to the 

endogenous breaking, blocked, and incubated with 

primary antibody overnight at 4°C prior to incubation 

with the secondary antibody for 2 h. A DAB kit 

(Sigma, USA) and hematoxylin were used to measure 

the sections, and the intensity of staining was 

evaluated by a Leica Q550 image analysis system. 

 

qRT-PCR 

 

Total RNA was prepared from cell lines using  

TRIzol reagent (Invitrogen, USA), and the cDNA was 

generated using a PrimeScript RT reagent Kit (Takara, 

Japan). A SYBR Green PCR kit (Takara, Japan)  

was then used to perform Quantitative real-time PCR 

(qRT-PCR). The relative expression of DHCR7 and 

GAPDH was calculated using the 2−ΔΔCt method, and 

the primers were designed and synthesized from Sangon 

Biotech (Shanghai, China). Supplementary Table 3 
shows the primer sequences. PCR was performed in 

three parallel holes using the IQ-5 Real-Time PCR 

System (Bio-Rad). 

Western blot 
 

For western blot analysis, RIPA buffer (Invitrogen, USA) 

was used to lyse the cell samples. Protein concentration 

was then determined using a BCA protein assay kit 

(GenStar, China). Equal amounts of protein were 

separated by 10% SDS PAGE gel, and subsequently 

transferred to a methanol-activated PVDF membrane 

(Millipore, USA). These membranes were blocked with 

5% non-fat milk for 2 h at room temperature and then 

incubated overnight at 4°C with primary antibody. After 

washing three times with tris-buffered saline containing 

0.1% Tween 20 (TBST), the membranes were incubated 

with secondary antibody for 2 h. The protein bands 

were then detected and analyzed using the Bio–Rad 

chemiluminescence imaging system. The antibody details 

were as follows: DHCR7 (PA5-48204, Invitrogen),  

Bcl2 (CY5032, Abways, China), CDK6 (66278-1-lg, 

Proteintech, China), Caspase 9 (66169-1-lg, Proteintech), 

β-actin (66009-1-lg, Proteintech), Goat Anti-mouse 

(IgG) (SA00001-1, Proteintech), and Goat Anti-Rabbit 

IgG (SA00001-2, Proteintech). 
 

Statistical analysis 
 

Prior to analysis, all data were expressed as the mean  

± SD of three independent experiments. Statistical 

analysis was then performed with GraphPad Prism 7.0 

software and SPSS Statistics 25 (IBM). Student’s t-test 

was used for comparisons of differences between group, 

and one-way ANOVA was used to analyze multiple 

group differences. For all tests, P < 0.05 was used to 

indicate statistical significance. 
 

RESULTS 
 

Identification of 31 EMRGs in breast cancer 
 

To identify the EMRGs in breast cancer, we analyzed 

RNA sequence data of BC (GSE42568) and DM 

(GSE29221) from the GEO database using the “limma” 

package in R (P < 0.05, |logFC| > 1.5). 3,249 DEGs 

were identified for BC, including 1,624 up-regulated 

and 1,625 down-regulated genes, whereas the DEGs 

identified in the DM included 2,106 up-regulated and 

567 down-regulated genes (Figure 2A). After intersecting 

592 EMRGs, we identified 31 common genes identified 

using an UpSet Venn diagram (Figure 2B). 
 

GO and KEGG enrichment analysis of the 31 

EMRGs 
 

For functional and pathway enrichment analysis, the 31 

EMRGs were uploaded into the DAVID database. GO 
functional analysis included three parts: biological process 

(BP), molecular function (MF) and cell component  

(CC), where the selection criterion was P < 0.05. GO BP 
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analysis of the 31 EMRGs showed that the genes were 

mostly enriched in glycoprotein biosynthetic process, 

glycoprotein metabolic process, protein glycosylation and 

regulation of lipid biosynthetic process; GO MF analysis 

revealed that the 31 EMRGs were primarily enriched  

in G-protein beta-subunit binding, lysophosphatidic acid 

acyltransferase activity, and glycosyltransferase activity; 

and GO CC analysis indicated that they were significantly 

enriched in heterotrimeric G-protein complex, GTPase 

complex and sarcolemma sarcolem. More details of  

GO functional terms are displayed in Figure 3A–3C. 

Furthermore, the results of KEGG analysis are shown in 

Figure 3D, where the 6 top enriched pathways  

were identified and included metabolic pathways, 

glycosaminoglycan biosynthesis, N-Glycan biosynthesis, 

protein processing in endoplasmic reticulum, glycero-

phospholipid metabolism, and Apelin signaling pathway. 

 
Identifying functional networks of the 31 EMRGs, 

miRNAs, TFs and drugs 

 

To explore the functional networks of the 31 EMRGs, 

miRNAs, TFs and drugs, the EMRGs were imported 

into the NetworkAnalyst online tool. Our interaction 

 

 
 

Figure 2. Identification of EMRGs in BC. (A) Volcano plots of DEGs in breast cancer (GSE42568) and diabetes mellitus (GSE29221). (B) 

UpSet Venn diagram showing the most common EMRGs. Black points: ns (no significant); Red points: up-regulated genes; Green points: 
down-regulated genes. 
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analysis of EMRGs and TFs showed that 19 EMRGs 

and 41 TFs formed an interaction network, and these 

were mainly enriched in 10 pathways, including 

transcriptional misregulation in cancer, pathways in 

cancer, insulin resistance, AMPK signaling pathway, 

and cell cycle (Figure 4A). The interaction network  

of miRNA-TF-gene was also constructed and had  

22 EMRGs, 29 TFs and 26 miRNAs enriched in 10 

pathways (top5: transcriptional misregulation in cancer, 

pathways in cancer, insulin resistance, breast cancer, 

and cell cycle) (Figure 4B). As shown in Figure 4C, 

gene-drug interaction networks included 6 subnetworks 

with 7 EMRGs and 17 drugs and were significantly 

enriched in dilated cardiomyopathy, adrenergic signaling 

in cardiomyocytes, oxytocin signaling pathway, and 

AMPK signaling pathway. 

Identification of the key EMRGs in breast cancer 

 

WGCNA was used to identify the key gene modules  

of BC. As shown in Figure 5A, we obtained a higher 

average degree of network connectivity using a soft 

threshold (β = 8). 11 gene co-expression modules were 

identified, including MEblue, MEpink, MEmagenta, 

MEred, MEblack, MEbrown, MEyellow, MEpurple, 

MEgreen, MEturquoise, and ME gray, and these had a 

significant correlation with both pathological (TNM) 

and sample types (Figure 5B, 5C). Correlation analysis 

results show that the 290 MEyellow genes were most 

related to sample types (Figure 5D). 24 candidate genes 

were also identified from the 31 EMRGs using LASSO 

regression, as shown in Figure 5E. The Cox analysis 

was then performed to validate the correlation between 

 

 
 

Figure 3. GO and KEGG pathway enrichment analysis of the most common EMRGs. (A) BP terms of the EMRGs. (B) MF terms of 
the EMRGs. (C) CC terms of the EMRGs. (D) KEGG terms of the EMRGs. 
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EMRGs expression and overall survival (OS). Forest 

plots indicated that 8 EMRGs were considered a risk 

factor for BC, including DHCR7, ADM, EIF2AK1, 

GMDS, LPCAT1, MGAT4B, TKT, and RIAD (HR > 1, 

P < 0.05), and 14 EMRGs acted as a protective 

prognostic factor for BC, including ALDH18A1, ANG, 

CDO1, DMD, CHST15, GYG2, GYPC, MAN1C1, 

RRBP1, ST6GALNAC6, TRAK1, MLXIPL, FASN, 

 

 
 

Figure 4. Co-regulatory network of EMRGs, miRNAs, TFs, and drugs. (A) TF-gene co-regulatory network of and its KEGG pathway 

enrichment. (B) miR-RNA-TF-gene co-regulatory network and its KEGG pathway enrichment. (C) Gene-drug co-regulatory network and its 
KEGG pathway enrichment. 
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Figure 5. Identification of the key EMRGs in BC samples. (A) Selection of the soft threshold using a scale-free network. (B) Co-

expression modules of BC using WGCNA. (C) Correlation analysis of gene modules and BC clinical traits. (D) Scatter plot of the yellow 
module. (E) Screening of key EMRGs by LASSO regression. (F) Cox regression analysis of the 31 EMRGs expression and OS of BC. (G) Venn 
diagram analysis of key EMRGs. (H) ROC analysis for DHCR7 expression in the TCGA dataset. (I) ROC analysis for DHCR7 expression in the 
validation dataset (GSE124646). **p < 0.01; ****p < 0.0001. 
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and GNG12 (Figure 5F). The Venn diagram revealed 

that DHCR7 was a key EMRG after intersecting the 

results of WGCNA, LASSO regression, and Cox 

analysis (Figure 5G). Furthermore, we used an ROC 

curve to evaluate and validate the diagnostic value  

of DHCR7 and found that the area under the curve 

(AUC) was 0.83 (95% CI = 0.81–0.86, P < 0.001) in  

the TCGA-BRCA dataset and that DHCR7 was up-

regulated in BC (Figure 5H). The GSE124646 was also 

used as an external dataset to validate this result, which 

also yielded a high DHCR7 expression and AUC value 

(95% CI = 0.73–1.0, P < 0.01) for BC (Figure 5I). The 

above results show that DHCR7 is a key EMRGs in BC. 

Association of DHCR7 expression with immune 

characteristics in breast cancer 

 

Tumor immune infiltration has a profound effect  

on survival and immunotherapy efficacy for cancer 

patients. For this reason, we used the TISIDB database 

to investigate the correlation of DHCR7 expression  

with immunomodulators, chemokine, immune, and 

molecular subtypes. We found that the DHCR7 

expression was related to 5 immune subtypes in BC, 

including wound healing (C1), IFN-γ dominant (C2), 

inflammatory (C3), lymphocyte depletion (C4) and 

TGF-β dominant (C6) (Figure 6A). DHCR7 expression 

 

 
 

Figure 6. The correlation between DHCR7 expression and BC immune characteristics. (A) DHCR7 expression correlations with 5 

immune subtypes in BC. (B) DHCR7 expression was related to the molecular subtypes of BC. (C) DHCR7 expression correlations with 
lymphocytes chemokines and receptors. (D) Correlations between DHCR7 expression and 3 kinds of immunomodulators. 
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was also significantly correlated with molecular 

subtypes of BC (Figure 6B). In Figure 6C, we  

can see that DHCR7 expression was positively 

correlated to lymphocytes, especially in Act B cells 

(rho = 0.759, P < 2.2e-16). In addition, DHCR7 

expression had a significantly positive correlation with 

chemokines (CCL5, rho = 0.718, P < 2.2e-16) and 

their receptors (CXCR3, rho = 0.754, P < 2.2e-16). We 

also investigated correlations between three kinds of 

immunomodulators and DHCR7 expression and found 

that DHCR7 expression was significantly related to 

immunoinhibitor (CD96, rho = 0.75, P < 2.2e-16), 

immunostimulator (CD48, rho = 0.769, P < 2.2e-16), 

and MHC molecules (HLA-DPB1, rho = 0.676, P < 

2.2e-16), as shown in Figure 6D. 

 

DHCR7 is up-regulated in BC tissues and connected 

with OS 

 

Based on our TCGA database analysis, we found that 

DHCR7 expression was significantly correlated with the 

pathological M of BC patients (P = 0.02) (Figure 7A). 

Survival analysis also showed that higher DHCR7 

expression resulted in the poorer probability of survival 

(HR = 1.4, P = 0.00035) (Figure 7B). By using IHC,  

we further found that the protein level of DHCR7 was 

up-regulated in human BC tissues compared to adjacent 

normal tissues (Figure 7C). To investigate DHCR7 

expression in BC further, we then analyzed DHCR7 

expression in our cell lines. The results of our qRT- 

PCR testing showed that DHCR7 expression was 

significantly higher in MDA-MB-231 cells compared to 

MCF-10A cells, but lower in MCF-7 and DU4475 cells 

(Figure 7D). In addition, western blot showed that 

DHCR7 protein level was up-regulated in MDA-MB-

231, DU4475 cells, and MCF-7 cells compared to 

MCF-10A cells (Figure 7E). Therefore, MDA-MB-231 

cells were used for further experiments. 

 

DHCR7 knockdown inhibited proliferation and 

induced apoptosis in MDA-MB-231 cells 

 

In order to investigate the effect of DHCR7 expression 

on cell proliferation, we performed GSEA and 

Pearson’s analysis. Pearson’s analysis showed that 

DHCR7 expression was markedly correlated with 11 

genes related to breast cancer proliferation, including 

BIRC5, CCNB1, CDC20, NUF2, CEP55, NDC80, 

MKI67, PTTG1, RRM2, TYMS, and UBE2C (Figure 

8A). GSEA analysis additionally revealed that high 

DHCR7 expression was mainly enriched in cell  

cycle (ES = 0.61, P < 0.01) in BC (Figure 8B). After 

siRNA was transfected into the MDA-MB-231 cells, 
qRT-PCR and western blot were used to test the 

efficacy of DHCR7 knockdown. As shown in Figure 

8C, 8D, DHCR7 expression was successfully decreased 

in MDA-MB-231 cells at the level of mRNA and protein. 

MTT and colony formation assay further revealed that 

DHCR7 knockdown significantly suppressed MDA-

MB-231 cells proliferation (Figure 8E, 8F). Furthermore, 

cell cycle assay showed that DHCR7 knockdown 

resulted G0/G1 phase arrest of MDA-MB-231 (Figure 

8H). In addition, DHCR7 knockdown increased both 

early and late apoptosis in the MDA-MB-231 cells 

(Figure 8I), and the expression levels of CDK6, 

caspase9, and Bcl2 were decreased in MDA-MB-231 

cells transfected with DHCR7 siRNA (Figure 8G). 

Based on the above results, we conclude that DHCR7 

knockdown inhibited MDA-MB-231 cells proliferation 

and induced apoptosis. 

 

The effects of DHCR7 knockdown on ROS 

generation and MMP levels of MDA-MB-231 cells 

 

We further detected the impact of DHCR7 knockdown 

in MDA-MB-231 cells on mitochondrial membrane 

potential (MMP) and ROS generation and found that 

DHCR7 knockdown induced high levels of ROS in the 

MDA-MB-231 cells, as evidenced by both fluorescence 

microscope and flow cytometry assays (Figure 9A,  

9B). As shown in Figure 9C, MMP was significantly 

decreased in the MDA-MB-231 cells with DHCR7 

knockdown, which was consistent with the MMP 

quantitative results using flow cytometry assays (Figure 

9D). These findings suggested that DHCR7 knockdown 

affected the energy metabolism of MDA-MB-231 cells 

by adjusting the ROS and MMP. 

 

DISCUSSION 
 

The occurrence of BC is a complex biological process 

that involves multiple factors. In recent years, with  

the rapid development of medical technology, many 

therapeutic and diagnostic targets have been applied  

in clinical practice for the early diagnosis or treatment  

of BC. However, its high incidence and mortality still 

remains a huge challenge for clinicians. Cellular energy 

metabolism has attracted more and more attention as a 

potential biomarker for cancers diagnosis and treatment 

in several tumors [7, 8, 19, 20], and with this in mind in 

our current study, we integrated bioinformatics methods 

and experiments to identify EMRGs and validated their 

impact on cellular biological functions in BC cells. 
 

Oxidative stress, high blood glucose, and obesity are the 

main metabolic characteristics of type 2 diabetes, and 

they are also all well-known risk factors for BC patients 

[33]. In this paper, 31 common EMRGs were identified 

via intersection of DEGs and EMRGs between patients 
with BC or type 2 diabetes and healthy controls. We 

further analyzed the functional and pathway enrichment 

of these common EMRGs in order to screen key 
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pathomechanisms. GO analysis results indicated that  

the 31 EMRGs were mainly enriched in glycoprotein 

metabolic process, regulation of lipid biosynthetic 

process, and glycosyltransferase activity, among others. 

Alpha-1-acid glycoprotein (AGP) is a key glycoprotein 

in the glycoprotein metabolic process, and researchers 

have found that AGP serves as a biomarker for BC and 

that AGP knockdown can inhibit the production of the 

 

 
 

Figure 7. Analysis of DHCR7 expression and survival in patients with BC. (A) Correlation analysis between DHCR7 expression and 

pathological M. (B) Higher DHCR7 expression induced poorer survival of BC patients. (C) IHC detected DHCR7 expression in BC tissues and 
adjacent normal tissues. (D, E) qRT-PCR and western blot examined DHCR7 expression in cell lines. **p < 0.01; ***p < 0.001. 
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inflammatory factors interleukin (IL)-1β, IL-8,  

and tumor necrosis factor-α in BC cells [34].  

KEGG enrichment analysis further revealed that 31 

EMRGs were also significantly associated with 

metabolic pathways, glycosaminoglycan biosynthesis, 

glycerophospholipid metabolism, Apelin signaling 

 

 
 

Figure 8. DHCR7 knockdown inhibited proliferation and induced apoptosis of MDA-MB-231 cells. (A) Correlation between DHCR7 

expression and 11 genes related to breast cancer proliferation. (B) GSEA analysis of DHCR7 expression in BC. (C, D) qRT-PCR and western blot 
determined the efficiency of DHCR7 knockdown in MDA-MB-231 cells. (E) MTT assay investigated the MDA-MB-231 cells viability with DHCR7 
knockdown. (F) The effect of DHCR7 knockdown on colony formation of MDA-MB-231 cells. (G) Western blot detected the expression of CDK6, 
caspase9, and Bcl2. (H) Flow cytometry assay tested the cell cycle of MDA-MB-231 cells with DHCR7 siRNA. (I) DHCR7 knockdown remarkably 
induced apoptosis of MDA-MB-231 cells. Abbreviation: NC: negative control. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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pathway, and several others. Gourgue et al. reported 

that blocking the Apelin inhibits TNBC growth during 

obesity by changing the tumour microenvironment and 

via the apelinergic system interference, which makes it 

a potential treatment strategy for patients with BC and 

obesity [35]. 

 

Furthermore, functional networks of the 31 EMRGs, 

miRNAs, TFs and drugs were constructed using  

the NetworkAnalyst online tool. The results for the  

gene-TF co-regulatory network showed that 41 TFs 

regulated the EMRGs and were mainly involved in 

transcriptional misregulation in cancer, pathways in 

cancer, and cell cycle. Similarly, the miRNA-TF-gene 

and gene-drug interaction networks were significantly 

enriched in transcriptional misregulation in cancer, 

pathways in cancer, breast cancer, cell cycle, and 

AMPK signaling pathway. Related studies have 

demonstrated that Lysine demethylase 5B (KDM5B) 

regulates cell proliferation and migration through 

AMPK-mediated lipid metabolism reprogramming in 

BC [36]. Qin et al. reported that miR-99a-5p targeted 

CDC25A affected BC cell proliferation, invasion, and 

apoptosis by suppressing the cell cycle pathway [37]. 

Altogether, the biological functions of the 31 EMRGs 

play important roles in the development of BC. 

Therefore, further exploration and confirmation of key 

EMRGs is still needed for BC. 

 

We also used WGCNA to identify key functional 

modules related to the clinical traits used in many 

diseases to obtain biomarkers, such as cancers [38,  

39] and neurologic diseases [40, 41]. Using WGCNA 

analysis assays, 290 genes were identified based on 

TCGA-BRCA datasets and were most related to  

BC sample types. We then used LASSO regression  

and Cox analysis to screen key EMRGs related the 

prognostic risk in BC. After intersecting all results, 

DHCR7 was identified a key EMRGs in BC. In order  

to test DHCR7’s diagnostic value further, we next 

conducted ROC curve analysis. In the TCGA-BRCA 

dataset, the AUC of DHCR7 was 0.83, indicating that 

the intersection scheme had an excellent predictive 

capacity. We also investigated the diagnostic value  

of DHCR7 in the GSE124646 dataset as validation 

cohorts, and the results were consistent, as have been 

the results of previous studies. These studies have noted 

that DHCR7 is a vitamin D–related genes that interacts 

with 25(OH)D and is a risk factor for BC incidence 

[42]. Combining our findings with previous studies, we 

 

 
 

Figure 9. DHCR7 knockdown influenced mitochondrial function of MDA-MB-231 cells. (A, B) MDA-MB-231 cells were treated 

with DHCR7 siRNA. ROS production was detected by fluorescence microscope and flow cytometer. (C, D) The level of MMP was detected by 
JC-1 staining using a fluorescence microscope and flow cytometer. *p < 0.05; **p < 0.01. 
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see that it is important to investigate the biological 

function of DHCR7 in BC. 

 

Even further investigations were required to explore the 

relationship between DHCR7 expression and tumors 

cell immune infiltration. Previous studies have shown 

that investigating the relevant immune subsets is 

beneficial to the prognosis and immunotherapy of BC 

patients [43]. In our study five immune subtypes of BC 

were found to be significantly associated with the 

DHCR7 expression. Moreover, DHCR7 expression also 

showed significant differences between BC molecular 

subtypes. In addition, DHCR7 expression was related 

to tumor-infiltrating lymphocytes (TILs), such as Act B 

cells, imm B cells and Tem CD8 cells. Studies have 

found TILs to be an effective prognostic biomarker in 

some BC subtypes and to be related to therapeutic 

outcomes and prognosis as well [43, 44]. We also 

examined whether chemokines (or receptors) might be 

regulated by DHCR7 in BC and found that DHCR7 

expression was positively related to the CCL5, CCR5, 

and CXCR3. Previous studies have reported that CCL5 

expression can affect BC metastasis and prognosis  

via CCR5 regulation of the Treg/CD4+CCR5+ cell 

ratio in BC patients [45]. At present, tumor-related 

immunomodulators have become an important method 

for BC treatment, and in this study, we found that 

DHCR7 expression is significantly correlated with  

the immunoinhibitor, immunostimulators, and MHC 

molecules, including CD96, CD48, and HLA-DPB1. Li 

et al. demonstrated that CD96 expression is correlated 

with poor long-term prognosis of BC patients, and 

targeting CD96 is another potential therapeutic strategy 

for BC [46]. Based on our results, DHCR7 may be an 

important new immunotherapy target for BC patients. 

 

Up to now, few studies have examined the  

exact effect of DHCR7 on the proliferation and  

energy metabolism of BC cells. Our results revealed 

that DHCR7 expression is significantly associated  

with the pathological M and poor survival of BC. 

Furthermore, DHCR7 expression was remarkably 

higher in BC tissues and cell lines as measured by 

qRT-PCR, western blot, and IHC. The above results 

indicate that DHCR7 play important roles in tumor 

progression and serves as prognostic biomarkers  

for BC. However, the sample size of this study is 

relatively small, and larger studies are urgently needed 

to detail the specific relationships that may support 

this conclusion. Combined with previous research,  

we conclude that DHCR7 is an oncogene and risk 

factor in tumorigenesis [18, 19, 20, 23]. Therefore, it  

is very important to explore the biological function  
of DHCR7 in the BC and whether it can become a 

novel therapeutic target and diagnostic biomarkers for 

BC patients. 

A growing body of evidence shows that proliferation 

markers are useful clinical biomarkers for BC molecular 

subtype classification, prognosis, diagnosis, and therapy 

[47, 48]. Nielsen et al. reported that 11 genes related to 

BC proliferation that were tested experimentally [29]. 

Our research showed that DHCR7 expression was 

positively correlated with 11 BC proliferation markers 

that were mainly enriched in cell cycle. Both of these 

results indicate that DHCR7 expression is related to  

the cell proliferation and may be a proliferation marker 

for BC. To reveal the effects of DHCR7 expression in 

BC proliferation even further, we also performed MTT 

assay, colony formation assay, and flow cytometry assay 

in the present study. We found that DHCR7 knockdown 

suppressed cell proliferation and induced apoptosis  

and decreased the cell cycle and apoptosis related  

gene expression involved in tumor carcinogenesis and 

proliferation, especially the CDK6, caspase9, and Bcl2 

in MDA-MB-231 cells, which suggests that DHCR7 is 

a key oncogene in BC proliferation. This is consistent 

with the results of our bioinformatics analysis, but the 

underlying mechanism by which DHCR7 promotes the 

proliferation of BC still requires further study. 

 

Energy metabolism is an important biological  

process required to maintain cell proliferation  

and is also involved in changing ROS and MMP. 

Previous studies have shown that leptin promotes  

BC cell growth, invasiveness, processes, and worsens 

prognosis by regulating energy metabolism [49]. 

Moreover, according to one recent report, inhibiting 

HMGB3 modulates autophagy and induces apoptosis 

by regulating ROS accumulation and decreasing MMP 

in BC cells [50]. In our study we elucidated the effect 

of DHCR7 on the ROS and MMP levels of BC cells; 

we found that DHCR7 knockdown increased ROS 

levels and decreased MMP in MDA-MB-231 cells, 

indicating that DHCR7 is a candidate oncogene in  

BC, which is consistent with the results of previous 

studies. To the best of our knowledge, this is the first 

time that DHCR7 expression has been shown to 

participate in the regulation of ROS and MMP in BC. 

More evidence is needed to validate these results, and 

if validated these results may one-day support the 

development of a targeted treatment for BC based on 

high DHCR7 expression levels. 

 

CONCLUSIONS 
 

In conclusion, our findings indicate that  

DHCR7 is a key EMRG in BC. Higher DHCR7 

expression is significantly correlated with poorer 

prognosis, immune infiltration and proliferation in 

BC. DHCR7 promotes cell proliferation and regulates 

the mitochondrial function of BC cells. These findings 

suggested that DHCR7 may serve as a potential 
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diagnostic biomarker and immunotherapy target for 

BC patients. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Table 2. 

 

Supplementary Table 1. Information of GEO and TCGA datasets. 

GSE number Platform Control BC (DM) Samples 

GSE42568 GPL570 17 104 breast tissue 

GSE29221 GPL6947 12 12 skeletal muscle tissue 

GSE124646 GPL96 10 10 breast tissue 

TCGA_GTEx (BRCA) Illumina 1099 292 breast tissue 

Abbreviations: BC: breast cancer; DM: diabetes mellitus. 

 

Supplementary Table 2. The list of DEGs and EMRGs. 

 

Supplementary Table 3. Primer and siRNA sequence. 

Name Sequence 

DHCR7- Forward CTCGGATCGGGAAGTGGTTTGAC 

DHCR7- Reverse GCCTTGCCTCCGTGTTCTCTTC 

GAPDH- Forward CAGGAGGCATTGCTGATGAT 

GAPDH- Reverse GAAGGCTGGGGCTCATTT 

Negative Control siRNA sense UUCUCCGAACGUGUCACGUTT 

Negative Control siRNA antisense ACGUGACACGUUCGGAGAATT 

DHCR7 siRNA1 sense CGGGAAGUGGUUUGACUUCAATT 

DHCR7 siRNA1 antisense UUGAAGUCAAACCACUUCCCGTT 

DHCR7 siRNA2 sense GCCUUAUCUUUACACGCUGCATT 

DHCR7 siRNA2 antisense UGCAGCGUGUAAAGAUAAGGCTT 
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