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INTRODUCTION 
 

Graves’ ophthalmopathy (GO), commonly associated 

with Graves’ hyperthyroidism (GH), is a retrobulbar 

autoimmune condition referred to as thyroid eye disease 

(TED) [1–3]. It was reported that 25%-50% of patients 

with Graves’ disease (GD) presented varying degrees of 
ocular symptoms [4]. The typical clinical characteristics 

include eyelid retraction, ocular dyskinesia, diplopia, 

exophthalmos, and strabismus. Moreover, dysthyroid 

optic neuropathy (DON) might develop into visual loss 

in severe cases [5–7]. 

 

TED is recognized as an inflammatory disease with 

orbital and extraocular muscle involvement. The primary 

pathogenesis is well known as immune-induced TSH 

receptor and IGF-1 receptor injury in ocular connective 
tissues (OCT) [8–10]. Although glucocorticoids [11], 

surgery [12], radiotherapy [13] and targeted drugs 

(tocilizumab [14] and teprotumumab [15]) can partially 
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ABSTRACT 
 

Thyroid eye disease (TED) has brought great physical and mental trauma to patients worldwide. Although a few 
potential signaling pathways have been reported, knowledge of TED remains limited. Our objective is to 
explore the fundamental mechanism of TED and identify potential therapeutic targets using diverse 
approaches. To perform a range of bioinformatic analyses, such as identifying differentially expressed genes 
(DEGs), conducting enrichment analysis, establishing nomograms, analyzing weighted gene correlation network 
analysis (WGCNA), and studying immune infiltration, the datasets GSE58331, GSE105149, and GSE9340 were 
integrated. Further validation was conducted using qPCR, western blot, and immunohistochemistry techniques. 
Eleven ferroptosis-related DEGs derived from the lacrimal gland were originally screened. Their high diagnostic 
value was proven, and diagnostic prediction nomogram models with high accuracy and robustness were 
established by using machine learning. A total of 15 hub gene-related DEGs were identified by WGCNA. 
Through CIBERSORTx, we uncovered five immune cells highly correlated with TED and found several special 
associations between these immune cells and the above DEGs. Furthermore, EGR2 from the thyroid sample was 
revealed to be closely negatively correlated with most DEGs from the lacrimal gland. High expression of APOD, 
COPB2, MYH11, and MYCN, as well as CD4/CD8 T cells and B cells, was verified in the periorbital adipose tissues 
of TED patients. To summarize, we discovered a new gene signature associated with ferroptosis that has a 
critical impact on the development of TED and provides valuable insights into immune infiltration. These 
findings might highlight the new direction and therapeutic strategies of TED. 
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benefit patients, promising therapies remain absent due 

to the side effects and high cost of current measures. 

 

Most studies have proposed that the positive feedback 

effect of inflammatory cytokines runs throughout the 

TED process. Immune cells infiltrating periorbital 

tissues release inflammatory mediators to activate OFs, 

which in turn secrete cytokines to promote the homing 

and infiltration of immune cells [2, 5, 16]. However, 

current insights into the mechanisms of TED are still 

unclear. With the rise of high-throughput sequencing 

technology, potential biomarkers related to TED have 

emerged. Wescombe et al. [17] revealed that CASQ2 

and SDH4 were highly expressed in TED via an 

autoimmunity trigger mechanism. Zhao et al. [18] found 

that differentially expressed genes (DEGs) associated 

with the cell cycle (UBE2C), encoding proteasome 

(PSMA1), and signal recognition particle (SRP14) 

could have significant involvement in the development 

of TED. Further investigation also identified several 

(e.g., PTX3, CCL2, HOXB2, SERPINA1, HSP90B1, 

and CANX) as novel biomarkers of TED [19– 

22]. Although these valuable studies enriched our 

understanding of the underlying pathological processes 

in different target tissues of TED, whether there is a 

regulatory relationship between DEGs in each target 

tissue remains unknown. Furthermore, the majority of 

investigations only emphasized DEG screening and 

pathway speculation without in-depth exploration and 

verification. 

 

For the first time, we incorporated microarray 

information from the Gene Expression Omnibus (GEO) 

repository in our study and discovered the significant 

involvement of ferroptosis-associated genes in TED. 

We also employed machine learning to establish a 

ferroptosis-related diagnostic nomogram and validate its 

accuracy for TED. Moreover, we integrated the DEGs 

of the thyroid, lacrimal gland, and periorbital adipose 

tissue and used correlation analysis to investigate 

possible relationships. Furthermore, an analysis of 

immune infiltration was conducted to investigate 

possible relationships between DEGs and immune cells. 

All the findings will refresh our understanding of the 

development of TED and support novel directions for 

further exploration. 

 

MATERIALS AND METHODS 
 

Data acquisition 

 

We focused on two gene expression datasets 

(GSE105149 and GSE58331) related to TED, utilizing 
the GEO database’s information retrieval system 

(https://www.ncbi.nlm.nih.gov/geo/) [23–28]. Both 

microarray datasets originated from the same platform, 

GPL570 [HG-U133_Plus_2] Affymetrix Human 

Genome U133 Plus 2.0 Array, with the organism Homo 

sapiens and an experimental type of expression profiling 

by array. According to the inclusion criteria for TED and 

normal lacrimal samples, 4 cases of TED and 7 control 

cases derived from GSE105149 [23] were included, as 

well as 8 cases of TED and 7 control cases derived from 

GSE58331 [24–28]. The raw expression matrix and 

annotation of the above samples were downloaded and 

integrated for subsequent bioinformatic analysis. We 

employed the ComBat function of the SVA package [29] 

in R (version 4.2.1) [30] to eliminate the batch effects 

and visualized the data distribution using different 

diagrams [31]. 

 

Screening of ferroptosis-related DEGs 

 

To investigate whether ferroptosis is involved in the 

pathogenesis of TED, we first obtained the union set  

of genes associated with ferroptosis from both the 

Homo sapiens organism and the FerrDb V2 database 

(http://www.zhounan.org/ferrdb/current/operations/dow

nload.html) [32]. Then, ferroptosis-related DEGs (F-

DEGs) were screened out via the intersection with the 

DEG set of TED. 

 

Expression analysis and diagnostic value assessment 

 

We assessed the differential expression of F-DEGs in 

14 normal and 12 TED tissues, with data normalized 

and log2 transformed. To assess the diagnostic 

capability of F-DEGs in TED, we used receiver 

operating characteristic (ROC) curves to perform a 

series of analyses. To measure the diagnostic value,  

the area under the curve (AUC) was calculated. An 

AUC>0.9 was defined as high accuracy, 0.7<AUC≤0.9 

was defined as medium accuracy, and 0.5<AUC≤0.7 

was defined as low accuracy [33]. 

 

Construction of the F-DEG-related diagnostic model 

 

Based on the expression profiles above, we performed 

univariate binary logistic regression analysis using the 

glmnet package [34] in R to further screen variables. 

Then, the variables were included in the multivariate 

analysis and the model correlation test if they met  

the threshold of p < 0.01. F-DEGs were chosen for  

the diagnostic model, and their odds ratio (OR) was 

visualized by a forest diagram [35]. On this basis, we 

constructed an F-DEG-related diagnostic nomogram  

for TED patients. The model was calibrated [36]  

and evaluated by employing diagnostic ROC and 

decision curve analysis (DCA) to verify its precision 
and robustness. The concordance index (C-Index)  

and Akaike information criterion (AIC) [37, 38]  

were subsequently computed. Furthermore, we applied 
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LASSO regression [35, 39], which is a supervised 

machine learning method, to identify the most  

relevant variables for diagnostic model establishment. 

Calibration, diagnostic ROC, and DCA were performed 

to verify the model’s accuracy and reliability. 

 

Gene enrichment analysis 

 

We conducted Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway analysis, as well as Gene 

Ontology (GO) analysis, for all DEGs using the “tidyr”, 

“ggplot2”, and “clusterProfiler” packages in R (version 

4.0.3, www.r-project.org) [30]. Bubble diagrams and 

circle plots were applied for visualization. 

 

GSEA and GSVA 

 

To further elucidate the mechanistic differences between 

the TED and normal groups, we included all the DEGs 

in gene set enrichment analysis (GSEA) [40]. GESA 

offered three benefits over conventional enrichment:  

1) genes were ranked according to their expression 

levels; 2) the object of analysis was a gene set rather 

than a single gene; and 3) the genes were compared to  

a predefined gene set. According to the annotation and 

description, we selected and downloaded reference data 

for two gene sets, “c2.cp.kegg.v2022.1.Hs.symbols.gmt” 

and “c5.go.all.v2022.1.Hs.symbols.gmt”, from the 

Human Molecular Signatures Database (MSigDB) [41]. 

The results are displayed as biological process (BP),  

cell component (CC), molecular function (MF), and 

KEGG. For visualization, classic and ridge diagrams 

were employed, with the clusterProfiler package [42] in 

R used to calculate the normalized enrichment score 

(NES) and false discovery rate (FDR). 

 

Gene set variation analysis (GSVA), a non- 

parametric unsupervised algorithm, transforms a  

gene-sample expression matrix into a specific gene 

set-sample expression matrix [43]. Using this strategy, 

we sorted the genes based on their cumulative  

density distribution and computed the rank statistics 

for further downstream analysis. The MSigDB  

gene sets “c2.cp.kegg.v2022.1.Hs.symbols.gmt” and 

“c5.go.all.v2022.1.Hs.symbols.gmt” were incorporated 

in GSVA, and the route of enrichment differences 

between the test and control groups were compared as 

a result. 

 

WGCNA 

 

Weighted gene correlation network analysis  

(WGCNA) is defined as a systematic biological 
technique for characterizing gene relationship patterns 

across samples. By examining the interrelation between 

the gene set and its associations with other phenotypes, 

it may be used to identify gene sets with significant 

covariation as well as possible biomarker genes or 

therapeutic targets [44]. We used this method to build a 

gene co-expression network and discovered essential 

modules consisting of the interconnected gene sets in 

both TED and normal samples. 

 

Protein-protein interaction (PPI) network and hub 

gene identification 

 

We extracted the most relevant gene modules from 

WGCNA and used them to interact with DEGs. The 

DEG collection was then imported into the “multiple 

proteins” module of the STRING database (http://string-

db.org/) [45], which allows functional proteomic 

interaction analysis. The main parameters were set  

as follows: active interaction sources (“Text mining  

and Experiments and Databases”), max number of 

interactors to show [“1st shell: no more than 50 

interactors”], minimum required interaction score 

[“medium confidence (0.400)”] and others were left at 

default. Next, we built the TED-related PPI network 

using Cytoscape (version 3.9.1) [46, 47], a free program 

for network data integration and visualization. We 

investigated the TED-related hub genes further in 

Cytoscape using the MCC algorithm of the CytoHubba 

module [48]. The top ten hub gene networks were 

categorized, as were the top five hub gene networks 

discovered by the MCODE module [49]. 

 

We used ridge diagrams to show the distribution of the 

aforesaid hub genes (H-DEGs) in TED and normal 

tissues according to their expression levels. Moreover, 

the diagnostic capability of these genes was evaluated 

by employing ROC and AUC. 

 

Correlation analysis of immune cell infiltration 

 

While the importance of the immune response in TED 

has been acknowledged, limited research has delved 

into the involvement of immune cells and inflammatory 

factors in the disease and their specific pathways. It is 

crucial to conduct immune infiltration studies at TED to 

uncover novel mechanisms and potential therapeutic 

targets related to immunity. To estimate the abundance 

of different cell types within a mixed population based 

on gene expression profiles, we utilized CIBERSORTx, 

an analytical tool (https://cibersortx.stanford.edu/) [50]. 

This program was employed to calculate the levels of 

22 immune cell types in both the TED and normal 

groups. The distribution and infiltration abundance of 

these 22 immune cells between the test and control 

groups were visually represented using box plots and 
histograms. Additionally, we examined how F-DEGs 

and H-DEGs relate to immunocytes as well as their 

interaction with both TED and normal tissues. 
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DEG identification and correlation analysis based on 

thyroid samples 

 

Aside from lacrimal gland samples, we further included 

thyroid samples in this study by downloading the raw data 

from dataset GSE9340 [17]. After the data normalization 

procedure, 10 TED and 8 normal samples were included 

in the subsequent analysis. GEO2R was utilized to screen 

the top DEGs with a threshold of |log2-fold change (FC)| 

≥ 1 and a p-value < 0.05. We utilized Pearson’s method  

to determine the correlation coefficients and depict the 

association based on the data matrix to further investigate 

the correlation of the screened DEGs between thyroid and 

lacrimal gland tissues. 

 

Experimental validation of DEG expression and 

immune infiltration 

 

Based on the orbital CT scans obtained from  

both the TED and normal groups, a thorough 

comparison was made to evaluate the degree of  

adipose infiltration and ocular muscle hypertrophy  

in each group. To further investigate these findings,  

23 pairs of periorbital adipose samples were selected  

for real-time quantitative PCR (RT‒qPCR) and western 

blotting (WB) analyses (details of characteristics were 

summarized in Supplementary Tables 1, 2). These 

tissue samples were taken via endoscopic resection and 

immediately stored in liquid nitrogen to maintain their 

integrity and biological activity. 

 

RT‒qPCR: A prior protocol [51] was followed for  

tissue isolation and total RNA extraction. Briefly, 

quality-controlled RNA was converted to cDNA using 

the PrimeScript™ RT reagent kit with gDNA Eraser 

(cat#RR047A; Takara, Japan) and amplified using the 

SYBR® Premix Ex Taq™ II kit (cat#RR820A;  

Takara) on the ABI PRISM® 7500 Sequence Detection 

System (Applied Biosystems, CA, USA) following the 

manufacturer’s protocols. Table 1 displays the primer 

sequences generated by Primer 6.0 (Applied Biosystems, 

CA, USA). The mixture was incubated for 30 seconds  

at 95° C, followed by 40 cycles of 5 seconds at 95° C  

and 34 seconds at 60° C. The 2−ΔΔCT approach was used 

to perform semiquantitative gene expression analysis 

with normalized levels of the housekeeping gene 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

 

WB: Using radioimmunoprecipitation assay (RIPA) 

buffer (Beyotime Biotechnology, Shanghai, China) 

and a BCA protein assay kit (Beyotime Biotechnology, 

Shanghai, China), the total proteins were extracted  

and quantitated. Targeted proteins were separated 
using 10% sodium dodecyl sulfate‒polyacrylamide  

gel electrophoresis (SDS‒PAGE) and subsequently 

transferred to polyvinylidene difluoride (PVDF) 

membranes (Millipore, MA, USA). The membranes 

were blocked for 2 hours at ambient temperature  

using a 5% fat-free milk solution in Tris-buffered 

saline containing 0.05% Tween-20. Subsequently,  

the membranes were subjected to an overnight 

incubation at 4° C with primary antibodies (details of 

antibodies were summarized in Supplementary Table 

3). Corresponding secondary antibodies were then 

coincubated at room temperature for 1 hour after being 

appropriately diluted in PBS. The protein bands were 

visualized using chemiluminescence and quantified 

using ImageJ software, following coating with the 

ECL assay kit (EpiZyme, China). 

 

Immunohistochemistry (IHC): Immunohistochemical 

analysis was employed to investigate immune cell 

infiltration in six pairs of TED patients’ periorbital  

lipid tissues. The standard procedures were performed 

as published [52]. Frozen sections were fixed in 

methanol for 20 minutes in total. Following antigen 

retrieval and suppression of endogenous peroxidase 

activity, the sections were sealed for 30 minutes at room 

temperature with 3% BSA (Sigma, CA, USA). After the 

blocking solution was removed, preconfigured primary 

antibodies were added to the sections for overnight 

coincubation at 4° C. Subsequently, the sections  

were incubated at room temperature for 50 minutes with 

the corresponding secondary antibodies (details of 

antibodies were summarized in Supplementary Table  

3). For section staining, DAB chromogenic solution 

(Genetech, Shanghai, China) and hematoxylin were 

used (the nucleus of hematoxylin stained is blue, and 

the positive expression of DAB is brownish yellow). An 

imaging system (Leica DFC450C, Leica, Shanghai, 

China) was used for image acquisition and analysis. 

 

Statistical analysis 

 

R software (version 4.2.1) was used for all statistical 

analyses and graphing. The t-test and one-way ANOVA 

were employed to assess variables with a normal 

distribution, while nonparametric tests were utilized for 

variables that did not follow a normal distribution. 

Survival analysis was conducted using the log-rank  

test and Cox regression, whereas Pearson’s correlation 

and Spearman’s rank correlation test were employed  

for correlation analysis. Statistical significance was 

defined as a p-value of 0.05. Correlation ranges were 

established as follows: 0.00-0.10 (negligible), 0.10-0.39 

(weak), 0.40-0.69 (moderate), 0.70-0.89 (strong), and 

0.90-1.00 (extremely strong) [53]. 

 

Availability of data and materials 

 

The original contributions presented in the study are 

included in the article/Supplementary Material, and 
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Table 1. Primers designed for RT-qPCR. 

Gene F:5’-3’ R:5’-3’ 

GAPDH ACCCACTCCTCCACCTTTGAC TCCACCACCCTGTTGCTGTAG 

MYH11 AGCCAGAGACGAGAGGACATTC GGAGAGGAAGGTGTAGTTGTTGAAG 

APOD GCCACCGACTATGAGAACTATGC ACTGTTTCTGGAGGGAGATTAGGG 

EGR2 CTCCTCCTCCTTATTCTGGCTGTG GGTCCGTGGCTGGCTTGG 

IDH1 CACCAACGACCAAGTCACCAAG ACTCCTCAACCCTCTTCTCATCAG 

PEX3 TTGCGGGTCCAGTTAAACATAATTG CCATCTCCAAGTAGGTGCTGAATAC 

MYCN AGAAGCGGCGTTCCTCCTC GTTGTGCTGCTGGTGGATGG 

EMC2 AGACTATGGTCGGGATGACTTGG ATGCCTGTTAATCGCTTGACTCTG 

CDH1 GCTAATTCTGATTCTGCTGCTCTTG GTCCTCTTCTCCGCCTCCTTC 

MDM4 AGACCCAAGCCCTCTCTATGATATG AGAGTCTGAGCAGCATCTGTAGTAG 

CP GGTCCAGGAGTGTAACAAGTCTTC CCTCAGCGGCAATGTAGTAGTG 

TF ATCAGCAGAGACCACCGAAGAC ACAGGCACCAGACCACACTTG 

OSBPL9 AGTTGGACCTGTGTTGGCTACC ACTGCTACTCGGTGGTGAATGG 

DNAJB6 TGCCTCGCTGCTGAGACAC CTCTGCTTCTGCTTCTTCCTCTTG 

TFAP2A AATGCCGTCTCCGCCATCC TTCCGCCACCGTGACCTTG 

YKT6 CCGCATACGATGTGTCTTCCTTC CGCTCCACAATCAGTTGACTCG 

ITCH ACCTTCACGACCACCACCAC AATCCAGATGTTGCTCCTTCAGATG 

USO1 CACACAGAAGCCGAGACGATTC GATTTGAGAGCACGAACAGCATTTC 

SRSF1 TACCTCCAGACATCCGAACCAAG CGAACTCAACGAAGGCGAAGG 

PSMA3 GCTCAATCGGCACTGGGTATG CCACAGCCTTCATAGCATATTCAAC 

SNRPG TGATAGATGAATGTGTGGAGATGGC ACTTTGGGCTTACCGCTTTATTAGG 

COPB2 GTTGTGACAGGAGCGGATGAC GGATGAACAGCAATACAGCGAATG 

PSMD6 AGGAGCAGAGATTCTTGAAGTGTTG ACAGAGTAACGGCATTCATAGAGTG 

PSMA4 CAGAGAGACGCAACATCCACAAG ACCTTTGAGCAATGAGCCTTAGTTC 

RBM25 GGAAGAGGAAGAGGAGCCAGAG CAGAGGAAACAGATGGAGCAGAG 

PSMD14 GCTATGCCACAGTCAGGAACAG TGATACCAACCAACAACCATCTCC 

LMAN1 GACAACACAGCACTTCATTGACATC GGTGGTAGTTCTGGGCATTTCG 

PSMD12 AGGTGGAAAGACTTGAAGAACAGAG GGCTTCGGACTCATCAACAGATAG 

PSMA1 GGCTTACTGCTGATGCTAGACTG TTAGAGATACAAGACGAGACACAGG 

RAB1A TGTCCAGCATGAATCCCGAATATG AGAAGAAGGCAAGACTTTCCAACC 

 

further inquiries can be directed to the corresponding 

author(s). 

 

All data and original files in our work are freely 

available under a ‘Creative Commons BY 4.0’ license. 

All methods were carried out in accordance with 

relevant guidelines and regulations. 

 

RESULTS 
 

Figure 1 demonstrates the whole design and procedure 

of this study. 

 

Data normalization 

 

To comprehensively evaluate and analyse variations in 

gene expression, we combined and merged two distinct 

datasets. We implemented a standardized process to 

remove batch effects and normalize the original data, 

enhancing the accuracy and efficiency of subsequent 

data analysis. The processed data exhibited significantly 

superior standardized signal intensity compared to the 

initial data processing stage (Figure 2A, 2B). Using 

principal component analysis (PCA), the standardized 

data exhibited improved within-group repeatability  

and between-group discriminability (Figure 2C, 2D). 

The uniform manifold approximation and projection 

(UMAP), a technique for reducing dimensions, showed 

consistent results regarding the data distribution as 

above (Figure 2E, 2F). 

 
F-DEG screening 

 
A total of 12 TED samples and 14 control samples 

comprised the consolidated data. After examining the 

variations in gene expression among the two groups, 

414 DEGs were screened by applying the filter criterion 

|Log2FC| > 1 and p < 0.05. The results are depicted 

using a heatmap (Figure 2G), which displays the 

panorama and clusters of DEGs, with 73 upregulated 
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genes and 341 downregulated genes further visualized 

as a volcano diagram (Figure 2H). 

 

Through the integration of ferroptosis driver, ferroptosis 

suppressor, and ferroptosis marker gene sets, 322 

ferroptosis-related genes were obtained (Figure 2I). By 

further intersecting with the DEGs above, we identified 

11 ferroptosis-related DEGs (F-DEGs) (Figure 2J). The 

expression patterns of these 11 F-DEGs were detailed 

and are shown in a violin plot (CP, CDH1, TFAP2A, 

MDM4, TF, DNAJB6, OSBPL9, IDH1, MYCN, PEX3, 

and EMC2) (Figure 3A). MYCN stood out as a gene 

that was specifically overexpressed in the TED group  

(p < 0.001), while the majority of genes showed 

increased expression in the normal group (all p < 0.05) 

(Figure 3A). 

 

Clinical value assessment of F-DEGs 

 

Additionally, we conducted an evaluation to ascertain 

the diagnostic value of the F-DEGs for TED. The 

findings showed that every single F-DEG exhibited 

exceptional diagnostic performance for TED (TF: AUC 

= 0.774, DNAJB6: AUC = 0.911, OSBPL9: AUC = 

0.881, IDH1: AUC = 0.845, CP: AUC = 0.821, CDH1: 

AUC = 0.821, TFAP2A: AUC = 0.792, MDM4: AUC = 

0.827, MYCN: AUC = 0.899, PEX3: AUC = 0.935, and 

EMC2: AUC = 0.845) (Figure 3B). 

 

We further performed a univariate logistic analysis  

of F-DEGs to examine their associations with TED 

diagnosis. In the diagnosis of individuals with TED, 

MYCN was identified as a significantly important 

independent factor (OR = 14.831, 95% confidence 

interval (CI) = 12.938-16.723, p = 0.005). The 

examination of other F-DEGs, on the other hand, 

revealed a possibly unfavorable effect on the diagnosis 

of TED (all OR < 1, p < 0.05) (Figure 3C). Genes that 

had a statistical significance of p < 0.01 were chosen  

for inclusion in the multivariate Cox regression 

analysis. EMC2 potentially had a favorable association 

with TED (OR = 4.459, 95% CI = 0.446-8.472). PEX3 

(OR =0.003, 95% CI = -6.285-6.292), DNAJB6 (OR = 

0.616, 95% CI = -5.291-6.523), OSBPL9 (OR = 0.064, 

95% CI = -7.218-7.347), and MYCN (OR = 0.066, 95% 

CI = -8.304-8.435), on the other hand, revealed an 

inverse correlation (Figure 3D). However, no statistical 

significance supported these correlations (all p > 0.05). 

 

 
 

Figure 1. Study design flow chart. TED, thyroid eye disease; DEGs, differentially expressed genes; ROC, receiver operating characteristic; 
WGCNA, weighted correlation network analysis; PPI, protein‒protein interaction network; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; IHC, immunohistochemistry. 
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Establishment and validation of the diagnostic 

prediction model 

 

Based on the above results, we first integrated the five 

most statistically relevant genes and constructed a 

ferroptosis-related nomogram for TED risk prediction 

(Figure 4A). PEX3 made the greatest contribution and 

was recognized as an important independent diagnostic 

factor in addition to the other four factors. This  

model demonstrated good accuracy and robustness in 

 

 

 

Figure 2. Screening of ferroptosis-related DEGs (F-DEGs) in the lacrimal gland. (A, B) Box plot of gene expression before and after 
batch effect removal in the integrated GEO data; (C, D) PCA of gene expression before and after batch effect removal in the integrated GEO 
data; (E, F) UMAP of gene expression before and after batch effect removal in the integrated GEO data; (G) Heatmap of DEGs; (H) Volcano 
plots of DEGs; (I) Venn diagram of ferroptosis-related genes; (J) Venn diagram of the intersection of ferroptosis-related genes and DEGs. 
DEGs, differentially expressed genes; GEO, Gene Expression Omnibus; PCA, principal component analysis; UMPA, uniform manifold 
approximation and projection. 
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Figure 3. Comprehensive evaluation of F-DEGs. (A) Gene expression analysis of F-DEGs between TED and normal groups; (B) Diagnostic 

value analysis of F-DEGs; (C) Univariate analysis of F-DEGs; (D) Multivariate analysis of F-DEGs. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 4. Establishment of a ferroptosis-related TED model. (A) Diagnostic nomogram of ferroptosis-related TED; (B) Nomogram 
calibration curve of the diagnostic model; (C) ROC curve of the diagnostic model; (D) Decision curve for evaluating the net benefits of the 
nomogram; (E) Further identification of F-DEGs via LASSO regression; (F) Trajectory chart of LASSO regression; (G) Diagnostic nomogram of 
ferroptosis-related TED by LASSO; (H–J) Nomogram calibration curve, ROC curve, and decision curve for evaluating the precision and 
robustness of the diagnostic model. *P < 0.05, **P < 0.01, ***P < 0.001. 
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providing diagnostic prediction scores for TED patients’ 

clinical episodes (C-index = 0.976, 95% CI = 0.926-

1.026, AIC = 23.220) (Figure 4B). We supplementally 

employed a time-dependent ROC curve to evaluate the 

diagnostic precision of this model (AUC = 0.976, 95% 

CI = 0.925-1.000) (Figure 4C) and performed DCA to 

assess the practicality of this model (AIC = 15.220) 

(Figure 4D). 

 

Furthermore, we adopted a machine learning  

strategy (LASSO regression) to filter the 11 F-DEGs  

for the most diagnostically valuable genes. The  

LASSO coefficients were calculated using a tenfold 

cross-verification procedure and presented as a variable 

trajectory diagram (Figure 4E, 4F). We subsequently 

established a new F-DEG-related diagnostic nomogram 

that included PEX3 and CP, both of which contributed 

equally to this prediction model (Figure 4G). This 

model’s excellent predictive ability was confirmed (C-

index = 0.982, 95% CI = 0.943-1.021, AIC = 15.433) 

(Figure 4H). The model’s precision and dependability 

were further confirmed by the time-dependent ROC 

curve (AUC = 0.982, 95% CI = 0.943-1.000) (Figure 

4I) and DCA (AIC = 13.433) (Figure 4J). 

 

Biological enrichment analysis 

 

To delve deeper into the molecular mechanism of DEGs 

in TED, we employed GO and KEGG enrichment 

analyses. By setting a significance threshold of p <  

0.05, we successfully identified the top 10 correlated 

pathways of BP and CC, the top 5 correlated pathways 

of MF, and the top 3 correlated pathways of KEGG. 

“Regulation of protein transport”, “Golgi vesicle 

transport”, “protein folding”, “endoplasmic reticulum  

to Golgi vesicle-mediated transport”, “protein targeting 

to membrane”, “endoplasmic reticulum organization”, 

“vesicle budding from membrane”, “COPII-coated 

vesicle budding”, “vesicle coating”, and “protein 

insertion into ER membrane by stop-transfer membrane-

anchor sequence” of BP (all p < 0.001) were mainly 

involved in TED (Figure 5A). Consistently, CC 

pathways were also primarily associated with protein 

coating and membrane transport (all p < 0.001)  

(Figure 5B). Regarding MF, we noticed an enrichment 

of DEGs in the following pathways: “cadherin binding”, 

“ribonucleoprotein complex binding”, “chaperone 

binding”, “protein carrier chaperone”, and “membrane 

insertase activity” (all p < 0.001) (Figure 5C). The 

KEGG pathways showed the strongest association with 

“protein processing in endoplasmic reticulum”, “protein 

export”, and “proteasome” (all p < 0.001) (Figure 5C). 

 
We employed another algorithm to explore the between-

group differences in DEG-enriched pathways. The 

enriched bioprocesses were ranked according to their 

enrichment score (Figure 6A). The top 6 GO pathways 

were involved in “ATP synthesis coupled electron 

transport” (NES = 3.298, p adj < 0.001), “polysomal 

ribosome” (NES = 3.508, p adj < 0.001), “cytosolic 

small ribosomal subunit” (NES = 3.765, p adj < 0.001), 

“cytoplasmic translation” (NES = 3.958, p adj < 0.001), 

“cytosolic large ribosomal subunit” (NES = 4.016,  

p adj < 0.001), and “cytosolic ribosome” (NES = 4.412, 

p adj < 0.001) (Figure 6B). On the other hand, the top 6 

KEGG pathways included “Alzheimer’s disease”  

(NES = 2.715, p.adj < 0.001), “Huntington’s disease” 

(NES = 2.904, p.adj < 0.001), “spliceosome” (NES = 

2.957, p.adj < 0.001), “oxidative phosphorylation”  

(NES = 3.169, p.adj < 0.001), “Parkinson’s disease” 

(NES = 3.422, p.adj < 0.001), and “ribosome” (NES = 

4.614, p.adj < 0.001) (Figure 6C, 6D). 

 

The possible trend of association between enriched 

pathways and TED was discovered further with the  

use of GSVA. In TED samples, the KEGG pathways 

“proteasome”, “spliceosome”, “protein export”, and 

“limonene and pinene degradation” were all restricted 

(Figure 6E). The findings additionally indicated that  

TED exhibited primarily positive associations with  

neural bioprocesses such as “cerebral cortex GABAergic 

interneuron”, “neuropeptide hormone activity”, and 

similar processes. Conversely, TED displayed negative 

correlations with protein and chromatid bioprocesses 

such as “protein localization to nucleoplasm” and 

“regulation of sister chromatid cohesion” (Figure 6F). 

 
WGCNA and hub gene network 

 

To identify gene sets with high synergistic variation,  

we subjected all genes to WGCNA. We excluded  

the bottom 50% of the genes with the lowest median 

absolute deviation (MAD), eliminated any genes or 

samples that were outliers, and built a co-expression 

network that follows a scale-free pattern (Figure 7A). 

Sample and gene clusters are displayed in Figure 7B, 

7C, respectively. Then, to consolidate similarity and 

decrease redundancy, we assessed the dissimilarity  

of module eigengenes and merged some modules. 

Following these steps, we successfully obtained a  

total of eight co-expression modules. Based on the 

correlation analysis, the blue module containing 4591 

genes was most negatively correlated with TED (cor = -

0.66, p = 2.7e-4), whereas the skyblue module, which 

had 3775 genes, was most positively correlated with 

TED (cor = 0.67, p = 1.9e-4) (Figure 7D). Furthermore, 

we evaluated the correlation between gene significance 

(GS) and module membership (MM). To be consistent, 

a high degree of synergy of genes within each module 

was observed, especially in the skyblue (cor = 0.76,  

p < 0.001) (Figure 7E) and blue modules (cor = 0.72,  

p < 0.001) (Figure 7E). 
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Next, we intersected the above two gene set modules 

with the DEGs and obtained 83 DEGs for the skyblue 

module and 188 DEGs for the blue module (Figure 8A). 

Based on the evidence from text mining, experiments, 

and databases, we constructed DEG-related PPI 

networks of 50 predicted functional partners (Figure 

8B). Additionally, we selected the whole interaction 

network and the top 2 clusters from the DEGs to mine 

for potential hub genes. Using the MCC algorithm, the 

top 10 hub genes, including PSMA1, PSMA4, PSMA3, 

PSMA12, PSMA14, PSMA6, ITCH, SNRPG, SRSF1, 

and RBM25, were screened from the whole interaction 

network (Figure 8C). The top 5 hub genes of Cluster 1 

(score = 7.000) were PSMA1, PSMA4, PSMA3, 

PSMA12, and ITCH (Figure 8D). Meanwhile, the top 5 

hub genes of YKT6, COPB2, USO1, LMAN1, and 

RAB1A were included in Cluster 2 (score = 5.600) 

(Figure 8E). 

 

A total of 15 hub gene-related DEGs (H-DEGs)  

were integrated. Ridge diagrams fully displayed the 

distribution differences of H-DEG expression in the 

TED (p = 7.8e-61) (Figure 8F) and normal groups  

(p = 1.8e-18) (Figure 8G). We further performed ROC 

curves to evaluate the diagnostic capacity of H-DEGs  

in TED. A remarkable accuracy of all H-DEGs in 

 

 
 

Figure 5. GO and KEGG enrichment analysis. (A) Bubble diagram of BP enrichment analysis; (B) Bubble diagram of CC enrichment 

analysis; (C) Bubble diagram of MF enrichment analysis; (D) Chord diagram of KEGG pathway enrichment analysis. BP, biological process; CC, 
cell component; MF, molecular function. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 6. GSEA and GSVA. (A) GSEA-GO of DEGs; (B) ridge plot of top 6 GSEA-GO; (C) GSEA-KEGG of DEGs; (D) ridge plot of  

top 6 GSEA-KEGG; (E) heatmap of functional scores of GSVA-KEGG; (F) heatmap of functional scores of GSVA-GO. *P < 0.05, **P < 0.01, 
***P < 0.001. 
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diagnosis was observed: SRSF1 (AUC = 0.917), 

SNRPG (AUC = 0.869), RBM25 (AUC = 0.887), 

PSMD6 (AUC = 0.929), PSMD14 (AUC = 0.905), 

COPB2 (AUC = 0.863), LMAN1 (AUC = 0.875), 

RAB1A (AUC = 0.851), YKT6 (AUC = 0.863), USO1 

(AUC = 0.899), ITCH (AUC = 0.905), PSMA1 (AUC = 

0.911), PSMA4 (AUC = 0.893), PSMA3 (AUC = 

0.917), and PSMA12 (AUC = 0.905) (Figure 8H). 

 

Immune infiltration analysis 

 

We obtained 22 immune cell infiltration scores for 

lacrimal samples via the CIBERSORT algorithm. 

Regardless of whether TED or normal samples were 

taken, the component of plasma cells was the highest 

(Figure 9A). According to the infiltration abundance, 

the TED group had a higher degree of B-cell memory (p 

< 0.01), CD8 T cells (p < 0.001), and regulatory T cells 

(Tregs) (p < 0.01) infiltration than the normal group. In 

contrast, the infiltration levels of plasma cells (p < 0.01) 

and resting memory CD4 T cells (p < 0.05) were higher 

in the normal group than in the TED group (Figure 9B). 

Furthermore, we examined the interactions of immune 

cells in lacrimal tissue, as well as their interactions with 

F-DEGs and H-DEGs. In the TED group, there was a 

strong positive correlation between M1 macrophages 

and naive B cells, resting mast cells and M2 

macrophages, and activated mast cells and resting NK 

cells, while there was a strong negative correlation 

between resting memory CD4 T cells and plasma cells 

(all p < 0.001) (Figure 9C). In the normal group, we 

found a strong positive correlation between activated 

memory CD4 T cells/nerve follicular helper T cells  

and naive B cells, neutrophils and resting mast cells  

and a strong negative correlation between plasma cells 

and naive B cells/activated memory CD4 T cells (all  

p < 0.001) (Figure 9D). Furthermore, the findings 

demonstrated a close relationship between F-DEGs  

and immune cell infiltration. In particular, CDH1 and 

TFAP2A were strongly negatively correlated with 

 

 
 

Figure 7. WGCNA. (A) WGCNA of soft threshold screening; (B) Sample clustering and disease type; (C) Co-expression gene clustering;  

(D) Correlation analysis between co-expression gene modules and clinical characteristics; (E) Correlation analysis between MM and GS in 
the sky blue module; (F) Correlation analysis between MM and GS in the blue module. MM, module membership; GS, gene significance.  
*P < 0.05, **P < 0.01, ***P < 0.001. 

6020



www.aging-us.com 14 AGING 

resting mast cells (all p < 0.001). There was also a 

strong positive link between resting NK cells and 

MDM4, as well as CD8 T cells and CDH1 (all p < 0.01) 

(Figure 9E). In the case of H-DEGs, no significantly 

positive correlation with immune cells was identified; 

however, a significantly negative connection between 

PSMD14 and activated dendritic cells was observed  

(p < 0.01) (Figure 9F). 

 

Correlation analysis of DEGs in thyroid samples 

 

By following the aforementioned data processing 

procedure, we obtained standardized thyroid tissue  

data from the GSE9340 dataset. This dataset consisted 

of samples from 10 patients with TED and 8 samples 

from healthy controls (Figure 10A). DEGs were 

identified and chosen for further analysis based on the 

preestablished threshold (Figure 10B). Upon conducting 

an interaction analysis, we discovered that the genes 

identified in GSE9340, GSE105149, and 58331 and the 

ferroptosis gene set did not have any overlapping genes 

(Figure 10C). Overexpression of MYH11 (p = 8.5e-3) 

and APOD (p = 0.01) was observed in the TED group, 

while downregulated expression of EGR2 (p = 0.02) 

was observed in the TED group (Figure 10D). 

 

We identified these three DEGs as T-DEGs and 

explored whether they were potentially related to 

 

 
 

Figure 8. PPI construction and hub gene identification. (A) Venn diagram of intersection of DEGs and most significant module genes; 
(B) PPI network of key genes in blue module; (C) Top 10 hub genes by MCC algorithm; (D) Top 5 hub genes of cluster 1; (E) Top 5 hub genes of 
cluster 2; (F) 15 hub genes expression distribution in normal samples; (G) 15 hub genes expression distribution in TED samples; (H) ROC curve 
of 15 hub genes. *P < 0.05, **P < 0.01, ***P < 0.001. 
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F-DEGs and H-DEGs. The results showed that  

EGR2 was significantly negatively correlated with 

IDH1 (r = -0.68), PEX3 (r = -0.68), and EMC2  

(r = -0.71) (all p < 0.05) (Figure 10E). Turning  

to H-DEGs, we observed a significant positive 

correlation between MYH11 and PSMA4 (r = 0.64,  

p < 0.05). In addition, EGR2 was negatively correlated 

with all H-DEGs, especially COPB2 (r = -0.82,  

p < 0.01), YKT6 (r = -0.85, p < 0.001), PSMD6 (r = -

0.79, p < 0.01), and PSMD14 (r = -0.79, p < 0.01) 

(Figure 10F). 

Validation of the DEGs and immune infiltration 

 

According to the computerized tomography (CT)  

scan, we could visually compare the degree of adipose 

infiltration and ocular muscle hypertrophy between the 

TED and normal groups. Patients with TED had obvious 

eye muscle hypertrophy and ocular exophthalmia  

(Figure 11A) compared with normal people (Figure 11B). 

 

We further examined the expression of F-DEGs,  

H-DEGs, and T-DEGs in the periorbital adipose tissue. 

 

 
 

Figure 9. Immune infiltration analysis. (A) Accumulative immune cell concentrations in the TED and normal groups; (B) Analysis of 
different immune cell infiltration between TED and normal groups; (C) Correlation analysis of immune cell infiltration in the TED group;  
(D) Correlation analysis of immune cell infiltration in the normal group; (E) Correlation analysis between F-DEGs and immune cells;  
(F) Correlation analysis between 15 hub genes and immune cells. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 10. Screening of DEGs in thyroid. (A) Box plot of gene expression in TED-related datasets; (B) Screening of DEGs in thyroid 

samples; (C) Venn diagram of interaction among TED-related datasets and ferroptosis-related genes; (D) DEG expression levels between TED 
and normal groups; (E) Correlation analysis between DEGs in thyroid and F-DEGs; (F) Correlation analysis between DEGs in thyroid and hub 
genes. *P < 0.05, **P < 0.01, ***P < 0.001. 
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A total of 23 pairs of samples from patients with TED 

and normal controls were collected for qPCR validation. 

The expression of APOD, COPB2, MYH11, and MYCN 

in TED tissues was higher than that in normal tissues  

(all p < 0.001), as supported by qPCR (Figure 11C). 

Consistent with this result, WB further corroborated  

the higher expression of these four genes in TED than  

in normal tissues, with a significant difference (all  

p < 0.001) (Figure 11D). 

 

We also employed IHC to investigate the infiltration of 

immune cells in periorbital adipose tissue. According to 

 

 
 

Figure 11. Imaging analysis and experimental validation. (A) CT images of patients with TED; red arrow: thickened rectus oculi and 
protruding bulbus oculi; (B) CT images of normal people; (C) qPCR for expression validation of the DEGs between TED and normal groups;  
(D) WB for expression validation of the DEGs between TED and normal groups. qPCR, quantitative polymerase chain reaction; WB, western 
blot. *P < 0.05, **P < 0.01, ***P < 0.001. 
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the degree of staining in the cytoplasm and nuclei,  

we observed obviously upregulated expression of  

CD4, CD8, and CD19 in TED compared with normal 

tissues (all p < 0.05) (Figure 12A–12C). However,  

no significant differences in the expression of CD20, 

Foxp3, CD25, and PC1 were observed between the 

TED and control groups (all p > 0.05) (Figure 12D–

12G). 
 

DISCUSSION 
 

TED, as a common disease closely related to auto-

immune thyroid disease, seriously affects the physical 

and mental health of patients [54]. In severe cases,  

people can even become disabled due to compression 

optic neuropathy or corneal decompensation [55, 56]. 

The pathogenesis of TED involves the deposition of 

hyaluronic acid and de novo synthesis of fat, resulting in 

orbital tissue expansion, muscle hypertrophy, and orbital 

inflammation caused by infiltration of various immune 

cells. Unfortunately, there is no cure for TED. Existing 

treatments, including high-dose glucocorticoid shock and 

orbital radiotherapy, have limited ability to alleviate the 

inflammatory reaction in the acute stage of the condition 

and are unable to rectify the long-term sequelae of the 

illness [57]. With the deepening of our understanding of 

the molecular pathways involved in the development of 

TED, targeted therapy is expected to become a new 

method for the treatment of TED. However, except for 

teprotumumab [58], there has been no breakthrough in 

this area of research. Currently, numerous studies have 

provided extensive evidence indicating that ferroptosis 

not only serves as a crucial factor in the onset and 

advancement of various cancers [59–62] but also actively 

contributes to the development, progression, and 

prognosis of several major chronic diseases [63–65]. 

This regulated cell death process, driven by lethal lipid 

peroxidation, participates in various cellular metabolic 

processes and disease-related signaling pathways, 

playing an essential role in tumor suppression, immune 

surveillance, and ischemia-reperfusion injury, among 

others [66]. Despite this, the mechanism of ferroptosis 

in TED remains a mystery. The accompanying study 

may reveal a possible link between ferroptosis and  

the emergence of TED, along with novel diagnostic 

indicators or therapeutic targets to address this gap.  

In the current work, we discovered ferroptosis- 

related DEGs in TED patients and built corresponding 

diagnostic prediction models through deep machine 

learning for the first time. Subsequently, we performed 

enrichment analyses on F-DEGs using GO/KEGG, 

GSEA, and GSVA, which indicated that the relevant 

 

 
 

Figure 12. Immunohistochemical validation of immune cell infiltration. Identifying the differences in immune cell biomarkers and 

their presence in periorbital adipose tissue of thyroid ophthalmopathy patients and normal controls (x200). (A) CD4; (B) CD8; (C) CD19; (D) CD 
20; (E) Foxp3; (F) CD25; (G) PC1. *P < 0.05, **P < 0.01, ***P < 0.001. 
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molecular mechanisms were mainly focused on protein 

processing and transportation and hereditary material 

processing. Additionally, we employed WGCNA for 

modularization analysis of DEGs and obtained H-DEGs, 

which were completely different from F-DEGs. A PPI 

network was established, and the excellent diagnostic 

performance of H-DEGs was verified. Through immune 

infiltration analysis, special immune cells infiltrated in 

TED patients were identified, as were their potential 

correlations with the specific DEGs. Moreover, we 

conducted correlation analysis between T-DEGs, F-

DEGs, and H-DEGs and found that EGR2 was highly 

negatively correlated with several DEGs in lacrimal 

gland samples. Adipose tissues from TED patients were 

also retrieved for further exploration and validation of 

DEG expression and immune cell infiltration. 

 

In contrast to a previous bioinformatic study [22], our 

research integrated two TED-related datasets with batch 

effect removal to screen out brand-new DEGs. For the 

first time, 11 ferroptosis-related DEGs were identified 

as being involved in the occurrence and advancement  

of TED. After analyzing the expression level of every 

F-DEG, it was observed that all of them exhibited 

reduced expression in the TED group compared to the 

normal group, except MYCN (Figure 3A). We also 

revealed for the first time that these genes had an  

above-average diagnostic performance for TED (Figure 

3B). While univariate analysis suggested that MYCN 

may be an effective diagnostic factor for TED (OR = 

14.831, p = 0.005) (Figure 3C), the results of the 

multivariate analysis did not provide further validation. 

It is necessary to further validate its clinical value by 

expanding the sample size. Additionally, using machine 

learning, we constructed two pioneering ferroptosis-

related diagnostic prediction models. Both of them  

were certified to be highly accurate and robust, with 

outstanding performance on clinical decisions (Figure 

4). However, more clinical data should be incorporated 

for further validation of the reliability and precision  

of these models. Due to the lack of relevant data on 

prognosis and treatment, this study did not delve deeply 

into the clinical application of ferroptosis in TED 

therapy. However, we have planned to collaborate with 

more clinical centers and establish animal models to 

facilitate the feasibility of clinical translation practices. 

 

According to reported studies, MYCN mutations have 

been strongly linked to neuroblastoma by upregulating 

the expression of the iron import transferrin receptor 

and targeting the Xc- system/glutathione (GSH) 

pathway [67, 68]. CDH1 is associated with colorectal 

cancer through its involvement in the E-cadherin-NF2-
Hippo-YAP signaling pathway [66, 69]. MDM4 is 

implicated in breast cancer by negatively regulating 

p53 and influencing the stress response [66, 70]. 

Additionally, IDH1 is involved in cholangiocarcinoma 

by inducing the GPX4-regulated ferroptosis pathway 

[66, 71, 72]. In addition to these well-established classic 

ferroptosis pathways, our study identified an innovative 

finding that F-DEGs were involved in molecular 

pathways of protein processing and transportation. This 

discovery suggests a potential interaction between the 

ferroptosis mechanism and protein processing in TED 

patients. Based on the regulated nature of the iron death 

mechanism, we propose that all cellular activities, 

including cell proliferation, metabolism, and material 

transportation, are subject to its regulation. However, 

the precise regulatory relationship, participating 

pathways, and core targets require further experimental 

validation. Our results, which are consistent with prior 

research, also imply an essential role of intracellular 

protein processing in TED progression. Our study is  

the first to propose the involvement of ribosome- 

related mechanisms and ATP synthesis coupled electron 

transport pathway in TED, with potential shared 

mechanisms with neurodegenerative diseases such as 

Alzheimer’s disease. 

 

Although some PSMD family genes were reported to  

be correlated with TED [22], we discovered a more 

comprehensive TED-related hub gene set (including six 

PSMD family genes) through WGCNA. Each of the H-

DEGs’ diagnostic values was evaluated, and the ROC 

curves demonstrated their excellent performance for the 

first time (Figure 8H). 

 

According to our knowledge, this study is the initial 

examination of the infiltration of immune cells in  

TED patients’ lacrimal gland tissues. According to  

the CIBERSORT algorithm, the TED group had a 

higher infiltration level of B cells, CD8 T cells, and 

Tregs but a lower infiltration level of plasma cells  

and CD4 T cells (Figure 9B). Positive correlations 

between M1 macrophages and naive B cells, activated 

mast cells and resting NK cells, and resting mast cells 

and M2 macrophages, as well as a negative correlation 

between resting memory CD4 T cells and plasma cells, 

were observed (Figure 9C). Potential correlations 

between F-DEGs and H-DEGs and immune cells were 

also analysed. Our analysis revealed a significant 

negative correlation between CDH1 and resting mast 

cells (p < 0.001), while a significant positive correlation 

was observed between CDH1 and CD8 T cells (p < 

0.01). Additionally, we found a significant positive 

correlation between MDM4 and NK cells resting (p < 

0.01) (Figure 9E). Although previous studies have 

suggested that the immune system may participate in 

tumor or inflammatory processes through certain key 
nodes of the ferroptosis pathway, the exact mechanisms 

remain unclear. Importantly, our study presents novel 

findings, as we are the first to propose the involvement 
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of the immune system in the pathogenesis of 

autoimmune disease (TED) through potential nodes  

of the ferroptosis pathway. Hence, it is necessary to 

enlarge the sample for further validation and in-depth 

mechanism mining. 

 

Moreover, we innovatively assessed the potential 

correlations between the DEGs from two different 

target organs of TED patients (thyroid and lacrimal 

glands). EGR2, which originated from the thyroid 

sample, was considered to be significantly negatively 

correlated with several DEGs from the lacrimal gland 

sample. In further basic experiments, we obtained 

consistent expression results for four DEGs (APOD, 

COPB2, MYH11, and MYCN) in the periorbital 

adipose tissue of TED patients by qPCR and WB. 

According to the IHC results, we speculated that CD4 T 

cells, CD8 T cells, and B cells infiltrated more in the 

periorbital adipose tissue of TED patients than in those 

of normal people. 

 

This is the first study to include the three TED effector 

organs for a comprehensive multidimensional interaction 

analysis. In our seminal work, we used more scientific 

data processing methods to uncover new biomarkers 

and potential therapeutic targets. Previous studies [18, 

22, 73] only focused on DEG screening in a single type 

of tissue. The results of their analyses were superficial 

and unconvincing to some extent due to a lack of 

external validation. The biggest highlight of our research 

is that diversified analytical and validation methods 

were employed to connect the internal links of the  

three target organs and revealed four novel DEGs co-

expressed in three different tissues of TED patients. 

 

Unfortunately, the study did not include the three  

target organ samples from the same individual, which 

somewhat reduced the validity and homogeneity of  

the study. The main reason for this dilemma was the 

difficulty of human sample acquisition. We envision 

improving the reliability and homogeneity of our 

findings by constructing a TED animal model in the 

future. Another main weakness of this study was the 

paucity of the sample size. Due to the niche nature of 

TED, it is difficult to obtain enough clinical samples in 

the short term. In the future, we can further incorporate 

more clinical centers or build animal models to expand 

the sample size. Third, the study did not further explore 

and verify the mechanisms and pathways between target 

organs, novel DEGs, and immune cells due to expense 

limitation. The inclusion of an external validation 

cohort and conducting multiple functional experiments 

are crucial for our research. The former will enhance  
the robustness and generalizability of the findings, 

while the latter will provide a deeper understanding  

of the unknown molecular mechanisms. We propose 

multidisciplinary collaboration and further fundamental 

experiments in the future to fill the gaps in this field. 

Despite its limitations, this study certainly adds to  

our understanding of TED pathogenesis. This work 

offers valuable insights for exploring novel targets and 

immune infiltration in TED. 

 

The present study was conducted to extensively search 

for more valuable biomarkers and comprehensively 

evaluate the state of immune infiltration in TED  

to uncover new therapeutic approaches. The most 

obvious finding to emerge from this study was the 

discovery of previously unidentified biomarkers, 

namely, F-DEGs, H-DEGs, and T-DEGs, and the 

validation of the co-expression of APOD, COPB2, 

MYH11, and MYCN in three distinct target organs. 

Additionally, the study also revealed a strong 

correlation between TED pathogenesis and several 

types of immune cells, including CD4 T cells, B cells, 

and CD8 T cells. Collectively, these findings indicate 

that ferroptosis, along with immune injury induced by 

T lymphocytes and B lymphocytes, could potentially 

be the pivotal mechanisms implicated in TED 

pathogenesis. This work contributes to broadening the 

understanding of the molecular mechanisms underlying 

TED and suggests two primary areas of investigation, 

namely, ferroptosis and immune infiltration, as 

prospective focal points for further studies. The results 

of this research provide an experimental foundation  

for future investigation into the potential connection 

between ferroptosis, immune infiltration, and TED 

through a network pathway. Additionally, it illuminates 

the progress of novel treatment objectives for TED. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. Baseline characteristics of 23 samples in TED group (1). 

Supplementary Table 1. Baseline characteristics of 23 samples in TED group (2). 

 

Supplementary Table 2. Baseline characteristics of 23 samples in normal group. 

No. ID Gender Age Surgery Eye EP CT 

1 21004076 F 56 Orbital fracture repair OD 11-112-14 Fracture of medial orbital wall 

2 21002345 M 65 Orbital fracture repair OD 12-105-16 Fracture of inferior orbital wall 

3 21003038 F 36 Orbital fracture repair OS 14-104-12 Fracture of medial orbital wall 

4 20049698 F 36 blepharoplasty OD / / 

5 21005477 F 40 Orbital fracture repair OD 14-106-16 Fracture of inferior orbital wall 

6 21003596 M 37 Orbital fracture repair OS 16-106-14 Fracture of medial orbital wall 

7 21000884 F 43 blepharoplasty OS / / 

8 21004349 M 41 Orbital fracture repair OS 15-110-13 Fracture of medial orbital wall 

9 21002403 F 52 blepharoplasty OD / / 

10 21008886 F 32 Orbital fracture repair OD 14-108-16 Fracture of medial orbital wall 

11 20050052 F 23 blepharoplasty OS / / 

12 21006940 M 28 Orbital fracture repair OS 15-104-12 Fracture of medial orbital wall 

13 21008307 M 77 Orbital fracture repair OD 13-110-16 Fracture of medial orbital wall 

14 21008395 M 33 Orbital fracture repair OD 17-120-19 Fracture of inferior orbital wall 

15 20051723 M 60 Orbital fracture repair OS 15-109-12 Fracture of inferior orbital wall 

16 21022414 M 37 Orbital fracture repair OD 15-118-18 Fracture of inferior orbital wall 

17 21018808 M 50 Orbital fracture repair OS 20-115-19 Fracture of medial orbital wall 

18 21023630 M 52 Orbital fracture repair OD 18-117-16 Fracture of inferior orbital wall 

19 21028737 F 58 blepharoplasty OS / / 

20 21029104 F 65 blepharoplasty OD / / 

21 21042246 F 56 blepharoplasty OD / / 

22 21014687 F 58 blepharoplasty OS / / 

23 21020717 F 52 blepharoplasty OS / / 

F, female; M, male; OD, Oculus Dexter; OS, Oculus Sinister; OU, Oculus Uterque; EP, eyeball protrusion. 
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Supplementary Table 3. Basic information of primary antibodies for WB and IHC. 

 No. Target Company Product code Species 

WB 1 APOD-33KD Proteintech 10520-1-AP Rabbit 

2 COPB2-102KD ABclonal A21294 Rabbit 

3 MYCN-50KD Proteintech 10159-2-AP Rabbit 

4 MYH11-200KD Proteintech 21404-1-AP Rabbit 

IHC 1 CD8 Monoclonal antibody Proteintech 66868-1-Ig Mouse 

 2 CD4 Monoclonal antibody Proteintech 67786-1-Ig Mouse 

 3 CD19 Monoclonal antibody Proteintech 66298-1-Ig Mouse 

 4 CD20 Monoclonal antibody Proteintech 60271-1-Ig Mouse 

 5 Anti-FOXP3 [236A/E7] Abcam Ab20034 Mouse 

 6 IL-2RA/CD25 antibody Affinity AF7675 Rabbit 

 7 PC1 antibody Affinity DF14432 Rabbit 

WB, western blot; IHC, immunohistochemistry. 
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