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INTRODUCTION 
 

Gastric cancer (GC) remains one of the most prevalent 

malignant tumors, with the fifth highest incidence  

and mortality rate worldwide [1]. It is assumed that 

more than one million new cases are diagnosed each 

year and the 5-year survival rate is only 20% [2, 3]. 

The most general type is stomach adenocarcinoma 

(STAD) [4]. While endoscopic treatment or surgery 

can potentially cure patients in early disease stages, 
adjuvant therapy is recommended for late-stage 

patients who have undergone prior surgery and have 

pathological T3 or T4 lesions or positive lymph  

node lesions [5, 6]. However, the survival rate of 

STAD patients in late stages has remained stagnant 

despite the limited progress made in radiotherapy, 

chemotherapy, and surgery [4]. For this reason, it is 

critical to exploit new predictive models to raise the 

survival rate of STAD patients. 

 
The tumor microenvironment (TME), made up  

of stromal cells, immunocytes, cytokines, blood 

vessels, and the extracellular substratum, acts as an 

important part of the invasion and progress of tumors, 
significantly affecting the efficacy of immunotherapy 

[7, 8]. T cells, which recognize and assemble tumor 

antigen-MHC complexes via T cell receptors, have 

been shown to be the essential element of antitumor 
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ABSTRACT 
 

Background: Gastric cancer (GC) is a leading reason for the death of cancer around the world. The immune 
microenvironment counts a great deal in immunotherapy of advanced tumors, in which T cells exert an 
indispensable function. 
Methods: Single-cell RNA sequencing data were utilized to characterize the expression profile of T cells, 
followed by T cell-related genes (TCRGs) to construct signature and measure differences in survival time, 
enrichment pathways, somatic mutation status, immune status, and immunotherapy between groups. 
Results: The complex tumor microenvironment was analyzed by scRNA-seq data of GC patients. We screened 
for these T cell signature expression genes and the TCRGs-based signature was successfully constructed and 
relied on the riskscore grouping. In gene set enrichment analysis, it was shown that pro-tumor and suppressive 
immune pathways were more abundant in the higher risk group. We also found different infiltration of immune 
cells in two groups, and that the higher risk samples had a poorer response to immunotherapy. 
Conclusion: Our study established a prognostic model, in which different groups had different prognosis, 
immune status, and enriched features. These results have provided additional insights into prognostic 
evaluation and the development of highly potent immunotherapies in GC. 
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immunity, with chimeric antigen receptor (CAR) T 

cell therapy having been clinically demonstrated  

to be an effective immunotherapy [9–11]. Immune 

checkpoint inhibitors (ICIs) have already been 

extensively applied, with anti-cytotoxic T-lymphocyte-

associated antigen (CTLA)-4 and anti-programmed 

death-protein (PD)-1 being the most common. In 

advanced GC patients, it has been shown to be a 

potentially effective therapeutic measure to target  

the PD-1/programmed death-ligand 1 (PD-L 1) axis 

[12, 13]. Nevertheless, just a fraction of STAD patients 

react to ICIs, and some even experience adverse 

effects [14, 15]. However, there are relatively few 

well-rounded structural molecular analyses of T cells 

in STAD, so we took T-cell-related genes into account 

to explore further possibilities for gastric cancer 

treatment by examining the immune landscape. 

 

Single-cell RNA sequencing (scRNA-seq) techniques 

can potentially supply single-cell genetic analysis  

data and reveal different immune subpopulations in  

the TME, creating unprecedented opportunities for 

immunotherapy and targeted therapies against cancer 

[16]. Through integration of scRNA-seq and batch 

RNA-seq data, several studies have successfully 

developed new prognostic models for cancer [17– 

19]. Our study used scRNA-seq to synthesize T cell-

related genes (TCRGs) data from STAD patients and 

construct a prospective signature on the basis of  

these genes, which can serve as a reliable prognostic 

biomarker, guiding the development of novel 

chemotherapeutic and immunotherapeutic approaches. 

We further analyzed the differences in survival  

status, TME, tumor mutational load (TMB), and  

drug sensitivity between different risk groups. New 

approaches to accommodate the heterogeneity and 

immune landscape in the clinical management of 

tumors are suggested in our discovery. 

 

RESULTS 
 

Analysis of immune microenvironment and 

establishment of T cell expression profile 
 

Data of scRNA-seq for this study were obtained from 

29 gastric cancer tissue samples with strict quality 

control, and 117,916 cells were retained. Meanwhile, 

we appointed “Harmony” R package to eliminate the 

batch effect of scRNA-seq data, eliminating batch 

differences due to different patients (Figure 1B).  

After log-normalization and dimensionality reduction, 

a total of 21 single-cell subclusters were obtained 

(Figure 1A). Then, the “findallmarkers” function  
was applied to screen the highly expressed genes 

specific to each subcluster, and displayed the top five 

genes (Figure 1D). Based on the characteristic genes 

screened above and the classic markers of cell 

subclusters, a total of 12 subclusters were identified 

(Figure 1C, 1E). The “featureplot” function was used 

to display the expression of classic T cell genes to 

more accurately define T cell subsets (Figure 1F). 

Notably, we identified that multiple cell types were  

in a “transformed” state, such as “pericyte−fibroblast 

transition”, “epithelial−mesenchymal transition” and 

so on. In consequential cell communication studies, we 

found these cells in a transformed state had complex 

intercellular communication with T cells in the TME 

(Figure 1G). By reusing the “findallmarkers” function, 

we identified 1343 signature genes expressed by T 

cells. We then examined differentially expressed genes 

(DEGs) from normal tissues and tumors in the TCGA-

STAD cohort (Figure 2A). Altogether, 9,574 up- and 

764 down-regulated genes were ascertained. Using the 

Venn diagram, between tumor and normal tissues  

we screened 332 TCRGs variably expressed (Figure 

2B). We carried out Gene Ontology (GO) analysis  

and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathway enrichment (Supplementary Figure 

1) to probe the biological features of the genes. KEGG 

pathway enrichment showed involvement in apoptosis, 

mRNA surveillance pathway, and IL-17 signaling 

pathway (Figure 2C). Through GO analysis, they were 

found to mainly involve leukocyte cell-cell adhesion, 

regulation of T cell activation, and nuclear periphery 

(Figure 2D). 

 

Construction of the six-gene prognostic signature 

based on TCRGs 

 

Supplementary Table 1 provides patient grouping 

information for TCGA modeling set and GSE62254 

validation set. For constructing a prognostic signature 

based on TCRGs, TCGA-STAD cohort is our training 

set. First, univariate Cox analysis was performed on 332 

TCRGs, revealing 16 TCRGs significantly associated 

with prognosis (Supplementary Table 2), with 9 high- 

and 7 lower risk genes (Figure 2E). The survival curve 

analysis of these 16 TCRGs indicated that higher risk 

TCRGs delivery was adversely associated with 

prognosis (P < 0.05) (Figure 2F, 2G; Supplementary 

Figure 2). Next, 16 TCRGs were submitted to LASSO 

cox regression analysis based on the optimal lambda 

value, resulting in the selection of 12 genes for further 

analysis (CTLA4, PDE3B, ZFP36, LBH, BCL11B, 

TAP1, TMC6, SAMD3, CMTM3, RGS2, SPATA13, 

ST8SIA4) (Figure 3A, 3B). At last, six most predictive 

genes (Supplementary Table 3) were obtained with 

stepwise multivariate Cox regression analysis. Using 

correlation coefficients, we developed a model as 
follows: risk score per patient = (−0.408 × CTLA4 

expression) + (0.245 × PDE3B expression) + (0.177 × 

ZFP36 expression) + (−0.364 × BCL11B expression) + 
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(0.472 × SAMD3 expression) + (0.362 × CMTM3 

expression). The STAD patients were grouped into 

high- and lower risk groups according to neutral values 

in the training and validation set, which was assessed by 

ranking high to low risk score. 

Validation and independent predictive effect of the 

signature 

 

We estimated the prospective meaning of the TCRGs 

signature. Supplementary Figure 3A, 3B demonstrates 

 

 
 

Figure 1. Analyzing the immune microenvironment. (A) Visualization of 21 subclusters based on UMAP algorithm. (B) Display of 

distribution of cells from different patients after removing batch effects. (C) Mark cell subclusters based on Top 5 genes and classic markers. 
(D) A heatmap showing the performance of the top five genes for each subclusters. (E) Display of gene expression in different subclusters 
based on classical cell markers. (F) The “featureplot” function describing the allocation of immune cell marker genes and T cell signature 
genes in the UMAP dimensionality reduction map. (G) Based on “cellchat” to display the signal strength of intercellular communication. 
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the six modeled gene expression levels in two  

groups, while Supplementary Figure 3C, 3F shows 

survival status and distribution. The K-M curve 

showed that the lower risk group also had a 

significantly longer survival time (P < 0.001) (Figure 

3C, 3F). Model prediction accuracy was assessed 

using receiver operating characteristic (ROC) curves 

yielding the area under the curve (AUC) of 0.655, 

0.742, and 0.739 for 1-, 3-, and 5-year survival in  

the training set (Figure 3D) and 0.645, 0.632, and 

0.625 in validation set (Figure 3G). Obviously, a 

moderately accurate signature based on TCRGs was 

developed. The clinical characteristics and riskscore  

of the training group were submitted to univariate  

and multivariate Cox regression analyses to further 

explore the independent promotional value of riskscore. 

We discovered a significant association between 

riskscore and overall survival (OS) (Figure 3L) as an 

individual promotional factor (hazard ratio: 1.639, 

95% CIs: 1.411–1.905, P < 0.001) (Figure 3E, 3H). 

This finding was confirmed in the validation group 

(hazard ratio: 1.565, 95% CIs: 1.259–1.944, P < 

0.001) (Supplementary Figure 3G, 3H). 

 

Prediction of nomogram 

 

We structured a nomogram to quantify clinical 

outcomes in STAD patients, which can predict 

survival by combining riskscore and clinical traits 

(Figure 3I). The calibration curve indicated a high 

concordance that exists in the predicted and respected 

values (Figure 3L). The decision curve analysis (DCA) 

curve showed the optimal clinical net benefit of the 

nomogram (Figure 3J), and ROC curve displayed its 

prediction accuracy (Figure 3K). In summary, the risk-

constructed nomogram is more accurate than single 

factors for predicting prognosis in clinical settings. 

 

Gene set enrichment analysis (GSEA) 

 

We conducted GSEA to measure functional variations 

in prognostic markers between two groups (Figure 4A). 

 

 
 

Figure 2. Functional enrichment and preliminary filters for TCRGs. (A) Volcano map of DEGs in TCGA-STAD cohort. (B) Venn 

diagram, (C) KEGG pathway analysis and (D) GO analysis of differentially expressed TCRGs. (E) Univariate Cox analysis of 16 prognosis-
related TCRGs. K-M curves of single prognostic genes, such as (F) BCL11B and (G) PDE3B. 
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Six pathways, including the cancer pathways, PTEN, 

TGF-β and WNT signaling pathway, were more 

abundant in higher risk group. This observation 

suggests a greater abundance of pro-oncogenic 

pathways and immune pathway suppression in higher 

risk group, leading us to examine of immune related 

differences between the two groups further. 

Evaluation of TME and immune-related genes 

 

ESTIMATE could assess stromal and immune cell 

scores. The heatmap revealed differences in TME 

between two groups (Figure 4B), while the violin plot 

showed higher stromal score and ESTIMATE score 

in higher risk group, but no remarkable difference in 

 

 
 

Figure 3. Prognostic signature and nomogram construction. (A, B) LASSO regression analysis. (C, F) K-M and (D, G) ROC curves for 

training and validation set. Clinical characteristics and riskscore of training set for (E) univariate and (H) multivariate Cox analyses. 
(I) Construction of nomogram. (J) DCA curves for nomogram at 1-year, 3-year, and 5-year. (K) ROC curves of nomogram, risk and clinical 
traits at 1-year, 3-year, and 5-year. (L) Calibration curves for nomogram. 
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immune score (Figure 4F). Stromal score and riskscore 

were found to be positively correlated by correlation 

analysis, but ImmuneScore was not correlated (Figure 

4J). Cibersort profiling of 22 immune cells revealed 

higher expression of B cells memory, CD4+ T cells 

memory activated, Dendritic cells activated, and 

Eosinophils in lower risk group, while macrophage  

M2 and mast cells in high-risk group (Figure 4C). 

Comparing the exposure levels of nine immune 

checkpoints, the expression of all checkpoints was 

higher in lower risk group except for HAVCR2,  

while PD-L1 and CD40 was not statistically different

 

 
 

Figure 4. GSEA and TME analysis. GSEA and TME analysis. (A) Gene set enrichment analysis. (B) Heatmap shows risk and immune-

related functions relationship. Differential expression of (C) 22 immune-associated cells, (D) immune checkpoint-associated genes,  
(E) HLA-associated genes, (F) stromal, immune and ESTIMATE scores, and (K) cytokine-related genes in two groups. Correlation of riskscore 
with (G) immune cells, (H) checkpoint-related genes, (I) HLA-related genes, (J) stromal score. (L) T cells initiate cytokine signal exchange 
between cells. (M) T cells receive cytokine signals to terminate intercellular signal communication. 
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(Figure 4D). Human leukocyte antigen (HLA)- 

related gene expression was also higher in lower risk 

group (Figure 4E). We then correlated riskscore and 

immune cells, immune checkpoints, HLA (Figure 4G–

4I), and found negative correlations except for positive 

correlations between riskscore and mast, M2 cells, 

HAVCR2 immune checkpoints. We concluded that it 

is possible that lower risk group has superior prognosis 

following immunotherapy. Furthermore, we compared 

common cytokine expression levels, to find that 

IL21R, IL1R2, IL27RA, and IL2RG expressed higher 

levels in lower risk group (Figure 4K). Cellchat analysis 

based on scRNA-seq data revealed that the WNT 

pathway and interleukin chemokine Dun cytokines 

play significant roles in the complex communication 

between T cells and other cell types within the GC 

immune microenvironment (Figure 4L, 4M). 

 

Gene mutation analysis 

 

We analyzed the TMB of STAD patients and 

identified TTN, TP53, MUC16, ARID1A, and LRP1B 

as top 5 mutations in both groups (Figure 5A, 5B). 

Lower risk group had higher TMB (Figure 5D).  

Figure 5F shows that TMB was negatively associated 

with riskscore. In addition, patients with higher TMB 

had a better prognosis, as shown in Figure 5C (p = 

0.017). We also observed that the best prognosis was 

observed in the lower risk + higher TMB group, while 

the worst prognosis was observed in the higher risk + 

low-TMB group (Figure 5E). Further analysis revealed 

a significant correlation between low riskscore and  

MSI-L status, high riskscore and MSS status (Figure 

5G, 5H). 

 

Prediction of immunotherapy response 

 

The tumor immune dysfunction and exclusion (TIDE) 

and The Cancer Immunome Atlas (TCIA) scores were 

used to assess immunotherapy and immune escape  

in TCGA-STAD cohort. For all four scores, including 

TIDE, a poorer response to immunotherapy was 

surveyed in patients in higher risk group (Figure 6A–

6D). TCIA was employed to predict susceptibility to

 

 
 

Figure 5. Characteristics of somatic mutations. Somatic mutations in different risk groups. (A) Higher risk and (B) lower risk. 

(C) Survival analysis of low and high tumor mutation burden (TMB). (D) Comparison of TMB levels. (E) Survival analysis of samples grouped 
with both risk and TMB. (F) Relevance between riskscore and TMB. (G, H) Relevance between riskscore and MSI. 
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immunotherapy. Outcomes revealed the expression  

of ips-ctla4-pos-pd1-pos, ips-ctla4-pos-pd1-neg, ips-

ctla4-neg-pd1-neg, and ips-ctla4-neg-pd1-pos were 

higher in lower risk patients (Figure 6E). It indicated 

that the lower risk samples had better efficacy, 

regardless of CTLA 4 and PD-1 status. Then, we 

compared the accuracy of risk, TIDE score, and 

immune tumor infiltrating lymphocytes (TIL) score in 

predicting prognosis, and the TCRGs signature had the 

highest predictive accuracy (Figure 6F). 

 

Drug susceptibility analysis 

 

To ascertain the medical meaning of this signature, we 

also sought to determine the 50% maximum inhibitory 

concentration (IC50) levels of chemotherapeutic drugs 

(Figure 6G). Lower risk patients were found to have  

a lower IC50 for both chemotherapy and targeted 

medications such as 5-Fluorouracil, Camptothecin, 

Cisplatin, Cyclophosphamide, Cytarabine, Epirubicin, 

Gemcitabine, Irinotecan, Oxaliplatin, and Vincristine. 

Therefore, the developed model could serve as a 

predictor for selecting anti-cancer drugs. 

DISCUSSION 
 

Accelerated advancement of scRNA-seq technology 

has resulted in an increasing number of studies 

exploring the structural characterization of TME  

[20, 21]. Immune cell regulation, particularly T cell 

activation and suppression, is strikingly shaping the 

control of diverse immune responses within TME  

[22, 23]. T cells occupy an important part in TME and 

are involved in immune escape and tumor progression 

[24]. Cancer immunotherapy using ICIs has become  

an effective therapy for tumor treatment; however, one 

of the reasons for its poor efficacy is the presence  

of immunosuppressive mechanisms in TME that 

diminish the effector function of CD8 tumor-infiltrating 

lymphocytes (TILs) [25], and T-cell up-regulation of 

PD-1 has become a major marker of T-cell dysfunction 

[26]. This study was designed to bioinformatically 

analyze the sc-RNA-seq spectrum of gastric cancer 

and identify TCRGs in gastric cancer tumor tissues. 

We resolved the gastric TME, analyzed multiple  

cell subtypes in the transformed state, anatomized  

the interaction of T cells with other cells in the

 

 
 

Figure 6. Immunological evaluation and drug sensitivity analysis. (A–D) TIDE, dysfunction, exclusion and MSI Expr Sig scores 
compared between two groups. (E) TCIA for predicting sensitivity to immunotherapy. (F) ROC curves comparing risk, TIDE, and TIS at OS. 
(G) Correlation between riskscore and chemotherapeutic sensitivity. 
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microenvironment, and identified T cell-specific gene 

expression. We then mined the TCGA database and 

developed a prognostic signature of six genes with 

fully validated predictive power in the GEO cohort. 

Subsequently, we noticed immune cell infiltration, the 

expressions of immune checkpoints and HLA were 

more abundant in the lower risk samples, and the 

response to immunotherapy was notably outperformed. 

In this research, a new prognostic model for gastric 

cancer was established based on T-cell-related genes 

in TME, which provides a theoretical basis for judging 

the efficacy of immunotherapy and developing new 

immunotherapy targets. 

 

The prognostic signature of this study consisted of six 

TCRGs, including CTLA4, PDE3B, ZFP36, BCL11B, 

SAMD3, and CMTM3. CTLA-4 is a crucial adverse 

regulator in T cell responses, operating to maintain the 

tolerance of T cells to a self-antigen [27]. CTLA-4 

limits the initiation of nascent T cells of lymphoid 

through B7 interactions, and Anti-CTLA-4 monoclonal 

antibodies (mAbs) exert immunotherapeutic effects 

mainly by depleting regulatory T (Treg) cells in  

TME and blocking transendocytosis of B7 in dendritic 

cells (DCs) [28, 29]. PDE3B functions importantly in 

regulating energy metabolism, particularly regulating 

compartmentalized cyclic adenosine monophosphate 

(cAMP)-signaling pathways [30], and its downstream 

enzyme, which breaks down triglycerides into fatty 

acids and glycerol, is associated with cAMP levels and 

lipolytic activity [31]. ZFP36 autonomously regulates 

the early activation kinetics of T cell by inhibiting  

the expression of activation markers, limiting T  

cell expansion and promoting apoptosis to inhibit 

enrichment and transformation of mRNA targets [32, 

33]. CL11B binds directly to Id2 and represses it, a 

gene that encodes an E protein antagonist, to facilitate 

effector CD8 T cell expansion, memory formation and 

cytotoxic functions, and to promote and regulate NK 

cells differentiation [34]. SAMD3 engages in cell cycle 

control and also has the ability to bind to RNA and 

lipids, contributing to memory differentiation in CD8  

T cells and is also highly expressed in NK cells [35]. 

CMTM3 is a neoplasm inhibitory gene that inhibits  

the tumorigenicity of GC cells mediated by epidermal 

growth factor receptor (EGFR) by increasing the 

activity of Rab5. CMTM3 knockdown promotes GC 

metastasis through the STAT3/Twist1/EMT signaling 

pathway [36]. The TCRGs model established in this 

study provides a possible molecular mechanism to 

further study the clinical aspects of STAD. 

 

Further validation of the prognostic model 
performance built on six TCRGs was tested in the 

GEO cohort. Consistent results were observed across 

two lineups, indicating that the signal had good 

robustness and repeatability. We also setup a 

nomogram, and used AUC curves, calibration curves, 

and DCA curves to visualize and test the accuracy  

of the predictions. Consequently, the nomogram can 

direct the development of personalized predictive 

models of STAD patients. Performing GSEA analysis 

on signature genes identified immune and tumor 

pathways can be enrolled markedly. Following  

this, we aimed to reveal the differential immune 

infiltration patterns screened by immune-related 

features. The relationship between riskscore and TME 

was investigated. First, higher risk group had higher 

stromal score and ESTIMATE score. Subsequently,  

22 levels of immune cell infiltration demonstrated  

a greater proportion of activated memory CD4+ T 

cells, memory B cells, activated Dendritic cells, and 

Eosinophils in lower risk patients, indicating that a 

relatively active antitumor immune response may be 

present [37]. It was noted that higher risk group had 

more resting Macrophages M2 and Mast cells, and 

high macrophage infiltration rates can lead to poor 

prognosis in gastric cancer [38], and it has been shown 

that macrophages can significantly promote gastric 

cancer metastasis by enhancing the EMT process  

[39]. Several common immune checkpoints (CD274, 

CTLA-4, LAG3, PD-CD1, ATIC) were identified to 

be highly expressed in low-risk populations for better 

clinical application of ICI. HLA acts as an antigen 

presenting factor regulating immune response in 

gastric cancer [40]. Lower risk group had higher 

expression of HLA-related genes, indicating a more 

active local immune response. We conclude that lower 

risk group had greater likelihood of benefiting from 

immunotherapy. Analysis of TMB revealed a higher 

tolerance in lower risk group and a meaningful 

association between low riskscore and MSI-L status, 

which is consistent with our previously obtained 

findings. Finally, to study sensitivity to chemothera-

peutic agents for clinical application, we performed 

pharmacosensitivity analysis in different risk groups 

and detected that 5-Fluorouracil, Camptothecin, 

Cisplatin, Cyclophosphamide, Cytarabine, Epirubicin, 

Gemcitabine, Irinotecan, Oxaliplatin and Vincristine 

had lower IC50. 

 

Although this study developed a novel and validated 

prognostic model, it still exists a few limitations. First, 

our study is a retrospective survey conducted on public 

database and should be prospectively and multi-center 

verified, in addition to validation or research with  

our own sequencing data. We identified six genes that 

were highly correlated with prognosis, and explored 

the biological significance, and we will further  
analyze their downstream mechanisms by means of 

immunohistochemistry and animal experiments in the 

future to explore how TCRGs affect TME and thus 
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prognosis. In addition, T-cells include exhausted  

T-cells, tissue-resident T-cells and other subtypes, and 

we plan to further subdivide the cell subtypes and 

explore the expression of these gene markers in them 

and the biological functions they play, so as to further 

explore the potentials of these gene markers, as well as 

the signature, in immunotherapy, in order to develop 

more targeted therapeutic agents for gastric cancer. 

 

Collectively, we combined RNA-seq data to develop  

a prognostic signature based on TCRGs as well  

as discussing the differences of TME, TMB, and  

drug sensitivity in two groups, thus providing novel 

perspectives for further treatment of STAD clinically. 

 

MATERIALS AND METHODS 
 

Data collection 

 

Data were collected from various databases. The 

single-cell sequencing data for 29 primary gastric 

adenocarcinoma samples were derived from the GEO 

database (GSE183904). Clinical dataset and genomic 

details of STAD patients were derived from 379 tumor 

samples and 34 normal samples in The Cancer 

Genome Atlas database (TCGA). After removing 

tumor samples without survival information, 367 

tumor samples were used. Additionally, GSE62254  

(n = 300) was downloaded in the GEO database to 

verify the predictive capability of the signature. We 

corrected for abiotic bias with “ComBat” algorithm of 

“sva” package between different datasets [41]. 

 

Characterizing T-cell marker genes with scRNA-seq 

data 

 

We analyzed scRNA-seq data with “Seurat” R 

package. Initially, we used the “Seurat” R package  

to read 10 × Genomics single cell sequencing data  

and create Seurat objects. We did quality check by 

removing cells expressing fewer than 100 genes or 

more than 5% mitochondrial genes. Only genes  

that are expressed in a minimum of three single  

cells were preserved. Then, we used the function 

“NormalizeData” to normalize the scRNA-seq results 

and the function “FindVariableFeatures” to identify 

the upper 2000 high variant genes. Next, perform 

principal component analysis (PCA) by applying 

“RunPCA” function, and the first 30 dimensions  

were selected to decrease the dimensionality of 

scRNA-seq data for the upper 2000 genes. Then we 

removed batch effects for 21 samples using the 

“RunHarmony” function. We clustered single cells 

into different subgroups by “FindNeighbors” and 

“FindClusters” functions (dim = 50 and resolution = 

0.5). We performed uniform manifold approximation 

and projection (UMAP) to visualize the clustering 

units at the two-dimensional level. After annotating by 

classical cell subpopulation marker genes, DEGs were 

counted for each cluster with the Wilcoxon-Mann-

Whitney test employing the “FindAllMarkers” function 

in the “Seurat” package. Cut-off thresholds were 

adjusted for p-values < 0.01 and |Log2(foldchange)| > 

1 to determine the maker genes. 

 

Cell communication analysis 

 

The “cellchat” function was applied to analyze the 

complex intercellular communication network in the 

TME. We used the major signal inputs as well as the 

major signal outputs of cell subpopulations in the TME 

from its built-in database, and the “netVisual_circle” 

function to visualize the strength of the intercellular 

communication network between the target cell cluster 

and other cell clusters throughout the TME. 

 

TCGA data analysis and functional enrichment 

 

DEGs were accessed with “limma” package  

[42]. The threshold used was FDR < 0.05 and 

|Log2(foldchange)| > 1. Venn diagrams were then used 

to identify TCRGs with differential expressions. For 

GO analysis and KEGG pathway analysis [43, 44], we 

employed “ClusterProfiler”, “org.Hs.eg.db”, “GOplot”, 

and “enrichplot” packages. 

 
Establishment and confirmation of prognosis 

signature 

 
Initially, the differential expressions of TCRGs were 

analyzed by single factor Cox regression (p < 0.05) 

and we drew Kaplan-Meier curves for each gene, 

which was gained from the “survival” and “survminer” 

packages. LASSO Cox regression using the “glmnet” 

package (p < 0.05) was done to prevent overfitting. 

Optimal λ was chosen to eliminate similar genes. Next, 

a signature of TCRGs was developed by stepwise 

multivariate Cox regression analysis, resulting in 

riskscore for each patient = βgene1 × Expgene1 + 

βgene2 × Expgene2 + ⋯ + βgenen × Expgenen. 

Patients were divided into high-risk and low-risk 

groups in terms of median riskscore. We performed 

survival analysis with the Kaplan-Meier method, 

comparing the diversity of OS between the two groups 

using the long rank test. For drawing ROC curves  

and computing the AUC, we used the “survivalminer” 

and “survivalROC” packages. The TCRGs signature 

was verified in 300 STAD cases in GSE62254, and 

riskscore was derived for every sample considering the 

identical equation. Again, to affirm the predictive power 

of the feature, survival analysis and ROC curves were 

plotted. 
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Establishment and verification of nomogram 

 

Utilizing clinical features and TCRGs signature, a 

nomogram was created with “rms” package to estimate 

the 1-, 3-, and 5-year survival rate. A score for each 

variable was assigned by the nomogram scoring system 

and they were combined to obtain the total score for  

a single sample [45]. The signature’s precision was 

measured by calibration curves as well as ROC curves, 

while net clinical benefit was assessed using DCA 

curves [46]. 

 

Gene set enrichment analysis 

 

Functional and pathway variations between risk  

groups were studied by GSEA [47]. GSEA software 

(http://software.broadinstitute.org/gsea) was used for 

loading GO and KEGG gene sets, as well as phenotype 

tag expression files. The threshold was P < 0.05 and 

FDR < 0.25 to make significance. 

 

Assessment of tumor immune microenvironment 

 

Evaluation of stromal and immune cells within the 

tumor tissue was performed with “estimation” package 

to determine immune score, interstitial score, estimated 

score and tumor purity in STAD patients [48]. Heatmap 

was generated utilizing the “pheatmap” package. The 

CIBERSORT algorithm [49] was applied in order to 

acquire the infiltrative characteristics in 22 types of 

immune cells, while we employed the single sample 

GSEA (ssGSEA) to determine the activity of immune 

cells and immune functions in each sample. The 

expression of immune checkpoints and HLA-related 

genes were compared between two groups with 

Wilcoxon test, and correlations between immune cells, 

immune checkpoints, HLA-related expression and risk 

scores were analyzed. 

 

Analysis of TMB 

 

TMB is meant to be the count of somatic mutations, 

insertions and deletions in the coding regions of the 

genome per million bases. We obtained patient 

somatic cell mutation data in TCGA-STAD cohort. 

TMB was computed for each sample, and “maftools” 

package was deployed for the visualization of somatic 

mutation patterns [50]. K-M curves were applied  

to assess the diversity of OS between different risk 

groups. The association between TMB and riskscore 

was also evaluated. 

 

Immune status in risk groups and drug sensitivity 

 

The TIDE website (http://tide.dfci.harvard.edu)  

features the TIDE score files, which were assessed 

immunotherapy and immune escape in STAD patients 

[51]. We analyzed the immune genome and obtained 

the immune treatment scoring file with the TCIA online 

platform (https://tcia.at/home) [52]. The variation 

between different groups for these scores was then 

analyzed. We also used the “pRRophetic” software 

package [53] to calculate chemotherapy response with 

IC50. 
 

Statistical analysis 
 

Statistical analyses were performed by R software 

version 4.2.0 (http://www.R-project.org). The levels of 

significance had the following annotations: *P < 0.05, 
**P < 0.01, and ***P < 0.001. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Functional enrichment for differentially expressed TCRGs. Concentric circle diagram of KEGG pathway 

analysis and GO analysis. 
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Supplementary Figure 2. K-M curves of single prognostic genes. 
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Supplementary Figure 3. Survival status in different groups and independent prognostic analysis in GSE62254. Heatmap for 

the expression characteristics of 6 modeled genes in (A) training set and (B) validation set. Distribution of riskscore in (C) training set and 
(D) validation set. Distribution of each patient’s OS in (E) training set and (F) validation set. (G) Univariate and (H) multivariate Cox analysis 
of clinical characteristics and risk in validation set. 
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Supplementary Tables 
 

Supplementary Table 1. Clinical subgroup statistics in TCGA-STAD cohort and GSE62254 cohort. 

Covariates Type Total Test Train 

Age ≤65 340 (50.45%) 172 (57.33%) 168 (44.92%) 

 >65 333 (49.41%) 128 (42.67%) 205 (54.81%) 

 Unknown 1 (0.15%) 0 (0%) 1 (0.27%) 

Gender Female 238 (35.31%) 101 (33.67%) 137 (36.63%) 

 Male 436 (64.69%) 199 (66.33%) 237 (63.37%) 

Stage Stage I 82 (12.17%) 30 (10%) 52 (13.9%) 

 Stage II 210 (31.16%) 97 (32.33%) 113 (30.21%) 

 Stage III 248 (36.8%) 96 (32%) 152 (40.64%) 

 Stage IV 111 (16.47%) 77 (25.67%) 34 (9.09%) 

 Unknow 23 (3.41%) 0 (0%) 23 (6.15%) 

T T1 21 (3.12%) 0 (0%) 21 (5.61%) 

 T2 266 (39.47%) 186 (62%) 80 (21.39%) 

 T3 259 (38.43%) 91 (30.33%) 168 (44.92%) 

 T4 118 (17.51%) 21 (7%) 97 (25.94%) 

 Unknown 10 (1.48%) 2 (0.67%) 8 (2.14%) 

M M0 609 (90.36%) 273 (91%) 336 (89.84%) 

 M1 50 (7.42%) 27 (9%) 23 (6.15%) 

 Unknown 15 (2.23%) 0 (0%) 15 (4.01%) 

N N0 150 (22.26%) 38 (12.67%) 112 (29.95%) 

 N1 231 (34.27%) 131 (43.67%) 100 (26.74%) 

 N2 153 (22.7%) 80 (26.67%) 73 (19.52%) 

 N3 123 (18.25%) 51 (17%) 72 (19.25%) 

 Unknown 17 (2.52%) 0 (0%) 17 (4.55%) 

 

 

Supplementary Table 2. Univariate Cox analysis of differentially expressed TCRGs. 

ID HR HR.95L HR.95H p-value 

TSC22D3 1.247390192 1.04160897 1.49382574 0.016254411 

CTLA4 0.802257011 0.656394473 0.980532802 0.031398933 

PDE3B 1.312037635 1.030111424 1.671122866 0.027784017 

ZFP36 1.237549084 1.003282025 1.526517667 0.046528572 

LBH 1.46803763 1.177382365 1.830445697 0.000648292 

PBX4 0.709013423 0.525328668 0.956924806 0.02459099 

BCL11B 0.753106303 0.580945207 0.976286743 0.032258763 

TAP1 0.818587069 0.688308638 0.973523725 0.023613337 

TMC6 0.751788032 0.572525375 0.987179382 0.040091219 

TSEN54 0.705467152 0.515530036 0.965382943 0.029249701 

SAMD3 1.554138556 1.03674294 2.329744969 0.032788817 

NR4A3 1.239645941 1.043627503 1.472481372 0.014436362 

CMTM3 1.419781294 1.148138597 1.755693022 0.001216714 

RGS2 1.337070239 1.133311226 1.577463262 0.000574322 

SPATA13 0.753666261 0.573484162 0.990459492 0.042485568 

ST8SIA4 1.314191148 1.013241283 1.704528233 0.039484618 
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Supplementary Table 3. Multivariate Cox analysis of TCRGs after LASSO analysis. 

ID coef HR HR.95L HR.95H p-value 

CTLA4 −0.407822177 0.665097138 0.524167061 0.843918353 0.000788661 

PDE3B 0.245124841 1.277780823 0.975172663 1.674292045 0.075462413 

ZFP36 0.176830915 1.193429285 0.95400983 1.492933733 0.12165874 

BCL11B −0.363514764 0.695228463 0.527431354 0.916408575 0.009898316 

SAMD3 0.472144543 1.603429132 1.011571712 2.541574611 0.044545882 

CMTM3 0.362024675 1.436234381 1.152730895 1.789462923 0.0012516 
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