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ABSTRACT 
 

Aims: This study aimed to evaluate the effects of VC on SIMI in rats. 

Methods: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were 
randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The 
animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, 
myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6, IL-10 and TNF-α) in serum were 
measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, 
autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. 

Results: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and 
myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And 
compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased 
the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased 
phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/β in SIMI rats. High dose VC increased the 
expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. 
Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group.  

Significance: Our results showed that high dose VC has a good protective effect on SIMI after continuous 
treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy 
through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.  
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INTRODUCTION 
 

Although the international consensus on sepsis defines 

the current concept of sepsis, the current definition of 

sepsis is still controversial. It has become a common 

understanding that sepsis can cause damage to vital 

organs and further aggravate the condition [1–3]. The 

heart is an important organ vulnerable to attack after the 

onset of sepsis, and studies have shown that the 

mortality of patients with myocardial damage caused by 

sepsis is significantly increased [3, 4]. However, the 

mechanism by which sepsis-induced myocardial injury 

(SIMI) remains unclear [5, 6]. Our previous studies 

have also demonstrated that autophagy and apoptosis 

play key roles in the occurrence and development  

of SIMI [7]. The PI3K/AKT/mTOR [8], MAPK [9]  

and NF-κB [10] and pathways regulate various 

biological responses, including proliferation, autophagy, 

inflammation, and apoptosis [11–15]. Inhibition of 

PI3K/AKT/mTOR signaling pathway can enhance 

autophagy and thus reduce oxidative stress and 

apoptosis in LPS -induced sepsis [16]. Additionally, 

inhibition of NF-κB and MAPK mediated the anti-

inflammatory and anti-apoptotic effects, thereby 

protecting the heart from LPS-induced injury [17]. 

These results suggest that the PI3K/AKT/mTOR, 

MAPK and NF-κB signaling pathways can be used to 

treat SIMI. 

 

As a micronutrient, Vitamin C (Figure 1B) has shown 

great potential in the adjuvant therapy of critically ill 

patients [18, 19]. A study showed that VC in sepsis 

attenuated oxidative stress and inflammation, improved 

vasopressor synthesis, enhanced immune cell function 

and improved endovascular function, which may 

become standard of care for the treatment of sepsis [20]. 

But several studies have shown that taking VC has no 

beneficial effect on sepsis patients [21, 22]. Therefore, 

this paper is to study the efficacy and specific 

mechanism of high dose VC alone in sepsis.  

 

In this study, SIMI models 1d, 3d and 5d after surgery 

were constructed by CLP, and high-dose VC was given 

for treatment, so as to observe the effect of VC on SIMI 

after continuous treatment and explore the specific 

mechanism of action. 

 

RESULTS 
 

High-dose VC improved the survival rate and 

viability in CLP-induced sepsis rats 

 

To evaluate the effect of VC on the survival of mice 
after CLP, 7-day survival was assessed. Figure 1C 

shows that the survival rate in the CLP group dropped 

by approximately 20% at 2 days after surgery and 

continued to decline sharply, while the survival rate in 

the VC group dropped by about 10% at 3 days after 

surgery. The mortality rates at 7 days were 0%, 70% 

and 40% in the sham, CLP and VC groups, respectively. 

Compared with CLP group, the mortality of rats in VC 

group was significantly reduced (p < 0.05). VC 

prolonged the survival time. In addition, the results also 

showed that CLP-induced septic rats did not develop 

lethality within 2 days, and VC prolonged the survival 

time of lethal infection with CLP. The food intake, 

water intake, activity level and mental state of rats in 

the sham operation group returned to normal soon after 

operation. The rats in CLP group showed reduced water 

intake, reduced activity, eye oozing blood, poor mental 

state, slow reaction, inverted dorsal hair, tarnish, and 

reduced defecation, while the rats in VC group showed 

increased water intake, increased activity, mental 

activity, and no eye oozing blood. This result 

preliminarily confirmed the protective effect of VC on 

septic rats. Based on this result, high-dose VC (500 

mg/kg) was continued in the subsequent study. 

 

High-dose VC relieved the cardiac function in CLP-

induced sepsis rats 

 

To assess the effect of the cardiac function after CLP, 

Echocardiography, H&E Staining, transmission electron 

micrographs and the serum necrosis makers in rats were 

assessed at 1 day, 3 days and 5 days.  

 

To investigate whether high-dose VC relieved cardiac 

function in rats with SIMI, we performed LVEF and 

LVFS by Echocardiography at 1 day, 3 days and 5 days. 

As in Figure 2A–2C, LVEF and LVFS in CLP group 

were significantly lower than those in sham group (p < 

0.05), while administration of high-dose VC increased 

LVEF and LVFS in dose-dependent manner, indicating 

that high-dose VC cloud improve cardiac function in 

rats with sepsis. 

 

H&E staining indicated that striation of the myocardium 

was clear, the cells were arranged neatly, and the 

myocardial structure was normal in the sham group at 

different time gradients. On the contrary, the CLP group 

had obvious inflammatory cell infiltration, abnormal 

myocardial cell structure, interstitial edema, unclear 

myocardial fiber texture and local necrosis. With the 

prolongation of exposure time to CLP, the degree of 

cardiac tissue damage in septic rats was gradually 

aggravated. High-dose VC can significantly improve 

the above obstacles, indicating that high-dose VC cloud 

improve myocardial histopathological changes in sepsis 

rats. (Figure 2D). 

 

We further evaluated the expression of myocardial 

enzymes in rats. Figure 2E–2G showed that the
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expression levels of myocardial enzymes (cTn, CK, and 

LDH) were significantly increased with the increase of 

postoperative time of CLP compared with Sham group, 

while the expression levels of myocardial enzymes 

could be decreased after VC treatment. It is worth 

noting that there is no significant difference between 

CK level at 1 day and 5 day and LDH level at 1 day. 

The change of CK level in CLP group and VC group 

was time dependent, but the other two indexes were not. 

 

These results demonstrated that Cardiomyocytes in 

CLP-induced sepsis rats showed obvious myocardial 

injury characteristics after polymicrobial sepsis 

stimulation in a time-dependent manner, and high-dose 

VC has a protective effect on SIMI in rat. 

 

High-dose VC inhibited the myocardial cell 

apoptosis in CLP-induced sepsis rats 

 

The extent of apoptosis could prove the injury 

characteristics of cardiomyocytes. Then, we 

investigated whether administration of therapy of  

high-dose VC could influence apoptosis process  

during sepsis at 1 day, 3 days and 5 days.

 

 
 

Figure 1. (A) The whole process of drug administration in animal experiments. (B) The chemical structure of VC. (C) The survival rate of 
high dose VC for SIMI was evaluated within 7 days. 

6939



www.aging-us.com 4 AGING 

Caspase‑3 activity, Cleaved-caspase 9, Cleaved-caspase 

3, Bcl-2 and Bax expression were examined to confirm 

apoptosis using western blot. As Figure 3B–3F, 

compared with the sham group, Cleaved-caspase 9, 

Cleaved-caspase-3 (except for 1d) and Bax expression 

were increased in myocardial tissue of CLP group rats, 

whereas these were elevated by therapy of high-dose 

VC (Cleaved-caspase-3 and Cleaved-caspase 9 except

 

 

 
Figure 2. High-dose VC relieved the myocardial dysfunction in CLP-induced sepsis rats at 1d, 3d and 5d. (A–C) 

Echocardiographic image of each group of rats. LVEF and LVFS were quantified via echocardiography. (D) Myocardial injury was detected by 
H&E staining. (E–G) Myocardial injury markers in serum, cTnI, CK, and LDH were detected to visualize myocardial injury using a fully 
automated biochemical analyzer. Data are expressed as mean ± SD (at least n = 6/group), #p < 0.05 (vs. Sham group), *p < 0.05 (vs. CLP 
group). 
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for 1d). Conversely, therapy of high-dose VC increased 

the expression levels of Bcl-2 (except for 1d). 

Following, TUNEL staining results also showed that 

VC staining decreased cardiomyocyte apoptosis rate 

(p < 0.05) (Figure 3A). The above results indicated that 

CLP led to cardiomyocyte apoptosis in a time-

dependent manner and high-dose VC attenuated septic 

rats’ cardiomyocyte apoptosis. 

 

High-dose VC attenuated the inflammatory response 

in CLP-induced sepsis rats 

 

Figure 4A–4D shows that with the increase of time after 

CLP, the expression of inflammatory factors (IL-6,  

IL-1β, IL-10 and TNF-α) in the serum of rats is 

significantly increased, and the expression level of such 

inflammatory factors (IL-6, IL-1β and TNF-α) can be 

reversed to a certain extent after VC treatment, in 

addition, VC further improves the expression level of 

IL-10. 

To elucidate whether the inhibition of the secretion of 

inflammatory mediators by high-dose VC was mediated 

through MAPK and NF-κB signaling pathways, MAPK 

(i.e., P38, Erk1/2 and JNK) and NF-κB (i.e., NF-κB and 

IKK α/β) signaling molecules at 1 day, 3 days and  

5 days were measured by western blot, respectively. 

Figure 4E–4J indicated that compared to the sham 

group, the CLP induced a strong phosphorylation of 

P38, Erk1/2, JNK, NF-κB and IKK α/β (JNK and  

NF-κB except for 1d) in a time-dependent manner (p < 

0.05), and these (NF-κB except for 1d) were decreased 

by high-dose VC (p < 0.05). The five proteins in VC 

group seemed to be obviously lower than these in CLP 

group (p < 0.05). 

 

High-dose VC enhanced the cardiomyocyte 

autophagy in CLP-induced sepsis rats 

 

The ratio of LC3II to LC3I was positively correlated 

with autophagosome activity. Beclin-1 and LC3-II are

 

 
 

Figure 3. High-dose VC suppressed the cardiomyocyte apoptosis in CLP-induced sepsis rats at 1d, 3d and 5d. (A) Apoptotic 

cells were detected by TUNEL staining. (B–F) Representative images of Caspase‑3 activity, Cleaved-caspase 3, Cleaved-caspase 9, and Bax 
and Bcl-2 expression were examined by western blot and the fold activation data analysis. Data are expressed as mean ± SD (at least  
n = 6/group), #p < 0.05(vs. Sham group), *p < 0.05 (vs. CLP group). 
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regarded as a negative regulator of autophagic activity. 

Conversely, P62 plays a crucial role inhibiting 

autophagy. To investigate the effect of high-dose VC on 

cardiomyocyte autophagy during sepsis, the protein 

expression of Beclin-1, and P62 and the LC3-II/LC3-I 

ratio in different groups were measured by western blot 

at 1 day, 3 days and 5 days. Figure 5A–5D showed that 

the expression level of the protein LC3-II/LC3-I ratio 

and Beclin-1 in a time-dependent manner were 

importantly decreased, while compared with the sham

 

 
 

Figure 4. High-dose VC attenuated the inflammatory response in CLP-induced sepsis rats at 1d, 3d and 5d. (A–D) The serum 

inflammatory cytokines (i.e., TNF-α, IL-1β, IL-6, and IL-10) in serum were measured by ELISA. (E–J) Representative images of 
phosphorylation levels of P38, Erk1/2, JNK, NF-κB and IKK α/β were examined by western blot and the fold activation data analysis. Data 
are expressed as mean ± SD (at least n = 6/group), #p < 0.05 (vs. Sham group), *p < 0.05 (vs. CLP group). 
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group, the expression level of P62 in the myocardium of 

septic rats was significantly increased at different time 

points. But, compared with CLP group, high dose VC 

treatment significantly increased myocardial LC3-

II/LC3-I ratio and Beclin-1 protein expression level, and 

decreased myocardial P62 expression. These results 

showed that CLP led to the diminution of cardio-

myocyte autophagy and high-dose VC boosted septic 

rats’ autophagy. 

 

High-dose VC inhibited the PI3K/AKT/mTOR 

signaling pathway in CLP-induced sepsis rats 

 

To further investigate the effect of high-dose VC on 

autophagy and apoptosis pathways, the effect of 

PI3K/AKT/ mTOR signal pathway in high-dose VC-

treated CLP-induced sepsis rats was assessed (Figure 

6A–6D). Western blot results demonstrated that CLP 

increased the phosphorylation of PI3K (except 1 days), 

AKT (except 5 days) and mTOR in different time 

points. Conversely, high-dose VC obviously decreased 

phosphorylated PI3K, AKT (except 1 days) and mTOR 

in CLP-induced sepsis rat cardiomyocytes at three 

points in time (p < 0.05), but it did not affect the 

phosphorylation of PI3K and AKT at 1 day. None of  

the groups affected the expression levels of total  

PI3K, AKT or mTOR. Further immunofluorescence 

experiments of P-PI3K (Figure 6F) and P-AKT (Figure 

6E) were consistent with the results of Western blot. 

The above results suggested that over time, high-dose 

VC protects SIMI in rats by gradually enhancing the 

inhibition of PI3K/AKT/mTOR signaling pathway. 

 

DISCUSSION  
 

Vitamin C (VC) has gone through centuries from 

knowledge, isolation and use [23]. With the in-depth 

study of VC, VC as an antioxidant is known to us, and 

has become an indispensable nutrient for the human 

body [24–26]. The effectiveness and safety of 

intravenous VC in the treatment of sepsis has been 

controversial. Several meta-analysis studies [27–29] 

consistently showed that VC administration was not 

associated with lower mortality, but one of the studies 

also showed that patients may benefit if VC is 

administered for more than 3–4 days [28]. Other studies 

have found that high-dose IV VC monotherapy or in 

combination with standard therapy appeared safe, may 

be associated with improved mortality [18, 30]. The 

present study revealed that after 7 days of continuous 

treatment with high-dose VC, the mortality of sepsis 

rats decreased significantly, which may provide a 

reasonable start for sepsis treatment. Of course, there 

were some limitations to the results due to the small 

number of animals. Therefore, further studies are 

needed to identify subgroups of patients who may 

benefit from intravenous supplementation with high 

dose VC. What’s more, pathologically, VC deficiency 

presents as scurvy, and subnormal plasma VC 

concentration is negatively correlated with the incidence 

 

 

 

 
Figure 5. High-dose VC enhanced the cardiomyocyte autophagy in CLP-induced sepsis rats at 1d, 3d and 5d. (A–D) 

Representative images of LC3-II/LC3-I ratio and the expression of the proteins Beclin-1 and P62 were examined by western blot and the fold 
activation data analysis. Data are expressed as mean ± SD (at least n = 6/group), #p < 0.05 (vs. Sham group), *p < 0.05 (vs. CLP group). 
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of multiple organ failure in patients with sepsis [31]. It 

was found that VC-deficient mice were more likely to 

develop multiple organ dysfunction caused by sepsis, 

and intravenous VC administration alleviated the 

damage (lung, kidney, liver) [32]. It has been reported 

that VC has a beneficial effect on the heart in patients 

with sepsis [33]. Clinical trials have found that 

intravenous VC infusion is helpful in the treatment of 

multiple organ failure [34]. There was also data 

suggesting that VC alleviated LPS-induced SIMI [19]. 

We also studied the therapeutic effect of VC on CLP-

induced SIMI in rats. First, high-dose VC significantly 

improved the LVEF and LVFS after CLP in sepsis rats. 

Second, high-dose VC significantly relieved noticeable 

inflammatory cell infiltration, indistinct myocardial 

fiber texture and local necrosis in septic rats. Finally, 

high-dose VC significantly improved the myocardial 

injury markers (cTnI, CK, and LDH) in the serum of 

sepsis rats. Generally speaking, High-dose VC can 

reduce myocardial dysfunction in septic rats induced by 

CLP, but there are few studies on the mechanism of 

action of VC in sepsis. 

 

Inflammation and apoptosis are recognized as key 

pathophysiological phenomena in sepsis and SIMI at 

the cellular and molecular levels [7]. Many basic studies 

have indicated that regulate inflammation and apoptosis 

can reduce infectious cardiac insufficiency [35, 36]. 

Some studies have shown that VC could attenuate 

inflammation, oxidative damage, and apoptosis [37, 38]. 

However, whether high-dose VC can alleviate CLP-

induced SIMI by inhibiting suppressing inflammatory

 

 

 
Figure 6. High-dose VC inhibited the PI3K/AKT/mTOR signaling pathway in CLP-Induced sepsis rats. (A–D) Representative 

images of the phosphorylation of PI3K, AKT and mTOR were examined by western blot and the fold activation data analysis. (E, F) The 
expression of the proteins p-Akt and p-PI3K was examined by immunofluorescence assay. Data are expressed as mean ± SD (at least  
n = 6/group), #p < 0.05 (vs. Sham group), *p < 0.05 (vs. CLP group). 
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and apoptosis has not been studied at different points in 

time. TUNEL staining and expression of Cleaved-

Caspase 3, Bax, Cleaved-Caspase 9, and Bcl-2 

confirmed that VC significantly reduced cardiomyocyte 

apoptosis. Although at some point in time the protein 

expression did not achieve the desired effect, which 

may be the result of manipulation discrepancies or 

insufficient sample sizes, we were still able to generate 

the conclusion that high-dose VC treatment had a 

positive effect on the overall trend of CLP-induced 

cardiomyocyte apoptosis.  

 

During the occurrence and development of sepsis, over-

activated inflammatory response is an important reason 

for the aggravation of the disease [39–43]. MAPK and 

NF-κB signaling pathways were activated during SIMI 

and regulated inflammatory response and apoptosis 

[44–46]. Li et al. [47] found that Pinocembrin can 

reduce inflammatory damage by inhibiting p38/JNK 

MAPK signaling pathway, thus achieving the 

therapeutic effect of SIMI. In addition, Zhang et al. [48] 

found that L-carnitine could inhibit inflammation and 

apoptosis by regulating MAPK signaling pathway, thus 

achieving the therapeutic effect of SIMI. At the same 

time, our previous studies also showed that inhibiting 

inflammation and apoptosis by inhibiting NF-κB 

signaling pathway can also achieve the purpose of SIMI 

treatment [9]. Our study was consistent with that, the 

levels of p-JNK, p-Erk1/2, p-P38, p-NF-κB and p-IKK 

α/β were higher in sepsis and SIMI, indicating that 

MAPK and NF-κB were activated, while high-dose  

VC reversed their phosphorylation. In sepsis, studies 

have found that both anti-inflammatory and pro-

inflammatory cytokines are elevated in the early stage, 

and these inflammatory factors are helpful in judging 

the prognosis of sepsis [49]. The three major pro-

inflammatory cytokines TNF-α, IL-1β and IL-6 were 

not specific for sepsis and their primary role as 

biomarkers of sepsis appears to be prognostic rather 

than diagnostic [50]. It’s been found in patients with 

sepsis that those who die often have significantly 

elevated expression of inflammatory cytokines [51]. In 

critically ill hospitalized patients, the elevation of IL-10 

is very significant at an early stage [52]. In our study, 

the levels of IL-6 and IL-10 were also obviously higher 

in the CLP-induced group, which indirectly explains the 

high mortality in CLP-induced rats. And the levels of 

IL-1β and TNF-α were also importantly higher in the 

CLP-induced group. But high-dose VC significantly 

reversed the levels of TNF-α, IL-1β and IL-6, while 

raising anti-inflammatory cytokines IL-10 levels instead 

of lowering them. The plausible explanation for VC 

increasing IL-10 levels rather than decreasing them 
should be that IL-10 can reduce the production and 

activity of pro-inflammatory cytokines, thereby 

regulating the inflammatory response [53]. Our results 

suggest that high-dose VC can protect SIMI by 

regulating NF-κB and MAPK signaling pathways to 

inhibit apoptosis and inflammation. 

 

Sepsis induces autophagy in multiple organs [54–56], 

including the heart [57–59]. Investigations in vivo using 

a CLP sepsis model [60] and in vitro using cultured, 

LPS-induced cardiomyocyte injury [61] have showed 

that stimulation of autophagy can improve cardiac 

function, thus suggesting that autophagy pharma-

cologically protected the myocardium. Other studies 

have shown autophagy increased in the early stages of 

sepsis and subsequently decreased near advanced organ 

failure [62, 63]. Several basic studies [64–66] proposing 

various therapeutic approaches have identified 

improvements in SIMI by mediating autophagy. Beclin 

1 [67], LC3 [68] and P62 [69] have become markers of 

autophagy activity in current studies [70, 71]. In this 

study, LC3-II/LC3-I ratio and the expression levels of 

Beclin-1 in CLP-induced SIMI significantly decreased, 

while P62 significantly increased, indicating that 

autophagy was attenuated in SIMI and autophagy 

inhibition was linked to the onset and progression of 

CLP-induced SIMI. However, high-dose VC treatment 

reversed their results, which might be due to enhanced 

autophagy by high-dose VC treatment, thus protecting 

against SIMI. Therefore, a potential strategy to alleviate 

CLP-induced SIMI might be high-dose VC’s promotion 

of autophagy to eliminate cardiomyocyte inflammatory 

and apoptosis.  

 

Next, we further investigated the anti-apoptotic, anti-

inflammatory, and pro-autophagic cardioprotective 

effects of high-dose VC in sepsis, thereby exploring its 

potential protective mechanism against CLP-induced 

SIMI. The PI3K/AKT/mTOR has recently been shown 

to be a key pathway in the regulation of autophagy, 

inflammation, and apoptosis [72, 73]. In addition, the 

regulation of PI3K/AKT/mTOR pathway was closely 

related to the regulation of MAPK and NF-κB 

pathways. The PI3K/AKT signaling pathway plays a 

pro-inflammatory and anti-inflammatory role by 

activating NF-κB downstream of AKT to promote the 

production of pro-inflammatory cytokines [74, 75]. 

Some studies [76] found that after both MAPK and 

PI3K/AKT signaling pathways were activated by LPS, 

MAPK signaling was more prominent than PI3K/AKT 

signaling, which further increased apoptosis. Studies 

have shown that Beclin-1 signal activation can inhibit 

mTOR [77], enhance AMPK [78], and alleviate cardiac 

inflammatory injury during LPS-induced myocardial 

injury, indicating that Beclin-1 dependent autophagy 

plays a protective role in SIMI [61]. In our study, the 
phosphorylation of mTOR was consistently enhanced at 

three time points during SIMI, while the expression of 

mTOR phosphorylation was decreased after high-dose 
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VC treatment. Therefore, it is speculated that high-dose 

VC treatment enhances autophagy and inhibits the 

activation of mTOR. What’s more, in the treatment of 

sepsis, the PI3K/AKT/mTOR signaling pathway was 

described in two ways. The first one was that activation 

of PI3K/AKT/mTOR signaling pathway can improve 

sepsis-induced cardiac dysfunction [79, 80]. However, 

other studies have found that inhibition of PI3K/AKT 

signaling pathway has a protective effect on SIMI [76]. 

The difference in results may be related to the severity 

of the disease at the time of study and the duration of 

treatment. Meanwhile, blocking the PI3K/AKT/mTOR 

signaling pathway during sepsis triggers autophagy and 

blocks apoptosis [7]. A recent study showed that VC 

could protect against SIMI by inhibiting AKT/mTOR 

pathway activation and pyrodeath [81]. The present 

study discovered that the levels of p-AKT, p-PI3K and 

p-mTOR were elevated in SIMI rats, whereas high-dose 

VC reduced their phosphorylation levels, indicating that 

high-dose VC protected SIMI in rats by the inhibition of 

PI3K/AKT/mTOR signaling pathway, consistent with 

the latter view. Sum up, high-dose VC may potentially 

result in inhibition of the PI3K/AKT/mTOR pathway in 

sepsis, reducing myocardial apoptotic damage and 

inflammatory storm, increasing autophagy, and 

ultimately protecting the myocardium.  
 

In this study, SIMI was observed at 1d, 3d and 5d after 

CLP operation, and the treatment of SIMI was observed 

after high-dose VC treatment. Although these studies 

have important findings, there are limitations. It should 

be noted that we did not further investigate how high-

dose VC affects myocardial apoptosis, inflammation 

and autophagy during sepsis through MAPK, 

PI3K/AKT/mTOR and NF-κB pathways.  

 

CONCLUSION  
 

To sum up, CLP-induced myocardial injury and 

dysfunction were found to be time-dependent. In 

addition, our found that high-dose VC can resist CLP-

induced SIMI and protect myocardial cells by inhibiting 

apoptosis, inhibiting inflammation and enhancing 

autophagy mediated by MAPK, PI3K/AKT/mTOR and 

NF-κB signaling pathways (Figure 7). Therefore, we 

provide strong support for the putative mechanism of 

high-dose VC against CLP-induced SIMI, and also 

provide basic research evidence for the clinical use of 

high-dose VC in the treatment of sepsis. 

 

MATERIALS AND METHODS 
 

Animal experiment 
 

Sprague Dawley (SD) rats were randomly divided into 3 

groups (n = 18/group) (sham group, CLP group and VC 

group). Each group of rats was randomly divided into 

1 d, 3 d and 5 d group, which were treated with drug for 

1 d, 3 d and 5 d, respectively. At 1 hour after CLP or 

sham operation, the rats in VC group were given VC 

(Shandong Xinhua Pharmaceutical Co., Ltd. 500 mg/kg 

i.v.) by intravenous infusion, and the rats in sham 

operation group or CLP group were given the same 

amount of normal saline. The CLP surgical procedure 

was consistent with our previous study [7]. The entire 

process is shown in Figure 1A.  

 

Survival experiment  

 

According to the method of grouping in the previous 

experiment, the survival analysis experiment consisted 

of 10 rats per group. The surgical procedure is the same 

as the drug regimen. After the operation, the survival of 

rats was observed every 12 hours for a maximum of 

7 days. 

 

Echocardiography, H&E staining, ELISA, TUNEL 

staining and biochemical detection 

 

Echocardiography, H&E staining, TUNEL staining, 

ELISA (IL-1β, IL-6, IL-10 and TNF-α) and 

Biochemical Detection (cTnI, CK and LDH) assay were 

performed on days 1, 3, and 5, respectively. Details are 

provided in a previously published article [7]. 

 

Western blot 

 

The experimental procedures for total protein sample 

preparation, protein concentration detection, electro-

phoresis, membrane transfer, and blocking were as 

described in previous publications from our research 

group. Membranes were incubated with primary 

antibodies followed by secondary antibodies. The 

primary antibodies used were: P38 (cat. AF6456, 

1:1000), Erk1/2 (#4695, 1:1000), p-P38 (cat. AF4001, 

1:1000), p-Erk1/2 (#9101, 1:1000), JNK (cat. AF6318, 

1:1000), NF-κB (cat. AF5006 1:1000), p-JNK (cat. 

AF3318, 1:1000), p-NF-κB (cat. AF2006 1:1000),  

p-IKK α/β (cat. AF3013 1:1000), PI3K (cat. AF6241, 

1:1000), phosphorylated (p)-PI3K (cat. AF3241, 

1:1000), AKT (cat. AF6261, 1:1000), p-AKT (cat. 

AF0016, 1:1000), Cleaved-caspase 9 (cat. AF5240, 

1:1000), mTOR (cat. AF6308, 1:1500), P62 (cat. 

Ab91526, 1:1000), p-mTOR (cat. AF3308, 1:1500), 

Bax (cat. AF0120, 1:2000), Bcl-2 (cat. AF6139, 

1:2000), Cleaved-caspase 3 (cat. AF7022, 1:1000), 

Caspase 3 (cat. AF6311, 1:1000), Beclin 1 (cat. 

Ab62557, 1:1000), GAPDH (cat. T0004, 1:10,000) or 

LC3-Ⅰ/II (cat. Ab128025, 1:1000). GAPDH was used as 
the control for sample loading and integrity. p-Erk1/2 

and Erk1/2 antibodies were purchased from Cell 

Signaling Technology in America. All other antibodies
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were purchased from Affinity in China. Finally, the 

corresponding secondary antibodies (goat anti-rabbit 

(cat. S001, 1:10,000) or goat anti-mouse (cat. AS014; 

1:10,000, Abclonal)) were incubated according to the 

properties of the primary antibodies and exposed with 

ECL luminescent solution. ImageJ software was used 

for analysis. 

 

Immunohistochemistry (IHC) 

 

4 µm thick sections in HE were incubated with primary 

antibodies (p-AKT (Ser473, cat. AF0016, dilution, 

1:100) and p-PI3K (Tyr607, cat. AF3241, dilution, 

1:100)), and Goat anti-Rabbit lgG (cat. ZF-0516, 1:100) 

secondary antibodies were then incubated. Sections 

were then treated with streptavidin-horseradish 

peroxidase (DF7852, Shanghai Yaoyin Biotechnology 

Co., Ltd., Shanghai, China), stained with diamine 

benzidine and counterstained with hematoxylin.  

 

Statistical analysis 

 

All data were processed using SPSS 24.0 statistical 

software. The measured data are presented as mean ± 

SD (n = 6/group). The data between the two groups 

were analyzed by independent sample t-test. If the  

p-values were < 0.05, then the differences were 

considered statistically significant. The one-week 

survival rate was calculated and analyzed by Kaplan-

Meier. 

 

 
 

Figure 7. High-dose VC could mediate by inhibiting apoptosis and inflammatory, and promoting autophagy through 
regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway. 
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