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INTRODUCTION 
 

The advent of immune checkpoint blockade has 

markedly improved UC prognosis [1, 2]. Drugs like 

atezolizumab, durvalumab, avelumab, and nivolumab 

have received accelerated approval for UC’s second-

line treatment [3]. Current immunotherapies primarily 

target T cells in the immune microenvironment. The 

immune checkpoint blockade lifts the suppression  

on T-cells, restoring their ability to attack and kill 
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ABSTRACT 
 

Background: Dysregulation of the immune system and N6-methyladenosine (m6A) contribute to immune 
therapy resistance and cancer progression in urothelial carcinoma (UC). This study aims to identify immune-
related molecules, that are m6A-modified, and that are associated with tumor progression, poor prognosis, and 
immunotherapy response. 
Methods: We identified prognostic immune genes (PIGs) using Cox analysis and random survival forest variable 
hunting algorithm (RSF-VH) on immune genes retrieved from the Immunology Database and Analysis Portal 
database (ImmPort). The RM2Target database and MeRIP-seq analysis, combined with a hypergeometric test, 
assessed m6A methylation in these PIGs. We analyzed the correlation between the immune pattern and 
prognosis, as well as their association with clinical factors in multiple datasets. Moreover, we explored the 
interplay between immune patterns, tumor immune cell infiltration, and m6A regulators. 
Results: 28 PIGs were identified, of which the 10 most significant were termed methylated prognostic immune 
genes (MPIGs). These MPIGs were used to create an immune pattern score. Kaplan-Meier and Cox analyses 
indicated this pattern as an independent risk factor for UC. We observed significant associations between the 
immune pattern, tumor progression, and immune cell infiltration. Differential expression analysis showed 
correlations with m6A regulators expression. This immune pattern proved effective in predicting 
immunotherapy response in UC in real-world settings. 
Conclusion: The study identified a m6A-modified immune pattern in UC, offering prognostic and therapeutic 
response predictions. This emphasizes that immune genes may influence tumor immune status and progression 
through m6A modifications. 
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tumor cells, thereby curbing malignant tumor 

progression [4]. Despite this, studies indicate low 

positive response rates and emerging safety concerns, 

heightening the pharmaceutical industry’s interest in 

new immunotherapeutic targets [5, 6]. 

 

Increasing research reveals that m6A modification 

affects the response rate and drug resistance in 

immunotherapy [7, 8]. Aberrant m6A regulation  

often affects oncogenic and tumor-suppressing gene 

networks, modulating tumor immunogenicity, immune 

cell responses to tumors, and the tumor’s immune 

characteristics [9]. Research also shows that distinct 

m6A methylation patterns in the tumor micro-

environment significantly influence the tumor immune 

regulatory network, impacting tumor initiation, 

metastasis, and drug resistance [10–13]. Here we  

have many reasons to assume that m6A methylation 

can modulate molecular components within the 

immune regulatory network, leading to transcriptome 

landscape reprogramming and alterations of cells  

in the tumor microenvironment, thereby influencing 

UC’s progression, prognosis, and resistance [10– 

13]. Identifying immune-related genes significantly 

modified by m6A is essential for the development of 

effective therapies combining anti-m6A strategies with 

immunotherapy. 

 
Recent advancements in silicon-based methods, 

including machine learning and deep learning, have 

been instrumental in identifying biomarkers and 

molecular subtypes for diagnostic and prognostic 

purposes, and even in discovering new therapeutic 

targets [14]. This progress has helped to select patients 

who could maximize benefits while minimizing  

side effects and drug resistance [15]. Nevertheless, 

biomarker studies often suffer from inconsistency, 

mainly due to potential overfitting in silicon-based 

methods and the diverse nature of patient profiles  

[14], leading to issues in reproducibility and validation 

in independent datasets [16, 17]. 

 
Our study leveraged database analysis and machine 

learning technology to investigate molecular involvement 

in immune evasion. First, we retrieved immune-related 

molecules from the ImmPort [18] database, whose 

immune genes have been extensively researched in 

relation to the immune microenvironment, showing 

potential as immunotherapy targets. Then, by employing 

Cox proportional hazard models and an overfitting-

resistant algorithm, RSF-VH [19], designed for high-

dimensional variables like gene expression profiling,  

we identified an immune pattern significantly correlated 

with survival. To investigate whether prognostic 

immune-related genes indeed tend toward methylation, 

we utilized RM2Target [20], a comprehensive database 

for RNA modification targets, focusing on evidence 

from various experimental sources, to determine if 

immune genes of interest were significantly regulated 

by m6A modifiers. We also identified immune-related 

genes we were interested in with MeRIP-seq analysis, 

confirming their significant modification by m6A. Then, 

by ranking genes based on their importance values 

within this algorithm, we investigated the enrichment  

of m6A methylation in top importance immune genes. 

To ensure robust evidence, we explored this pattern’s 

associations with prognosis, progression, tumor immune 

cell microenvironment, and immune response in UC 

across multiple datasets. 

 

METHODS 
 

Materials 

 

The microarray expression profile data from GSE32894 

(N = 224), GSE32548 (N = 130), GSE13507 (N = 165), 

and GSE48075 (N = 73), along with demographic and 

clinical information, were downloaded from the Gene 

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 

database. The TCGA-BLCA (N = 404) cohort data  

were obtained from The Cancer Genome Atlas 

(https://portal.gdc.cancer.gov). RNA-seq data of 298 

advanced UC patients under atezolizumab monotherapy 

in the IMvigor210 trial, including best overall response 

(BOR) information, were sourced from published  

data [21]. Their corresponding clinical and survival 

information is summarized in Supplementary Table 1. 

Here, GSE32894 served as the training set for random 

survival forest analysis. GSE32894 was utilized as a 

training set for the machine learning method to uncover 

immune genes with the greatest impact on reducing 

survival in UC patients. TCGA-BLCA, GSE32548, 

GSE13507, and GSE48075 were employed as validation 

sets to confirm the clinical relevance of the identified 

key molecules within these datasets. Furthermore,  

the IMvigor210 dataset was used to explore whether  

the immune key molecules obtained could predict a 

patient’s response to immunotherapy in a real-world 

setting. The expression profiles in these datasets have 

all been standardized and normalized. 

 

A comprehensive list of 1534 immune genes  

were downloaded from the ImmPort [18] database 

(https://immport.niaid.nih.gov). Experimental results 

from perturbation tests and MeRIP-seq were obtained 

from RM2Target (http://rm2target.canceromics.org/)  

for investigating immune gene regulation by writer, 

eraser and reader (WERs). 5 pairs of fastq files from 

bladder cancer samples undergoing MeRIP-seq were 

downloaded from the Sequence Read Archive (SRA) 

database under project PRJNA733602 for comparing 

the differences in m6A methylation levels among PIGs. 
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RSF-VH and Cox proportional hazard model 

 

Univariate Cox regression analysis identified prognostic 

immune-related genes (p < 0.01) as seed genes 

(Supplementary Table 2). These genes are further 

selected in the Cox weighted RSF-VH algorithm to 

select prognostic immune genes (PIGs). In RSF-VH, 

parameters were set as follows: “nsplit” to 10, “nrep”  

to 100, “nstep” to 5, growing 1000 trees with a k- 

value of 5, as previously recommended [22, 23]. 5-fold 

cross-validation was applied to prevent overfitting. 

Collinearity issues were addressed by estimating the 

condition number, ensuring no collinearities among 

selected variables (Supplementary Table 3). 

 

Validation of m6A methylation in immune genes 

 

Using perturbation data from RM2Target, we 

intersected our immune genes of interest with those 

specifically detected for m6A methylation by the 

MeRIP-seq method. A hypergeometric distribution test 

was employed to determine whether genes deemed 

important in the random forest process were more  

likely to undergo m6A methylation by WERs. The top 

10 most significant prognostic immune genes were 

termed methylated prognostic immune genes (MPIGs). 

The WER-MPIG relationships were integrated into  

a regulatory network using the “igraph” package  

and visualized accordingly. For the MeRIP-seq data 

from PRJNA733602, peak calling was performed with 

MACS2, followed by peak overlapping and merging 

using “DiffBind” package, and quantitative and 

differential analysis of these regions was conducted 

using “limma” and “edgeR” packages. Differential 

methylated sites between normal tissue samples and 

bladder cancer samples were identified using a 

threshold of p < 0.05. 

 

From nonlinear models to linear risk scoring 

 

To address the poor variable interpretability of the 

nonlinear random forest model, a linear equation was 

employed: 

 
i Coefficient (MPIGs) Expression (MPIGs).  

 
Using this formula, each patient’s risk score was 

calculated. The median risk score served as a cutoff to 

classify patients into high-risk and low-risk groups. 

 
Nomogram 

 
A prognostic nomogram based on the MPIGs was 

established to predict the 1-year, 3-year, and 5-year 

disease-specific survival (DSS) in GSE32894, with 

calibration curves comparing model-predicted and 

actual DSS. The calibration curves for predicting the  

3-year and 5-year DSS using the nomogram were 

generated with the “calibrate” package in R. 

 
Multi-dataset analysis 

 
To obtain comprehensive and robust evidence, various 

statistical methods are employed to demonstrate  

the clinical relevance of MPIGs across multiple 

datasets, including GSE32894, GSE32548, GSE13507, 

GSE48075, and TCGA-BLCA. Kaplan-Meier analysis 

and log-rank test were employed to assess prognosis 

differences between risk groups. Patients’ death events 

were visualized on a risk score distribution using a  

dot plot. MPIGs were categorized as oncogenic or  

anti-cancer molecules, with their expression levels 

visualized using a heatmap across datasets. Univariate 

and multivariate Cox regression analyses determined 

the prognostic predictive ability of MPIGs and their 

independent predictive power for Overall Survival (OS) 

or DSS amidst other clinical factors. Seven Cox 

proportional hazards models using MPIGs predicted 

DSS in GSE13507, GSE32548, GSE32894, GSE48075, 

and OS in GSE13507, GSE48075, TCGA-BLCA 

datasets and their performances were evaluated using 

the concordance index (C-index). Violin plots with the 

Wilcoxon test showed associations between risk scores 

and clinical factors significantly affecting prognosis  

in univariate Cox regression analysis. Differential 

expression analysis between high-risk and low-risk 

groups explored the relevance between MPIGs and 24 

well-known m6A methylation regulators. 

 
Comparison of MPIGs with classical immune 

checkpoints and potential therapeutic targets 

 
Receiver operating characteristic curves (ROC curves) 

were used to determine the prognostic value of  

the risk score compared to several other classical 

immune checkpoints and therapeutic targets. In the 

ROC method, patients were divided into two subgroups 

based on survival: longer or shorter than the median 

DSS. Patients with survival shorter than the median 

DSS were excluded unless death had been observed. 

 
Immune infiltration analysis 

 
The EPIC [24] program estimated proportions of 

various tumor immune microenvironment cells in 

GSE32894 dataset. The CIBERSORT algorithm [25] 

compared the proportions of immune-related cells of  

the same type as EPIC in high and low-risk groups  

of GSE32894 samples. The Estimate algorithm [26]  

was also applied to GSE32894 samples, calculating  

the Estimate score and Immune score for each patient 

with UC. The Immune score and the Estimate score are 
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indicators used to assess the overall status of the  

tumor immune microenvironment. In simple terms, the 

Immune score is used to estimate the infiltration of 

immune cells in tumor tissues, while the Estimate score 

is used to assess the purity of the tumor. The abundance 

of cells in different risk groups was assessed using the 

Wilcoxon test to determine the differences. 

 

Real-world immune response analysis 

 

In the IMvigor210 dataset of 298 advanced UC patients, 

patients were categorized into response (R for PR or 

CR) and non-response (NR for PD or SD) groups. 

Differential analyses were used to compare MPIG-

derived risk scores between these groups. To validate 

that MPIG can predict the immune response rate of  

UC, the dataset was randomly split into a training set  

of 196 samples and a test set of 102 samples at a 2:1 

ratio. Logistic regression was employed to model the 

response to atezolizumab in the training set, and the 

performance of the model was evaluated using ROC 

curves. 

 

Clinical samples and RNA extraction and real-time 

quantitative PCR 

 

Bladder cancer specimens and matched adjacent normal 

tissues were obtained with patient consent from the Sir 

Run Run Shaw Hospital, School of Medicine, Zhejiang 

University. The study was approved by the Ethics

 

 
 

Figure 1. The workflow diagram delineates the methodologies and resources employed in this investigation. 
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Committee of the same institution (Ethical  

Approval Document Number 20200716-065). Patient 

demographics are shown in Supplementary Table  

4. Total RNA from tissues was extracted using  

TRIzol reagent (Cwbiotech, China) following the 

manufacturer’s instructions. cDNA was synthesized 

using HiFiScript gDNA Removal RT MasterMix 

(Cwbiotech, China). RT-qPCR analysis was performed 

using 2× SYBR Green qPCR master mix (Cwbiotech, 

China) on a LightCycler® 480 II System (Roche, 

Switzerland). Detailed primer sequences are listed in 

Supplementary Table 5. 

 

GSEA 

 

R packages “edgeR” and “limma” identified 

differentially expressed genes between high-risk and 

low-risk groups in GSE32894. Then, GSEA analysis 

was used to explore KEGG pathway differences 

between risk groups. KEGG pathway signatures gene 

sets, “c2.cp.kegg.v7.4.symbols.gmt,” were used in 

GSEA, identifying enriched pathways with p < 0.01. 

Additionally, by utilizing immune cell gene sets  

that are broadly acknowledged in the field [27],  

we performed an ssGSEA analysis to ascertain the 

differences in enrichment levels of immune cell-

related gene pathways among various risk groups 

delineated based on MPIGs. This analysis includes 

immune-related cell types consistent with the EPIC 

program, including CD4+ T cells, CD8+ T cells, 

macrophages, NK cells, and B cells. 

 

Summary of analytical tools 

 

Cox analysis and Kaplan-Meier analysis were 

conducted utilizing the “survival” package in R, and 

their results were visualized using the “survminer” 

package. Heatmaps in the article were generated  

using the “heatmap” package. The nomogram was 

created with the “regplot” package in R. Results  

from both univariate and multivariate Cox analyses 

were visualized using the “forestplot” package.  

The RSH-VH algorithm was implemented with  

the “randomForestSRC” package. ROC analysis  

was performed using the “pROC” package. The 

network diagram depicting relationships between 

m6A regulators and PIGs was constructed using  

the “igraph” package. EPIC analysis was conducted 

through the website https://epic.gfellerlab.org/. Estimate 

analysis was executed using the “CIBERSORT” 

package and, additionally, with the “estimate” package. 

GSEA was carried out using the “clusterProfiler” 

package and visualized using the “enrichplot” 
package. The ssGSEA analysis was conducted using 

the GSVA package, which calculates enrichment 

scores for different immune cell gene sets for each 

sample. Subsequently, a Wilcoxon test was employed 

to compare the means between different risk groups 

for hypothesis testing. The research procedures are 

summarized as a workflow, displayed in Figure 1. 

 

Availability of data and materials 

 

The datasets utilized for this study can be accessed 

through public databases such as GEO (https://www. 

ncbi.nlm.nih.gov), TCGA (https://portal.gdc.cancer. 

gov/), SRA (https://www.ncbi.nlm.nih.gov/sra), and 

RM2Target (http://rm2target.canceromics.org/#/home). 

For any data, code and materials related to the 

research, please contact the corresponding author’s 

email, and we will make every effort to provide  

them. 

 

RESULTS 
 

Identification of the prognostic m6A-modified 

immune pattern 

 

We initially identified a total of 166 candidate genes 

associated with prognosis in GSE32894 using the  

Cox proportional hazards model (p < 0.01; see 

Supplementary Table 2). Subsequently, the Cox 

weighted RSF-VH algorithm sequentially identified 28 

immune genes significantly impacting the DSS of UC 

in GSE32894. These genes are INSR, NR1H3, CTSE, 

SDC1, PPARG, FAM3B, CXCL1, SPP1, PTHLH, 

IL24, TUBB3, CXCL2, TNFRSF6B, CYR61/CNN1, 

CTSB, STC2, VEGFC, PLCG1, SCG2, BMP1,  

CBL, MAP2K2, GRB2, CMTM1, SHFM1, PSMD2, 

CRLF1, and KLRC2, collectively termed as PIGs  

(see Supplementary Table 6). 
 

To clarify the correlation between gene expression 

levels and the prognosis of UC, we introduced the 

concept of ‘importance’ in random forests. In essence, 

the greater the importance of a gene, the more accurate 

the forest model, including that gene, is in predicting 

the prognosis compared to a forest model without it. 

After ranking PIGs in descending order based on 

‘importance’ values, CTSE, PSMD2, CXCL2, CYR61, 

CMTM1, VEGFC, SDC1, TNFRSF6B, GRB2, and 

CBL were considered particularly crucial in the 

composition of the random forest model (Figure 2A). 

In subsequent studies, we used these 10 genes to 

construct an immune prognostic pattern. 

 

m6A modification tendency increases with the 

prognostic relevance of PIGs in malignant cell lines 

and cancer tissues of UC 
 

We retrieved 28 PIGs in the MeRIP-seq data from 

RM2Target, of which 20 were detected to be 
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Figure 2. (A) A bar chart showcasing the “importance” of MPIGs arranged in descending order, derived from a random forest analysis. 

Greater importance of a variable indicates a larger discrepancy in prediction accuracy between models with and without the variable. (B) A 
balloon plot demonstrates significant regulatory relationships between WERs and corresponding MPIGs proven by perturbation 
experiments from RM2Target database. (C) Venn diagrams highlight that out of 28 PIGs identified in malignant cell lines from the 
RM2Target database through MeRIP-seq analysis, 20 exhibit significant m6A methylation modifications. Among the top 10 PIGs (MPIGs) for 
importance, 8 are methylated. Hypergeometric distribution tests suggest a propensity for m6A methylation in PIGs associated with 
prognosis. Further, in the PRJNA733602 dataset, 7 out of the top 10 most important PIGs show enhanced m6A peak differences, 
underscoring a correlation between prognostic relevance and increased m6A modification levels. (D) A network diagram reveals the 
regulatory relationships between WERs and their regulated PIGs within the RM2Target database. (E) Balloon plots display the predictive 
performance of Cox models constructed with MPGs for UC prognosis across multiple datasets, as indicated by the C-index. (F) A nomogram 
drawn from Cox models based on MPGs in the GSE32894 dataset, illustrating individual patient scores and their corresponding survival 
probabilities. 
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methylated at the m6A site. Among the top 10 genes 

considered as the most important, 8 exhibited m6A 

methylation modifications (Figure 2B). Based on these 

findings, we conducted a hypergeometric distribution 

test and discovered that m6A modification was more 

likely to occur in the “more important” top 10 genes 

(p = 0.00584 Figure 2C). This indicates that m6A 

modified immune genes are more deeply involved in the 

prognosis of UC patients than those immune genes that 

are unmodified or modified at low levels. 

 

Through the utilization of the RM2Target database, for 

the 28 PIGs we identified, we discovered 20 pairs of 

significant regulatory associations between PIGs and 

m6A regulators. These associations were then organized 

into a network, presented in Figure 2D, and detailed in 

Supplementary Table 7. In this network, we observed 

that METTL3 and VIRMA covered the most PIGs and 

exerted significant regulatory effects on them. Notably, 

ongoing clinical trials are currently focusing primarily 

on METTL3 and VIRMA [28]. Our data reveal the 

pivotal roles of METTL3 and VIRMA within the 

immune-related m6A modification process, suggesting 

that the design of inhibitors targeting METTL3 and 

VIRMA may represent a promising avenue for 

integrating anti-m6A therapy with immunotherapy. 

 

In PRJNA733602, we first applied MACS2 to call 

peaks on the MeRIP-seq files of 5 paired bladder 

cancer and normal tissues. Subsequently, we utilized 

DiffBind to overlap and merge the peaks. Quantitative 

and differential analyses of these peak regions  

were performed using limma and edgeR. A total of 

32,801 gene modification sites were analyzed, with a 

significance threshold set at p < 0.05. Among them, 

2,747 gene modification sites were identified as 

exhibiting significant differences in m6A modification 

peaks. Among all 28 PIGs, 17 genes were found to 

have elevated m6A modification levels in tumors (see 

Supplementary Table 8). In the top 10 PIGs, 7 genes, 

namely CXCL2, PSMD2, GRB2, CMTM1, CBL, SDC1, 

and CTSE, showed increased m6A modification 

levels. Through a hypergeometric distribution test,  

we observed that genes with greater importance in  

the random survival forest tended to exhibit more 

pronounced differences in methylation levels between 

bladder cancer samples and normal tissues (p = 0.0231, 

Figure 2C). Consequently, we referred to the top 10 

important PIGs as methylated prognostic immune 

Genes (MPIGs). 

 

MPIGs formulate precise prediction of UC prognosis 

 
Subsequently, we employed MPIGs to construct Cox 

proportional hazards models separately in the GSE3289, 

GSE32548, GSE13507, GSE48075, and TCGA-BLCA 

datasets. The prognostic capacity of MPIGs was 

assessed using the C-index. Remarkably, across all 

datasets, irrespective of using OS or DSS as the 

prediction outcome, the C-index of the Cox model built 

with MPIGs consistently surpassed 0.5, indicating a 

high and stable prediction accuracy (see Figure 2E). 

Particularly in independent cohorts GSE32548 and 

GSE13507 the model achieved accuracies exceeding 

0.8 and 0.7, respectively. Furthermore, we established  

a nomogram for predicting DSS in the GSE32894 

utilizing MPIGs, and the calibration curve affirmed its 

prognostic predictive performance (see Figure 2F and 

Supplementary Figures 1 and 2). 

 

Based on the coefficients derived from the Cox model 

and the expression levels of MPIGs, we calculated  

the risk scores for each patient in GSE32894, TCGA-

BLCA, GSE32548, GSE13507, and GSE48075. Scatter 

plot shows that patients incline to have higher mortality 

with a risk score above the median for the cohort,  

and the heat map illustrates that patients with higher 

risk score obviously tend to express a higher level of 

risky MPIGs (TNFRSF6B, CXCL2, PSMD2, VEGFC, 

GRB2, CMTM1, CBL, and CYR61) in their samples of 

tissue, whereas patients with lower risk score were more 

likely to express a higher level of suppressor MPIGs 

(here were SDC1 and CTSE) (Figure 3A–3E). Moreover, 

the direction of upregulation or downregulation of 

MPIGs was consistent across different data sets. 

 

When comparing the DSS differences between  

high and low-risk groups using Kaplan-Meier  

survival analysis across multiple datasets, a notable 

separation of survival curves was evident, with 

significant p-values observed in GSE32894 (p < 

0.0001), GSE32548 (p = 0.01), and GSE13507 (p = 

0.00021) for DSS, and in TCGA-BLCA (p = 0.00036) 

and GSE13507 (p = 0.045) for OS among UC patients 

in distinct risk groups based on their risk score. 

Although GSE48075 showed a p-value of 0.06 for 

DSS and 0.1 for OS, distinct survival curves were  

still observable (refer to Figure 4, panels A, C, D, F 

for DSS; B, E for OS; and G for GSE48075 OS 

analysis). Simultaneously, employing the univariate 

Cox proportional hazards model, the risk score derived 

from MPIGs was characterized, revealing a significant 

correlation between this risk score and diminished 

survival in UC across all datasets, except for 

GSE48075. Specifically, in GSE32894, the HR for 

DSS was estimated at 1.34 (95% CI: 1.22–1.48, p < 

0.001); in TCGA-BLCA, the HR for OS was also 

estimated at 1.32 (95% CI: 1.16–1.50, p < 0.001); in 

GSE32548, the HR for DSS was 1.23 (95% CI: 1.11–
1.35, p < 0.001); in GSE13507, the HR for DSS was 

1.24 (95% CI: 1.10–1.41, p < 0.001); and in GSE13507, 

the HR for OS was 1.1 (95% CI: 1.09–1.19, p = 0.031). 
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Incorporating significant prognostic risk factors 

identified through the univariate Cox model (Figure 

5A), we integrated them with the risk score in the 

multivariate Cox model. This analysis revealed that the 

MPIGs-derived risk score serves as an independent risk 

factor for reduced survival in UC, a finding consistently 

validated across multiple datasets (Figure 5B). 

Specifically, in GSE32894, the hazard ratio (HR) for the 

risk score was 1.26 (95% CI: 1.10–1.40, p = 0.00049). 

Similarly, in TCGA-BLCA, the HR was 1.4 (95% CI: 

1.10–1.80, p = 0.00504). In GSE32548, the HR was 

1.13 (95% CI: 1.00–1.30, p = 0.0453). 

 

 
 

Figure 3. The scatter plots (A–E) on the left illustrate the distribution of death events across risk scores derived from MPIGs. The heatmap 
(A–E) on the right displays the specific upregulation or downregulation of MPIGs expression across different risk groups. 
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MPIGs correlate to prognostic clinical factors in UC 

 

The Wilcoxon test was used to examine the association 

between MPIGs and significant prognostic risk factors 

identified in the previous univariate Cox analysis. In 

GSE32894, patients with advanced T stage and G grade 

exhibited higher risk scores, as depicted in Figure 6A, 

6C. Similarly, in the TCGA-BLCA cohort, higher risk 

scores correlated with advanced pathologic T stage, M 

stage, and pathological stage, illustrated in Figure 6E, 

6G, 6H. Figure 6I, 6J in GSE32548 demonstrated a 

positive relationship between risk scores and advanced 

T stage and G grade. In GSE13507, Figure 6M, 6N, 6P, 

6Q, 6R showed that patients at higher risk tended  

to have advanced T stage, N stage, G grade, a higher 

likelihood of progression, and were more likely to

 

 
 

Figure 4. Survival curves (A–G) comparing the survival between different risk groups based on MPIGs across various datasets. 
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receive chemotherapy. Conversely, violin plots in 

Figure 6B, 6F did not reveal an association between risk 

score and pathological N stage in the GSE32894 and 

TCGA-BLCA cohorts. Similarly, M stage and clinic N 

stage were not significantly associated with risk scores 

in GSE13507 and GSE48075, as shown in Figure 6O, 

6T, 6U. Additionally, patient age showed no correlation 

with MPIGs across the cohorts (Figure 6D, 6L, 6S). 

Notably, in GSE32548, no correlation was observed 

between the risk score and tumor progression in non-

muscle invasive bladder cancer samples (Figure 6K). 

 

MPIGs correlate to immune cell infiltration in the 

tumor microenvironment in UC 

 

If MPIGs can accurately identify the immune status 

characterized by significant infiltration of immune  

cells, it can be considered indicative of their potential  

to predict whether a patient is suitable for receiving 

immune therapy [29]. We here employed three 

computational algorithms, namely EPIC, CIBERSORT, 

and Estimate, to evaluate the immune cell infiltration 

status for different risk groups of tumors in GSE32894. 

EPIC analysis explored the correlation between MPIGs 

and the tumor microenvironment. As depicted in Figure 

7A, the proportions of infiltrating B cells (p = 0.0012), 

cancer-associated fibroblasts (CAFs) (p = 5.1e−16), 

CD4+ T cells (p = 1.9e−08), endothelial cells (p = 

5.4e−08), and macrophages (p = 7.6e−15) significantly 

increased in the high-risk group compared to the low-

risk group. However, no significant differences were 

observed in the abundance of infiltrating CD8+ T cells 

and NK cells between the low- and high-risk groups.  

To validate the EPIC-derived conclusions regarding

 

 
 

Figure 5. Univariate (A) and multivariable (B) Cox analyses conducted across various datasets. 
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immune cell involvement in tumor microenvironments, 

we employed CIBERSORT to assess the infiltration 

abundances of plasma cells, activated CD4+ T cells, 

CD8+ T cells, M1 macrophages, and activated NK cells 

within GSE32894 tumor samples. Comparisons of the 

infiltration were subsequently made between different 

risk groups. 

Figure 7B illustrates that the proportions of infiltrating 

plasma cells (p = 0.0083), activated CD4+ T cells  

(p = 3.1e−07), and macrophages (p = 6.9e−07) were 

significantly higher in the high-risk group compared to 

the low-risk group. Additionally, CIBERSORT analysis 

did not reveal any differences in the proportions of 

infiltrating CD8+ T cells and NK cells between the two 

 

 
 

Figure 6. Violin plots (A–U) illustrate the relationship between clinical factors and risk scores, employing the Wilcoxon test for comparisons 

between two variables and the Kruskal-Wallis test for comparisons among more than two variables. 
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groups. We observed a significant agreement between 

the outcomes derived from EPIC analysis and 

CIBERSORT analysis, both suggesting that MPIGs  

can accurately discern the immune infiltration status  

of tumors. This variation was predominantly driven by 

the differential infiltration of CD4+ T cells, B cells, and 

macrophages, while CD8+ T cells, although showing  

no difference in infiltration between high and low-risk 

 

 
 

Figure 7. Violin plots reveal the results of cellular infiltration analyses within the GSE32894 expression matrix.  (A) The EPIC 

web tool estimates infiltration scores for B cells, CAFs, CD4+ T cells, CD8+ T cells, endothelial cells, macrophages, NK cells, and other cells in 
UC tumors from GSE329894, comparing between high and low risk groups based on MPIGs. (B) The CIBERSORT algorithm calculates 
infiltration scores for immune cells, including plasma cells, activated CD4 T cells, CD8 T cells, macrophages M1, activated NK cells, and other 
cells involved in EPIC, with comparisons between high and low risk groups derived from MPIGs. (C) Estimate analysis calculates Estimate 
scores and Immune scores for each patient in GSE32894, comparing between high- and low-risk groups derived from MPIGs. 
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subgroups, still exhibited substantial overall infiltration. 

Finally, we introduced the Estimate algorithm to 

calculate Immune scores and Estimate scores for  

each UC patient in GSE32894, comprehensively 

characterizing their immune infiltration depth and tumor 

purity. Upon comparing these scores between the high 

and low-risk groups, we found that the high-risk group 

exhibited significantly higher immune infiltration depth 

(p = 6.5e−12) and tumor purity (p = 2.3e−14) than  

the low-risk group (Figure 7C). 

 

Investigation of the relationship between m6A 

regulators and MPIGs across multiple datasets 

 

Differential expression analysis was conducted on  

24 widely reported m6A regulators across multiple 

datasets, comparing their expression patterns between 

distinct risk groups defined by MPIGs. These 24 m6A 

regulators encompass methyltransferases (writers: 

METTL3, KIAA1627, METT10D, WTAP, VIRMA, 

RBM15, RBM15B, ZNF217, CBLL1, KIAA0853), 

demethylases (erasers: FTO, ALKBH5), and binding 

proteins (readers: YTHDF1, YTHDF2, YTHDF3, 

YTHDC1, YTHDC2, HNRPA2B1, HNRNPC, FMR1, 

ELF3, IGF2BP1, IGF2BP2, IGF2BP3). The results 

from each cohort were collected and summarized in 

Figure 8A. 

 

In the TCGA-BLCA cohort, with the largest  

sample size, most m6A regulators (19/24) exhibited 

upregulated expression in the high-risk group, except 

for ELF3, which demonstrated lower expression. 

Particularly noteworthy was the significantly up-

regulated expression of the eraser ALKBH5 in  

the high-risk groups across all included datasets. 

However, an unexpected finding emerged, revealing 

no significant expression difference of METTL3 

between the two risk groups in all five independent 

datasets. While KIAA1627 and METT10D displayed 

high expression levels in TCGA-BLCA, their 

expression levels were lower in the high-risk group  

of other two datasets (GSE32894 and GSE32548). 

Elevated expression levels of VIRMA and CBLL1 

were observed in the high-risk group TCGA- 

BLCA and GSE13507. RBM15 showed significant 

upregulation in the high-risk group in TCGA-BLCA 

and GSE32548. YTHDF1, HNRPA2B1, and IGF2BP3 

exhibited high expression in high-risk patients across 

TCGA-BLCA, GSE32548, and GSE13507. Conversely, 

although there was no significant difference in 

expression in TCGA-BLCA, YTHDC1 demonstrated 

marked downregulation in GSE32894 and GSE13507. 

Similarly, YTHDC2 displayed lower expression levels 
in the high-risk group in GSE32894, GSE13507, and 

GSE32548. In summary, m6A regulators demonstrated 

aberrant expression in at least one independent cohort. 

Compare MPIGs with potential therapeutic targets 

 

As illustrated in Figure 8B, the ROC curves, which 

compare MPIGs with six extensively studied therapeutic 

targets and immune checkpoints (FGFR, PDL1, CTLA4, 

ERBB3, HER2, PD1), reveal that MPIGs achieved the 

highest area under the curve (AUC) value, reaching an 

estimated 0.871. This result substantiates the stability  

and reliability of MPIGs in predicting survival outcomes. 

 

MPIGs predicts response to immunotherapy in UC 

in real world setting 

 

298 patients with advanced UC who received 

atezolizumab as first-line treatment were divided into a 

response group, referring to complete response and 

partial response, and a non-response group, referring to 

stable disease and progressive disease. The expression 

levels of MPIGs were used to calculate risk scores for 

each patient, and the Wilcoxon test was performed to 

compare the differences between the groups. Patients 

who responded to atezolizumab had lower risk scores 

compared to non-responding patients (p = 0.035, Figure 

8C). This suggests that patients identified as high-risk 

by MPIGs are more likely to develop resistance to 

immune therapy. The 298 samples were randomly 

divided into two groups in a 2:1 ratio, and logistic 

regression models were trained using the risk score as a 

variable and response/non-response as the outcome in 

the larger dataset. The model was tested in the training 

set and evaluated using ROC analysis, with an area 

under the curve of 0.69. The optimal cutoff value had a 

specificity of 0.64 and sensitivity of 0.73 (Figure 8D). 

 

Aberrant expression of MPIGs in tumor tissue and 

its association with disease-free survival in UC 

 

We employed RT-qPCR technology to evaluate the 

expression levels of MPIGs in UC tissue samples and 

matched adjacent normal tissues obtained from our 

hospitals. The RT-qPCR analysis unveiled heightened 

expression levels of all 10 MPIGs within the tumor 

mass of UC, demonstrating a significant increase 

compared to the adjacent normal tissue (Figure 9A). 

Disease-free survival (DFS) data were collected for  

all clinical samples, and based on the RT-qPCR  

results quantifying MPIGs expression, risk scores were 

computed for each UC case, leading to the stratification 

into high and low-risk groups. Subsequently, Kaplan-

Meier analysis delineated distinctly separated survival 

curves for patients with different risk profiles (p = 

0.0407, Figure 9B). Additionally, univariate Cox 

regression analysis suggested a significant inverse 
correlation between risk scores as a continuous variable 

and reduced DFS in UC (HR: 1.36, 95% CI: 1.14–1.64, 

p = 0.000651). 

7786



www.aging-us.com 14 AGING 

GSEA analysis 

 

To gain deeper insights into the biological pathways 

associated with our MPIGs-derived risk scores, the 

expression data obtained from GSE32894 was stratified 

based on ranking scores. Subsequent differential 

expression analysis was conducted to identify genes 

exhibiting significant expression differences between 

the delineated groups. Following this, GSEA analysis 

was performed to identify biological pathways that

 

 
 

Figure 8. (A) Wilcoxon test compares differences in the expression of 24 widely reported WERs between different risk groups across 

datasets GSE32894, GSE13507, GSE48075, and TCGA-BLCA, summarizing significantly upregulated or downregulated findings with box 
plots. (B) ROC curves compare the performance of MPIG-derived risk scores and the expression levels of FGFR-3, PD-L1, CTLA-4, ERBB-3, 
HER-2, PD-1 in predicting survival shortening events in UC patients. (C) Violin plots and the Wilcoxon test compare differences in MPIG-
derived risk scores between responders and non-responders to monotherapy immunotherapy (atezolizumab) in the IMvigor210 trial. 
(D) ROC curves and AUC values assess the performance of a binary model predicting the response of advanced UC patients to 
immunotherapy, based on MPIG-derived risk scores, tested in a random external dataset. 
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demonstrated significant enrichment. The five most 

significantly enriched pathways include: including 

PATHWAYS_IN_CANCER, CELL_ADHESION_ 

MOLECULES_CAMS, MELANOGENESIS, 

LYSOSOME, and INSULIN_SIGNALING_ 

PATHWAY (see Supplementary Figure 3). 

Remarkably, the enriched pathways associated with 

MPIGs predominantly involve cancer-related processes. 

This observation suggests a substantial correlation 

between the malignance of UC patients and the MPIGs 

prognostic panel we developed. 

 

Further, employing ssGSEA on the GSE32894 gene 

expression matrix, with the gene sets identified by 

Gabriela Bindea et al. for recognizing various immune 

cells, revealed that pathways related to CD4+ T cells, 

macrophages, B cells, and NK cells were significantly 

upregulated in the high-risk group derived from 

MPIGs [29]. Conversely, CD8+ T cell pathway levels 

did not show notable differences between the risk 

groups derived from MPIGs (refer to Figure 9C,  

9D). Intriguingly, this conclusion aligned with our 

findings from the EPIC analysis and CIBERSORT, 

strongly suggesting that the MPIGs-derived risk scores 

can distinguish between two tumor immune micro-

environments characterized by different cell types, 

including CD4+ T cells, B cells, and macrophages. 
 

DISCUSSION 
 

m6A stands as the predominant modification type  

in RNA-level epigenetic alterations, significantly 

 

 
 

Figure 9. (A) The expression levels of tumors and adjacent normal tissues were evaluated using real-time quantitative PCR. Split-panel box 

plots contrast the differences in expression levels of various MPIGs between the two types of tissues. (B) Kaplan-Meier analysis and survival 
curves reveal the disparity in disease-free survival (DFS) among 30 urothelial carcinoma (UC) patients recruited by Shao Yifu Hospital, 
categorized into high- and low-risk groups based on MPIGs. (C) A heatmap illustrates the infiltration scores of CD8+ T cells, CD4+ T cells, 
B cells, NK cells, and macrophages in GSE32894 samples, calculated using the ssGSEA method. (D) Box plots compare the differences in 
infiltration scores of CD8+ T cells, CD4+ T cells, B cells, NK cells, and macrophages between high- and low-risk groups derived from MPIGs. 
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correlated with the progression, metastasis, and prognosis 

of bladder urothelial carcinoma. Importantly, ongoing 

researches have unveiled the association between m6A 

modification and the immune status of cancer, potentially 

impacting the efficacy of immunotherapy [9, 30–32]. 

Given the low response rates to immunotherapy in UC 

and the limited robustness of molecular predictors like 

PD1/PDL1 in gauging immunotherapeutic responses [33, 

34], we utilized bioinformatics approaches to validate  

a novel set of m6A-modified immune genes. Through 

this endeavor, we unveiled their biological significance  

in the context of UC progression and treatment, thus 

highlighting their potential as targets for anti-m6A 

therapy and combination immunotherapy. 

 

Prominent biomarkers of biological significance require 

the capability to exhibit consistency across various 

cohorts [35]. To attain prognostic molecules with 

generalizability, we initially employed anti-overfitting 

machine learning tools, specifically RSF-SH combined 

with Cox regression analysis, within public database 

datasets. Through this approach, we identified a set of 

28 immune genes significantly associated with UC 

prognosis. Given the relatively large panel of these 28 

genes, we prioritized the top 10 genes based on their 

“importance” parameter to construct a more “compact” 

model, thereby enhancing model generalizability. 

Subsequently, the clinical relevance of these 10 genes 

was validated across 5 independent datasets to ensure 

absence of overfitting. 

 

Previous studies have predominantly focused on RNA 

molecules and proteins significantly associated with 

m6A regulators [36, 37], even the m6A regulators 

themselves [38]. Given that m6A represents a novel 

regulatory factor in the immune system [39], our 

research aims to elucidate immune genes significantly 

modified by m6A. We posit that this approach is 

essential for establishing a bridge between immunity, 

m6A regulation, and cancer prognosis. It is well-known 

that by modifying specific RNA in various types of 

cancer, endogenous m6A regulates the fate of tumor 

cells in this manner [32, 40]. In our study, we 

demonstrated that the stronger the correlation between 

immune genes and shortened prognosis in (UC), the 

higher the likelihood of these genes undergoing m6A 

methylation we termed these prognosis-associated 

immune genes prone to m6A methylation as MPIGs. 

The risk scores formed by MPIGs correlate with 

increased infiltration of tumor-associated fibroblasts, 

macrophages, CD4+ T cells, and B cells (plasma cells) 

within UC. Furthermore, risk scores derived from 

MPIGs were not only significantly associated with 
survival time in UC patients in the real world but also 

found to predict the response rate of UC patients to 

immunotherapy. Our data provide relatively substantial 

evidence for such a hypothesis: in UC, m6A directly 

regulates the RNA metabolism of immune genes 

through methylation, accelerating disease progression, 

altering tumor immune cell infiltration status, and 

influencing tumor response to immunotherapy during 

progression. Our findings underscore the relationship 

between m6A and the tumor immune environment, 

particularly highlighting the interaction of our identified 

MPIGs—specifically TNFRSF6B, CXCL2, PSMD2, 

VEGFC, GRB2, CMTM1, CBL, CYR61, SDC1, and 

CTSE—with upstream m6A regulators, primarily 

METTL3 and VIRMA, significantly affecting UC 

progression. Our study not only suggests that the risk 

scores they form can serve as biomarkers for predicting 

immune response rates, but also supports their potential 

as targets for anti-m6A therapy and combination 

immunotherapy. 

 

In our investigation, we observed that the “hot” tumor 

immune infiltration status predicted by MPIGs 

manifests as a tumor microenvironment primarily 

characterized by differential immune cell populations, 

including CD4+ T cells, B cells, and macrophages. 

Additionally, we noted that the proportion of  

CD8+ T cell infiltration within the tumor immune 

microenvironment did not differ significantly among 

risk groups derived from MPIGs, but the absolute 

proportion of T cell infiltration remained notably high. 

Nowadays, the body’s anti-tumor immune response  

is primarily mediated by tumor-specific CD8+ T  

cells [41]. The majority of clinically applied tumor 

immunotherapies rely on the ability of CD8+ T  

cells to directly recognize and eliminate tumor cells 

[42]. However, therapeutic strategies revolving around 

CD8+ T cells are constrained by the emergence of 

tumor cells with MHC defects and the formation of  

an immunosuppressive tumor microenvironment [43]. 

In various solid tumors, including bladder cancer, 

approximately 20–60% of tumor immune evasion is 

attributed to MHC-I defects and decreased recognition 

capacity of CD8+ T cells [44, 45]. Increasing evidences 

underscore the substantial role of synergy between 

CD4+ T cells and B cells in combating tumors. Studies 

also report cooperative actions between helper T  

cells and macrophages, mobilizing the entire immune 

arsenal against cancer cells [46]. Craft and Joshi’s team 

found that B cells presenting tumor antigens can 

promote the differentiation of tumor-specific helper 

CD4+ T cells, producing IL-21, enhancing anti-tumor 

CD8+ T cell responses, and thereby controlling tumor 

growth [47]. Kruse and colleagues discovered in 

animal models that helper T cells sometimes could 

more effectively resist cancer cells than killer T cells 
and eliminated cancer cells missed by killer T cells 

[46]. Moreover, m6A regulatory enzymes, especially 

writers and erasers, influence the proliferation and 
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infiltration of CD4+ T cells in the tumor immune 

microenvironment [48]. Zheng et al. reported the 

reduction of mRNA m6A methylation in developing  

B cells severely blocks B cell development in mice 

[49]. Our study indicates that m6A modification 

significantly affects the immune status of bladder 

urothelial carcinoma, where the collaboration between 

CD4+ T cells and B cells may play a crucial role. 

Targeting therapies for this disease should primarily 

focus on CD4+ T and B cells to achieve more targeted 

effects. 

 

This study’s limitations include a relatively small overall 

sample size despite confirming the clinical relevance of 

MPIGs across multiple datasets. Laboratory experiments 

validated by RT-qPCR used limited sample sizes, and 

the available survival data from donors only encompass 

DFS, lacking comprehensive metrics such as OS and 

DSS. Further research is needed to delineate the specific 

impact of m6A modifications on MPIGs on the 

progression, immune status, and resistance mechanisms 

in bladder urothelial carcinoma. 

 

CONCLUSION 
 

We used machine learning techniques to avoid 

overfitting in public databases, and identified an 

immune pattern associated with reduced survival in UC. 

We found that the more immune genes associated with 

reduced survival in bladder urothelial carcinoma, the 

more likely they are to be m6A modified. We identified 

10 so-called MPIGs, and believed they could serve  

as key bridging genes linking tumor immunity, m6A 

modification, and UC progression, potentially becoming 

new targets for anti-m6A therapy and combination 

immunotherapy. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Nomogram calibration curve used to predict the 3-year DSS period. 

 

 
 

Supplementary Figure 2. Nomogram calibration curve used to predict the 5-year DSS period. 

 

7794



www.aging-us.com 22 AGING 

 
 

Supplementary Figure 3. Bar chart of significantly enriched KEGG pathways. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2 and 7. 

 

Supplementary Table 1. Summary of clinical characteristics for the included datasets. 

 

Supplementary Table 2. Information of 166 IRGs selected by univariate Cox regression analysis (p < 0.01). 

 

Supplementary Table 3. The condition number of a matrix(K) of the PIGs in for data series. 

Series Condition number of a matrix(K) If K < 100 

GSE32894 14.27 Yes 

GSE32548 13.59 Yes 

GSE13507 7.09 Yes 

GSE48075 9.74 Yes 

TCGA 27.16 Yes 

If K < 100, the degree of collinearity is very small; If 100 < = k < = 1000, there is a general degree of collinearity; If k > 1000, 
there is a serious collinearity. 

 

 

Supplementary Table 4. Baseline information of 30 patients with UC. 

Characteristic Case number (percentage) 

Gender  

Male 23 (76.7%) 

Female 7 (23.3%) 

Age  

<60 8 (26.7%) 

<60 22 (73.3%) 

Stage  

NMIBC (Ta/T1/Tis) 18 (60.0%) 

MIBC (T2–T4) 12 (40.0%) 

Disease Free Months  

<20 5 (16.7%) 

≥20, <40 13 (43.3%) 

≥40 12 (40%) 

 

 

Supplementary Table 5. Primers used for quantitative real time-PCR. 

TNFRSF6B 
Forward primer GTACGCGGAGTGGCAGAAA 

Reverse primer CAGAGGACGTTGCAGTAGC 

CXCL2 
Forward primer TCATAGCCACACTCAAGAAT 

Reverse primer AGGAACAGCCACCAATAAG 

PSMD2 
Forward primer TGCTCGTGGAACGACTAGG 

Reverse primer CAGTTTGCCATAGTGTGGACG 

VEGFC 
Forward primer GAGGAGCAGTTACGGTCTGTG 

Reverse primer TCCTTTCCTTAGCTGACACTTGT 

GRB2 Forward primer CTGGGTGGTGAAGTTCAATTCT 
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Reverse primer GTTCTATGTCCCGCAGGAATATC 

CMTM1 
Forward primer AACCTGAGTCATCCGAGGCA 

Reverse primer CAGTCTCCGGTTGTTTCAAGT 

CBL 
Forward primer TAGGCGAAACCTAACCAAACTG 

Reverse primer AGAGTCCACTTGGAAAGATTCCT 

CYR61 
Forward primer ACCGCTCTGAAGGGGATCT 

Reverse primer ACTGATGTTTACAGTTGGGCTG 

SDC1 
Forward primer ACGGCTATTCCCACGTCTC 

Reverse primer TCTGGCAGGACTACAGCCTC 

CTSE 
Forward primer CAGTCCAGCACATACAGCCA 

Reverse primer GCTCCAATGATCCCGGACAA 

ACTIN 
Forward primer CACCATTGGCAATGAGCGGTTC 

Reverse primer AGGTCTTTGCGGATGTCCACGT 

 

 

Supplementary Table 6. Information of 28 IRGs selected by RSH-VH. 

Probe_ID Symbol ENSG_ID Beta 
HR  

(95% CI for HR) 

Wald. 

test 
p-value Depth 

rel. 

freq 
Importance 

EBTREZ_ 

ID 

ILMN_1670918 INSR ENSG00000171105 −1.6 0.21 (0.072–0.6) 8.3 0.0039 6.547 22 0.001 3643 

ILMN_1814022 NR1H3 ENSG00000025434 −0.96 0.38 (0.23–0.64) 13 0.00028 6.003 23 0.00085 10062 

ILMN_2387224 CTSE ENSG00000196188 −0.93 0.4 (0.24–0.65) 13 0.00029 5.736 22 0.00289 1510 

ILMN_1815308 SDC1 ENSG00000115884 −0.75 0.47 (0.31–0.71) 13 0.00026 6.395 22 0.00297 6382 

ILMN_1799887 CTSE ENSG00000196188 −0.63 0.53 (0.39–0.72) 17 3.4E-05 6.096 21 0.00625 1510 

ILMN_2364384 PPARG ENSG00000132170 −0.45 0.63 (0.5–0.8) 15 9.7E-05 6.941 22 0.00061 5468 

ILMN_2355486 FAM3B ENSG00000183844 −0.38 0.69 (0.59–0.81) 21 3.9E-06 6.875 26 0.00069 54097 

ILMN_1787897 CXCL1 ENSG00000163739 0.34 1.4 (1.1–1.8) 7.9 0.005 7.136 22 −0.0001 2919 

ILMN_2374449 SPP1 ENSG00000118785 0.35 1.4 (1.2–1.7) 12 0.00058 6.746 27 0.00046 6696 

ILMN_1785699 PTHLH ENSG00000087494 0.45 1.6 (1.2–2) 11 0.00073 6.673 21 0.0004 5744 

ILMN_1774685 IL24 ENSG00000162892 0.45 1.6 (1.3–2) 15 8.8E-05 6.82 20 0.00083 11009 

ILMN_1791726 TUBB3 ENSG00000258947 0.48 1.6 (1.3–2.1) 15 0.00013 6.618 21 0.00114 10381 

ILMN_1682636 CXCL2 ENSG00000081041 0.49 1.6 (1.3–2.1) 17 4.7E-05 6.421 22 0.00135 2920 

ILMN_2331231 TNFRSF6B ENSG00000243509 0.56 1.8 (1.4–2.2) 24 1.2E-06 6.535 20 0.00125 8771 

ILMN_2188264 CYR61/CNN1 ENSG00000142871 0.64 1.9 (1.4–2.5) 20 6.6E-06 6.104 24 0.00295 3491 

ILMN_1696360 CTSB ENSG00000164733 0.65 1.9 (1.2–3) 8 0.0046 6.873 21 0.00037 1508 

ILMN_1691884 STC2 ENSG00000113739 0.66 1.9 (1.5–2.6) 21 4.6E-06 6.024 25 0.00066 8614 

ILMN_1701204 VEGFC ENSG00000150630 0.72 2 (1.3–3.1) 11 0.00077 5.99 21 0.00145 7424 

ILMN_2382906 PLCG1 ENSG00000124181 0.85 2.3 (1.4–4.1) 9.2 0.0024 6.095 21 0.00099 5335 

ILMN_1703178 SCG2 ENSG00000171951 0.91 2.5 (1.5–4) 14 0.00018 5.776 24 −0.0003 7857 

ILMN_1758542 BMP1 ENSG00000168487 0.97 2.6 (1.7–4.1) 19 1.3E-05 6.722 22 0.0006 649 

ILMN_2181968 CBL ENSG00000110395 1 2.8 (1.3–5.9) 7.4 0.0063 6.309 24 0.00242 867 

ILMN_1657968 MAP2K2 ENSG00000126934 1.1 2.9 (1.3–6.3) 6.8 0.0089 6.806 24 7.5E-05 5605 

ILMN_1725814 IL24 ENSG00000162892 1.2 3.4 (1.7–7) 12 0.00065 6.851 21 2.4E-05 11009 

ILMN_1748797 GRB2 ENSG00000177885 1.3 3.5 (1.6–7.6) 10 0.0016 6.539 22 0.00164 2885 

ILMN_2328363 CMTM1 ENSG00000089505 1.3 3.8 (1.7–8.6) 11 0.0011 5.758 21 0.0022 113540 

ILMN_2128128 SHFM1 ENSG00000127922 1.5 4.4 (1.4–14) 6.6 0.0099 6.167 21 0.00035 NA 

ILMN_1712432 PSMD2 ENSG00000175166 1.9 6.6 (3.1–14) 23 1.5E-06 6.145 26 0.00135 5708 

ILMN_1681515 CRLF1 ENSG00000006016 2 7.6 (2.1–28) 9.4 0.0022 6.328 22 0.00116 9244 

ILMN_1707328 KLRC2 ENSG00000205809 5 150 (9.8–2300) 13 0.00032 6.556 21 3.3E-05 3822 
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Supplementary Table 7. The PIGs identified by RSF-VH are modified by WERs and exhibit altered expression 
levels in the perturbation experiment combined with MeRIP-seq. 

 

Supplementary Table 8. Differential analysis of m6A modification peaks. 

Symbol logFC P-value Annotation Gene ID Transcript.ID ENTREZ ID GENENAME 

INSR 1.439354567 0.000740458 3′UTR ENSG00000171105.14 ENST00000601099.1 3643 insulin receptor 

NR1H3 2.557239473 0.001460625 Promoter (≤1 kb) ENSG00000025434.19 ENST00000495866.5 10062 

nuclear receptor 

subfamily 1 group H 

member 3 

CTSE 3.062398039 0.000505438 3′UTR ENSG00000196188.12 ENST00000486757.1 1510 cathepsin E 

SDC1 1.793082706 0.008954021 3′UTR ENSG00000115884.11 ENST00000482879.5 6382 syndecan 1 

PPARG 1.559761642 0.030422269 Promoter (2–3 kb) ENSG00000132170.24 ENST00000682446.1 5468 

peroxisome 

proliferator activated 

receptor gamma 

FAM3B 1.978350189 0.035157454 Promoter (2–3 kb) ENSG00000183844.17 ENST00000398646.3 54097 

FAM3 metabolism 

regulating signaling 

molecule B 

SPP1 2.465630299 0.00949005 Promoter (≤1 kb) ENSG00000118785.15 ENST00000505146.1 6696 
secreted 

phosphoprotein 1 

CXCL2 2.773177463 0.003233683 Promoter (≤1 kb) ENSG00000081041.9 ENST00000508487.3 2920 
C-X-C motif 

chemokine ligand 2 

CTSB 1.459450688 0.002211906 3′UTR ENSG00000164733.23 ENST00000530290.5 1508 cathepsin B 

PLCG1 2.46654589 4.95E-05 3′UTR ENSG00000124181.15 ENST00000244007.7 5335 
phospholipase C 

gamma 1 

BMP1 1.781179922 0.016151302 3′UTR ENSG00000168487.20 ENST00000522332.1 649 
bone morphogenetic 

protein 1 

CBL 1.788575387 0.029705874 Promoter (≤1 kb) ENSG00000110395.8 ENST00000637974.1 867 Cbl proto-oncogene 

MAP2K2 1.999922514 0.02765859 

Exon 

(ENST00000262948.10/ 

ENSG00000126934.15, 

exon 3 of 11) 

ENSG00000126934.15 ENST00000602167.5 5605 

mitogen-activated 

protein kinase kinase 

2 

GRB2 2.137806528 0.009303183 Promoter (1–2 kb) ENSG00000177885.15 ENST00000581959.1 2885 
growth factor receptor 

bound protein 2 

CMTM1 2.946544842 0.001246492 Promoter (≤1 kb) ENSG00000089505.18 ENST00000332695.11 113540 

CKLF like MARVEL 

transmembrane 

domain containing 1 

PSMD2 2.368671003 0.004369637 Promoter (≤1 kb) ENSG00000175166.17 ENST00000445558.6 5708 

proteasome 26S 

subunit ubiquitin 

receptor, non-ATPase 

2 

CRLF1 1.799564651 0.035473845 Promoter (≤1 kb) ENSG00000006016.12 ENST00000594325.1 9244 
cytokine receptor like 

factor 1 
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