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INTRODUCTION 
 

According to the 8th edition TNM staging proposed by 

the International Association for the Study of Lung 

Cancer (IASLC), lung cancer patients with stage IIIA  

or more advanced stages have been reported to exhibit a 

5-year survival rate of less than 36% [1]. Recent global 

cancer data released in 2020 revealed that lung cancer 

remains the leading cause of cancer-related mortality 

[2]. This dismal outcome in lung cancers is due, in part 
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ABSTRACT 
 

The management of patients with advanced non-small cell lung cancer (NSCLC) presents significant challenges 
due to cancer cells’ intricate and heterogeneous nature. Programmed cell death (PCD) pathways are crucial in 
diverse biological processes. Nevertheless, the prognostic significance of cell death in NSCLC remains 
incompletely understood. Our study aims to investigate the prognostic importance of PCD genes and their 
ability to precisely stratify and evaluate the survival outcomes of patients with advanced NSCLC. We employed 
Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator 
(LASSO), univariate and multivariate Cox regression analyses for prognostic gene screening. Ultimately, we 
identified seven PCD-related genes to establish the PCD-related risk score for the advanced NSCLC model 
(PRAN), effectively stratifying overall survival (OS) in patients with advanced NSCLC. Multivariate Cox 
regression analysis revealed that the PRAN was the independent prognostic factor than clinical baseline factors. 
It was positively related to specific metabolic pathways, including hexosamine biosynthesis pathways, which 
play crucial roles in reprogramming cancer cell metabolism. Furthermore, drug prediction for different PRAN 
risk groups identified several sensitive drugs explicitly targeting the cell death pathway. Molecular docking 
analysis suggested the potential therapeutic efficacy of navitoclax in NSCLC, as it demonstrated strong binding 
with the amino acid residues of C-C motif chemokine ligand 14 (CCL14), carboxypeptidase A3 (CPA3), and C-X3-
C motif chemokine receptor 1 (CX3CR1) proteins. The PRAN provides a robust personalized treatment and 
survival assessment tool in advanced NSCLC patients. Furthermore, identifying sensitive drugs for distinct PRAN 
risk groups holds promise for advancing targeted therapies in NSCLC. 
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to the fact that more than half of the patients,  

about 55%, presented with metastatic lung cancer at 

the time of diagnosis [3]. Among lung cancer cases, 

non-small cell lung cancer (NSCLC) accounts for 

approximately 85% of cases, with lung adenocarcinoma 

(LUAD) and lung squamous cell carcinoma (LUSC) 

being the most prevalent subtypes [1]. Survival 

outcomes are notably compromised for patients with 

advanced NSCLC, including those with metastatic  

or recurrent disease after initial definitive treatment, 

particularly in stages III and IV [4]. The significantly 

low survival rate in advanced NSCLC underscores  

the formidable challenges its intricate nature and 

heterogeneity pose.  

 

The advent of immune checkpoint inhibitors (ICIs) has 

significantly transformed the treatment landscape of lung 

cancer, particularly for advanced metastatic NSCLC. 

PD-(L)1 expression, tumor mutational burden (TMB) 

level, and microsatellite instability/defective mismatch 

repair (MSI/dMMR) status have emerged as important 

indicators to screen patients for potential long-term 

benefits from ICI therapy (https://www.nccn.org/). 

However, the tumor immune microenvironment (TIME) 

presents complex and heterogeneous characteristics 

across tumor types, especially for advanced cancers [5]. 

Due to the effectiveness of ICI therapy in improving  

the survival benefits of advanced NSCLC patients,  

there is a continuous need to explore more precise 

molecular biomarkers that can indicate the efficacy of 

immunotherapy. 

 
Recently, numerous prognosis signatures have been 

developed to stratify cancer patients accurately. In 

breast cancer, Oncotype DX and MammaPrint are two 

widely used prognostic and predictive biomarkers that 

assist in optimizing therapy decisions and evaluating 

prognosis. The MINDACT study demonstrated that 

patients classified as low risk of recurrence based  

on MammaPrint but high risk according to clinico-

pathological criteria achieved a 94.7% 5-year distant 

metastasis-free survival [6]. Wu et al. developed an 

immune-related prognosis signature comprising 21 

immune-related genes, enabling more accurate survival 

risk stratification for early-stage LUAD [7]. Feng et al. 

developed a CD8+ T cell-related risk model to predict 

immunotherapy outcomes and evaluate the survival  

of stage III LUAD patients [8]. In conclusion, mRNA 

expression is closely associated with cancer patients’ 

prognosis and therapeutic efficacy.  

 
Resisting cell death is a hallmark characteristic of 

cancer [9]. Programmed cell death (PCD) encompasses 

various pathways, including apoptosis, ferroptosis, and 

autophagy, and so on. These PCD pathways play pivotal 

roles in eliminating malignant and infected cells [10]. 

Epigenetic modifications can regulate these pathways, 

thus influencing tumor progression and treatment 

resistance [11]. Ferroptosis is a distinctive PCD 

pathway that regulates cell death by accumulating  

iron and lipid reactive oxygen species (ROS) within 

cells. It holds significant potential as a target for  

drug therapy. Ferroptosis inhibitors could regulate and 

activate P53 and its downstream genes and further 

induce ROS accumulation and ferroptosis [12, 13]. Ku 

et al. discovered that JI017 can induce cell autophagy 

and apoptosis by enhancing ROS levels, reducing tumor 

size in lung cancer. This remarkable application of  

cell death regulation in cancer therapy exemplifies the 

potential of this approach in treating malignant tumors 

[14]. Furthermore, the induction of autophagy has been 

demonstrated to effectively overcome the resistance to 

third-generation EGFR-TKI treatment in patients with 

NSCLC [15]. 

 

However, the implication of PCD pathway genes in  

the advanced NSCLC is still unknown. We need to 

elucidate the molecular significance of PCD-related 

genes in the tumor microenvironment and their 

correlation with patient survival outcomes and treatment 

efficacy assessment. This knowledge will enable  

better guidance for clinicians in precise evaluation. 

Furthermore, it can provide a theoretical basis for 

developing corresponding targeted drugs. This study 

also explored the prognosis value of PCD-related genes 

for survival and prediction ability for immunotherapy 

response in NSCLC. The Cancer Genome Atlas 

(TCGA) [16] dataset and Gene Expression Omnibus 

(GEO, https://www.ncbi.nlm.nih.gov/geo/) [17] database 

were utilized to develop and validate the performance of 

the model. As a result, seven genes associated with 

prognosis were identified. A risk model was constructed 

to assess the prognosis and accurately stratify advanced 

NSCLC patients to enhance survival outcomes. 

 

RESULTS 
 

Multi-omics analysis of PCD-related genes 

 

The workflow for this study is shown in Figure 1. The 

PCD-related genes contained the essential regulatory 

genes of twelve PCD pathways collected from the 

studies of Zou et al. [18]. Finally, 1178 PCD-related 

genes were brought into the analysis (Supplementary 

Table 1). By comparing the expression profiles of 1178 

genes associated with PCD between advanced NSCLC 

and normal tissues from the TCGA-Advanced dataset, 

we have successfully identified 278 differentially 

expressed genes (DEGs) (P adjust. < 0.05 and | log2FC | 

> 1). In the TCGA-Advanced NSCLC cohort, 105 genes 

were upregulated, and 173 genes were downregulated 

compared to normal tissues (Figure 2A).  
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The altered expression patterns of PCD-related genes in 

advanced NSCLC provide valuable insights. To assess 

the prognostic significance of these DEGs, we analyzed 

their correlation with the survival status of advanced 

NSCLC patients. Survival analysis revealed that 12 

genes among all DEGs significantly influenced patient 

prognosis, including adaptor related protein complex 1 

subunit sigma 1 (AP1S1), bruton tyrosine kinase (BTK), 

cholecystokinin (CCK), cyclin dependent kinase 

inhibitor 2A (CDKN2A), C-X3-C motif chemokine 

ligand 1 (CX3CL1), CX3CR1, interleukin 20 receptor 

subunit alpha (IL20RA), NLR family pyrin domain 

containing 7 (NLRP7), platelet factor 4 (PF4),  

rhotekin 2 (RTKN2), tribbles pseudokinase 3 (TRIB3), 

 

 
 

Figure 1. The workflow of the study. 
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Figure 2. The landscape of genetic and transcriptional alterations of PCD genes in TCGA-Advanced NSCLC. (A) Volcano plot 
depicting the differential expression of PCD genes between tumor and normal samples. (B) Circos plot illustrating the chromosomal 
distribution of 12 prognosis related differential PCD genes. Each outer circle represents a chromosome, and the connecting lines display the 
genomic location of the PCD genes. (C) Principal Component Analysis (PCA) plot of 12 PCD-related genes. (D) Correlation analysis heatmap of 
12 PCD-related genes in the TCGA-Advanced NSCLC dataset. The color scale represents the correlation coefficients, with red indicating 
positive correlation and blue indicating negative correlation. (E) Copy Number Variation (CNV) frequencies of 12 PCD-related genes.  
(F) Mutation frequencies of 12 PCD-associated differential genes in the TCGA-Advanced NSCLC cohort. The column height represents the 
frequency of mutations, and different types of mutations are distinguished by color. 
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and tyrosine 3-monooxygenase/tryptophan 5-mono-

oxygenase activation protein zeta (YWHAZ) 

(Supplementary Figure 1). The chromosomal positions 

of these 12 PCD genes are depicted in Figure 2B. 

Principal component analysis (PCA) revealed that the 

expression of the 12 PCD genes could effectively 

discriminate advanced NSCLC samples from normal 

samples (Figure 2C). These 12 PCD genes participated 

in various PCD processes, including apoptosis, 

cuproptosis, autophagy, pyroptosis, and lysosome-

dependent cell death, and exhibited close interactions 

(Figure 2D).  

 

Furthermore, copy-number alterations (CNA) analysis 

revealed frequent copy number variations changes in 

these 12 PCD genes, with a predominant occurrence of 

YWHAZ amplification and CDKN2A deletion (Figure 

2E). Further exploration of somatic mutation of 12 PCD 

genes exhibited a 21% mutation rate in advanced 

NSCLC. Notably, NLRP7 and CDKN2A showed the 

highest mutation frequency, accounting for 6% of the 

observed mutations (Figure 2F).  

 

These findings indicated the potential utility of  

12 PCD genes as prognostic markers in advanced 

NSCLC. 

 

Identification and enrichment analysis of PCD-

related subtypes 

 

The TCGA-Advanced NSCLC cohort underwent 

clustering analysis based on 12 prognostic-related 

PCD gene expressions using the non-negative matrix 

factorization (NMF) algorithm. The research identified 

two distinct clusters (Figure 3A, 3B), with patients  

in cluster 1 showing significantly worse survival 

prognosis compared to cluster 2 (P=0.037, Figure 3C). 

The clinical statistical analysis results between clinical 

factors and two clusters are shown in Supplementary 

Table 2. These findings suggest that the expression 

patterns of these PCD genes can effectively stratify 

advanced NSCLC patients based on their survival 

outcomes. A total of 359 DEGs were identified 

between cluster 1 and cluster 2 (Supplementary  

Table 3). these DEGs were used for GO enrichment 

analysis, and numerous metabolic and immune-related 

biological processes were significantly enriched 

(Figure 3D). These processes included the icosanoid 

metabolic process, metabolic hormone process, tertiary 

alcohol metabolic process, antigen processing and 

presentation, and leukocyte-mediated cytotoxicity. The 

KEGG pathway enrichment analysis also demonstrated 

significant enrichment in 17 pathways (Figure 3E), 
including cytokine-cytokine receptor interaction, tight 

junction, arachidonic acid metabolism, and steroid 

hormone biosynthesis. 

Moreover, substantial differences were observed  

in several hallmark pathways between the two  

clusters (Figure 3F). These included G2M check- 

point, MYC targets, oxidative phosphorylation, DNA 

repair, apoptosis, NOTCH signaling, and KRAS  

signaling. These findings shed light on the significantly 

predictive value of PCD genes in advanced NSCLC.  

 
Development of the prognosis risk model for 

advanced NSCLC based on the PCD-related 

subtypes 

 

According to WGCNA analysis, the gene co-expression 

network was constructed to find the critical modules 

associated with metastatic status and PCD cluster-

related subtypes. A total of 39 modules were identified, 

and the “pink” (PCD cluster: R=0.26, p=2e-04, M stage: 

R=0.23, p=0.001), “tan” (PCD cluster: R=0.23, 

p=0.001, M stage: R=0.17, p=0.02), and “brown” (PCD 

cluster: R=0.25, p=5e-04, M stage: R=0.114, p=0.05) 

modules were significantly associated with PCD clusters 

and metastatic status (Figure 4A and Supplementary 

Figure 2A–2C). Next, 55 genes were initially selected 

through univariate Cox analysis from 1460 module-

related genes (Supplementary Table 4). Subsequently, 

the LASSO method identified 15 genes (Supplementary 

Table 4 and Supplementary Figure 3A, 3B). Finally, 

seven genes (CCL14, CPA3, CX3CR1, IKAROS family 

zinc finger 3 (IKZF3), kinesin family member 21B 

(KIF21B), long intergenic non-protein coding RNA 528 

(LINC00528), and solute carrier family 16 member 4 

(SLC16A4) were identified based on the multivariate 

Cox regression analysis of all different combinations  

of the above 15 genes (Supplementary Table 4). The 

multivariate Cox regression analysis demonstrated  

the significant predictive value of the identified seven 

genes (Figure 4B). The PCD-related risk score for  

the Advanced NSCLC (PRAN) model was developed 

using RNA expression values and multivariate Cox  

regression coefficients of seven PCD-related genes. The 

formula was as follows: PRANScore=−0.32×CCL14-

0.06×CPA3-0.22×CX3CR1-0.23×IKZF3+0.47×KIF21B-

0.54×LINC00528+0.13×SLC16A4. Based on the PRAN 

risk model, advanced NSCLC patients were classified 

into two groups. The PRAN-Low group exhibited 

significantly better overall survival (OS) compared to 

the PRAN-High group (P<0.0001, Figure 4C). The  

area under the ROC curve (AUC) for predicting 1-, 3-, 

and 8-year survival using the PRAN risk model were 

0.704, 0.731, and 0.854, respectively (Figure 4D). In 

addition, seven model genes’ expression significantly 

differed between PRAN-High and PRAN-Low groups 

(Figure 4E). These findings highlight the potential  

of the PRAN model as a valuable prognostic tool  

for predicting survival outcomes in advanced NSCLC 

patients.  
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Figure 3. Cluster analysis of 12 PCD-related genes in TCGA-Advanced NSCLC dataset. (A) Non-negative Matrix Factorization (NMF) 

clustering of twelve PCD-related genes. The correlation coefficients at k = 2-10 are presented in the Figure. (B) Consistency plot illustrating 
the stability of NMF clustering results. (C) Kaplan-Meier (KM) survival curves of patients in PCD-related clusters. (D) Gene Ontology (GO) 
analysis of differential genes between cluster 1 and cluster 2. (E) Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differential 
genes between cluster 1 and cluster 2. (F) Heatmap displaying the hallmark pathways in different PCD clusters. 
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Figure 4. Development of prognostic signature using PCD-related genes in TCGA-Advanced NSCLC dataset. (A) Heatmap of 

correlation between gene modules and clinical traits, each cell containing Pearson’s correlation coefficient and p-value. (B) Forest plot 
depicting the associations between the expression levels of seven PCD genes and overall survival (OS) in the training cohort. Hazard Ratio 
(HR), 95% Confidence Interval (CI), and p-value were determined by multivariate Cox regression analysis. (C) Kaplan-Meier (KM) curve 
analysis of the prognostic model in the training set, showing the survival differences between high-risk and low-risk groups. (D) Time-
dependent receiver operating characteristic (ROC) curves and area under the curve (AUC) values of the PRAN model for predicting survival 
status in 1-, 3-, and 8-year. (E) Comparison of PRAN scores, survival status, and expression of seven PCD genes between PRAN-High and 
PRAN-Low groups. P-value: * < 0.05; *** < 0.001. 
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The correlation analysis between the PCD subtype and 

the PRAN risk model revealed that the majority of 

patients in cluster 1 were classified into the PRAN-High 

group, and the PRAN score exhibited a significantly 

higher value in cluster 1 compared to cluster 2, indicating 

an increased risk in advanced NSCLC (P=0.00047, 

Figure 5A, 5B). Upon further investigating the 

correlation between the previously identified 12 PCR-

related genes and the PRAN risk model, we observed 

significant expression differences between the PRAN-

High and PRAN-Low groups (Figure 5C). Through 

comprehensive univariate (Figure 5D) and multivariate 

Cox (Figure 5E) regression analyses, we systematically 

investigated the prognostic significance of both clinical 

characteristics (stage, age, and gender) and the PRAN 

risk model in advanced NSCLC. Univariate Cox 

regression indicated PRAN was a risk factor for the 

overall survival in advanced NSCLC (P=2.5e-11, 

HR=2.7, 95% CI =2-3.6). Meanwhile, Multivariate Cox 

regression analysis further confirmed the prognosis 

significance of PRAN in advanced NSCLC (P=2.5e-12, 

HR=3.1, 95% CI=2.3-4.3). Our findings demonstrated 

that the model exhibited remarkable stability and 

superior predictive value compared with clinical factors. 

 

Somatic mutation profile analysis revealed that 

mutations of filaggrin (FLG) and CUB and Sushi 

multiple domains 1 (CSMD1) frequently occurred in  

the PRAN-High group, while zinc finger homeobox 4 

(ZFHX4) and xin actin binding repeat containing 2 

(XIRP2) mutated more in the PRAN-Low group 

(Supplementary Figure 3C). TMB different analysis 

demonstrates no difference between PRAN-High and 

PRAN-Low groups (Supplementary Figure 3D). 

However, the PRAN-Low group showed higher IFN-γ 

response (Supplementary Figure 3E) and TCR diversity 

(Supplementary Figure 3F, 3G), implying robust anti-

tumor activity.  

 

These results validate the robustness and clinical utility 

of the model as a reliable predictive tool for advanced 

NSCLC. 

 

Enrichment analysis and drug sensitivity prediction 

based on PRAN risk model for advanced NSCLC 

 

To further explore the enrichment of molecular 

biological processes and signaling pathways in the 

PRAN-High and PRAN-Low groups, we conducted  

a GSEA analysis. The results revealed significant 

enrichment of pyrimidine metabolism, spliceosome, and 

aminoacyl tRNA biosynthesis pathway in the PRAN-

High group. In contrast, cell adhesion molecules cams, 
cytokine-cytokine receptor interaction, T/B cell receptor 

signaling, cell cycle pathway, and so on, in the PRAN-

Low group (Figure 6A).  

Next, we analyzed the correlation of PRAN score with 

cancer immune cycle activity and metabolism-related 

pathways (Figure 6B). Most immune cycle activity 

was negatively related to the PRAN score, implying 

decreased anti-tumor immunity in the higher PRAN 

score population. Interestingly, diverse correlations 

with the PRAN score were observed concerning 

metabolic pathways. Notably, the Hexosamine bio-

synthesis pathway demonstrated the strongest positive 

correlation with the PRAN score, highlighting its 

critical role in the PRAN-High group. Additionally, 

several signaling pathways, including Galactose 

metabolism, Glyoxylate and Dicarboxylate metabolism, 

Purine metabolism, Pyrimidine metabolism, Cysteine 

and methionine metabolism, Biotin metabolism, and 

Ubiquinone and other terpenoid-Quinone biosynthesis 

were significantly positively associated with the PRAN 

score. Conversely, ADP-Ribosylation, Arachidonic 

acid metabolism, linoleic acid metabolism, and  

alpha-linoleic acid metabolism exhibited significant 

negative correlations with the PRAN score. These 

findings provide valuable insights into the complex 

interplay between the PRAN score and metabolic 

pathways, contributing to a deeper understanding  

of the metabolic dysregulation underlying advanced 

NSCLC. 

 

The results above indicate a significant correlation 

between the PRAN score, immune microenvironment 

activity, and metabolic processes in advanced  

NSCLC. Furthermore, we predicted the potential  

drug sensitivities for patients in different PRAN  

risk groups (Figure 6C). The complete sensitive drugs 

and statistical data are presented in Supplementary 

Table 5. The smaller IC50 value indicates that 

inhibitors function more effectively with targeted 

compounds [19]. Remarkably, the PRAN-Low group 

demonstrated notable sensitivity to sunitinib, AZD1480, 

regorafenib, and five PCD-targeted drugs, including 

necrosulfonamide (necrosis apoptosis inhibitor), 

Serdemetan (HDM2 inhibitor, delayed apoptosis), 

navitoclax: PLX-4032 (target BCL2 and BRAF, 

apoptosis inhibitor), MG-132 (inducing apoptosis, 

activating autophagy), and ML162 (inducing 

ferroptosis), whereas the PRAN-High group showed 

significant sensitivity to pevonedistat (causing cell 

death) and EX-527 (enhancing autophagy). These 

results underscore the clinical implications of the 

PRAN model in guiding personalized treatment 

strategies in advanced NSCLC patients. 

 

Molecular docking was used to screen potential drug 

candidates and elucidate the molecular mechanisms 
involved. We employed MOE software to simulate  

the binding modes of small molecule drugs to seven 

PCD-related genes. As revealed by molecular docking 
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Figure 5. The correlation validation of PRAN risk model in TCGA-Advanced NSCLC dataset. (A) The Sankey plot illustrates the 

distribution of PCD risk groups, PCD clusters, and survival outcomes. (B) Box plots depicting the relationship between PCD clusters and PRAN 
risk groups. (C) Box plots showing the expression levels of 12 PCD-related prognosis genes between PRAN-High and PRAN-Low groups.  
(D) Univariate Cox regression analysis of PCD risk scores and clinical variables. (E) Multivariate Cox regression analysis of PCD risk scores and 
clinical variables. P-value: ns >=0.05; * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001. 
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Figure 6. Biological function analysis and drug-susceptibility analysis of PRAN risk model in TCGA-Advanced NSCLC dataset. 
(A) The lollipop plot displays the top 10 significantly enriched suppressed pathways and all activated pathways in the PRAN-High and PRAN-
Low groups. (B) Pearson correlation analysis demonstrates the relationship between PCD scores and cancer immune cycle activity (left) and 
metabolism-related pathways (right). (C) Sensitivity analysis of anti-tumor drugs between PRAN-High and PRAN-Low groups. P-value: ns 
>=0.05; * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001. 
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analyses, CCL14, CPA3, CX3CR1, IKZF3, and 

KIF21B demonstrated the potential to interact with 

these small molecule drugs (Supplementary Table 6). 

Furthermore, based on these analyses, we identified the 

top-ranked drug for each target protein with the highest 

binding affinity Figure 7A–7E). The navitoclax closely 

bonds with the CCL14 protein by the amino acid 

residue of Gln-C20 (Figure 7A). The navitoclax closely 

bonds with the CPA3 protein by the amino acid residue 

of Glu-B136 (Figure 7B). The navitoclax closely bonds 

with CX3CR1 protein by the amino acid residue of Leu-

184 (Figure 7C). The AZD1480 closely bonds with the 

IKZF3 protein by the amino acid residues of Arg-B418, 

Gly-B416, and Trp-A380 (Figure 7D). The MG-132 

closely bonds with the KIF21B protein by the amino 

acid residue of Glu-A411 and Arg-A105 (Figure 7E).  

 

Tumor immune microenvironment (TIME) 

characteristics assessment based on the PRAN risk 

model for advanced NSCLC 

 

We utilized various algorithms to analyze immune cell 

abundance across different PRAN subgroups in the 

TCGA-Advanced NSCLC dataset. The MCP counter 

analysis demonstrated significantly higher enrichment 

scores of T cells, B lineage cells, monocytic lineage cells, 

myeloid dendritic cells, and endothelial cells in the 

PRAN-Low group (Figure 8A). Consistently, ssGSEA 

analysis revealed enhanced immune cell infiltration in  

the PRAN-Low group, corroborating the MCP counter 

findings (Figure 8B). Furthermore, CIBERSORT 

algorithm results confirmed a higher infiltration content 

of CD8 T cells and macrophages M1 cells in the  

PRAN-Low group, further supporting the robust anti-

tumor immune activity associated with the PRAN-Low 

group. Interestingly, the PRAN-High group exhibited 

significantly higher infiltration content of macrophages 

M0, T cell follicular helper cells, and activated dendritic 

cells, suggesting that the survival advantage conferred by 

these three immune cell populations may be offset by 

other factors within the TIME (Figure 8C). The PRAN-

High group exhibited significantly lower ESTIMATE 

scores, as well as lower stromal scores and immune 

scores, indicating higher tumor purity and increased 

infiltration of tumor cells (Supplementary Figure 4A). 

The expression of HLA (Supplementary Figure 4B)  

and immune inhibitors genes (Supplementary Figure  

4C) were higher in the PRAN-Low group compared  

with the PRAN-High group. At the same time, the 

expression of immunostimulatory genes was also 

significantly upregulated against the antigen presentation 

and immune response (Figure 8D). These findings 

provide comprehensive insights into the intricate 
interplay between TIME characteristics and the PRAN 

model, underscoring the complex dynamics of the tumor 

immune microenvironment in advanced NSCLC. 

Validation of the PRAN risk model for advanced 

NSCLC 

 

The extensive analyses performed in this study  

provide compelling evidence supporting the PRAN  

risk model’s ability to accurately predict survival 

prognosis and TIME characteristics of patients with 

advanced NSCLC. We conducted rigorous validation 

across multiple independent validation cohorts to 

further validate the predicted performance. Survival 

analysis conducted in two independent NSCLC 

validation cohorts, namely GSE61676 (P=0.034, Figure 

9A) and GSE13213 (P=0.022, Figure 9B), revealed a 

significant difference in overall survival (OS) between 

the PRAN-High and PRAN-Low groups. The respective 

optimal AUC values for predicting performance were 

0.648 (Figure 9D) and 0.672 (Figure 9E). These results 

further validate the predictive utility of the PRAN 

model in accurately stratifying patients with advanced 

NSCLC. 

 

What’s more, consistent with the analysis results of the 

advanced NSCLC dataset, the patients with early 

NSCLC from the GSE74777 and GSE50081cohort and 

those in the PRAN-High showed worse prognoses than 

those in the PRAN-Low (Figure 9G and Supplementary 

Figure 5A). In addition, the predicted survival ROC 

curve confirmed the precise predictive capacity of the 

risk model, with area under the ROC curve (AUC) 

values of 0.608, 0.707, 0.729 and 0.585, 0.599, 0.603 

for 1-, 2-, and 3-year survival, respectively (Figure 9H 

and Supplementary Figure 5B). 

 

We sought to assess the PRAN risk model’s predictive 

capacity in determining patients’ immunotherapy 

responses. Survival analyses were performed in two 

immunotherapy cohorts of lung cancer (GSE135222 and 

GSE93157) and one melanoma (GSE91061). Due to the 

limited sample size in the GSE135222 (Supplementary 

Figure 5C) and GSE93157 (Supplementary Figure 5D) 

cohorts, we did not observe a significant difference  

in PFS between the two PRAN subgroups. However,  

we observed a slightly better prognosis in the PRAN-

Low group than in the PRAN-High group. In contrast, 

in the independent melanoma immunotherapy cohort 

GSE91061, the PRAN-Low group demonstrated a 

significantly superior OS benefit compared to the 

PRAN-High group (P=0.0082, Figure 9C), with an 

optimal AUC of 0.741 (Figure 9F) for predicting 

performance. Notably, the PRAN-High group exhibited 

a significantly lower immunotherapy response rate  

than the PRAN-Low group in the GSE91061 NSCLC 

cohort (P=0.002, Figure 9I). These findings further 
reinforced the value of PRAN model as a predictive  

tool in guiding treatment decisions for patients with 

advanced NSCLC. 
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Figure 7. The molecular docking posture predicting for the sensitive anti-tumor drugs and targeted PCD genes. (A) Docking 

position of CCL14 active pocket with navitoclax. (B) Docking position of CPA3 active pocket with navitoclax. (C) Docking position of CX3CR1 
with navitoclax. (D) Docking position of IKZF3 with AZD1480. (E) Docking position of KIF21B with MG-132. 
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Establishment of a nomogram based on the PRAN 

risk model and clinical factors for advanced NSCLC 

 

Finally, for better application in clinical practice, we 

established a nomogram based on the multivariate Cox 

regression analysis of the PRAN score, and age, stage, 

smoking status, and gender were included (Figure 

10A). Survival analysis demonstrated a significant 

difference in OS between the two subgroups based  

on the nomogram score, with the high-risk group 

exhibiting worse OS outcomes (P<0.0001, Figure 

10B). The nomogram showed an optimal AUC value 

of 0.843, indicating its predictive solid performance 

(Figure 10C). Furthermore, DCA results confirmed the 

nomogram’s robustness and optimal predictive ability 

(Figure 10D). Calibration curves were generated to 

assess the accuracy of the nomogram in predicting  

the 1-, 3-, and 8-year survival rates, further validating 

its predictive accuracy (Figure 10E). The nomogram 

could be a practical tool for prognostic assessment and 

aid in clinical decision-making. 

 

The mRNA and protein expression difference of 

seven PRAN-genes between tumor and normal cells 

in NSCLC 

 

The mRNA expression of seven PRAN genes (CCL14, 
CPA3, CX3CR1, IKZF3, KIF21B, LINC00528, and 

SLC16A4) exhibited noticeable difference between 

normal and tumor in NSCLC (Figure 11A). According 

to the RNA expression validation in two human NSCLC 

cell lines, A549 and NCI-H1299, and one human lung 

 

 
 

Figure 8. Immune infiltration analysis of PRAN-High and PRAN-Low groups TCGA-Advanced NSCLC dataset. (A) Violin plot 
showing the immune cell enrichment scores of PRAN-High and PRAN-Low groups, assessed using MCPcounter. (B) The ssGSEA algorithm 
shows the immune cell infiltration of immune-related functions and pathways in PRAN-High and PRAN-Low groups. (C) Immune cell 
infiltration content of PRAN-High and PRAN-Low groups was analyzed using the CIBERSORT algorithm. The analysis provides insights into the 
proportion of different immune cell types in each risk group. (D) Expression of immunoinhibitor genes between PRAN-High and PRAN-Low 
groups. P-value: * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001. 
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bronchial epithelial cell line (BEAS-2B), significant 

expression differences were observed between normal 

and tumor cells (Figure 11B). H1299 was a p53 

deficient cell line, and the expression of CCL14, CPA3, 

CX3CR1, KIF21B, and SLC16A4 was lower than in 

A549 and Beas-2b. The expression of IKZF3 was 

higher in H1299 cells than in A549 and Beas-2b. The 

expression of IKZF3, CPA3, and LINC00528 were 

 

 
 

Figure 9. The predicting performance validation of the PRAN risk model in multiple GEO cohorts. (A–C) Kaplan-Meier survival 

analysis in NSCLC validation cohort GSE61676, GSE13213, and GSE91061. (D–F) Time-dependent ROC curves between PRAN-High and PRAN-
Low groups in validation cohort GSE61676, GSE13213, and GSE377453. (G) Kaplan-Meier survival analysis in validation cohort GSE74777.  
(H) Time-dependent ROC curves between PRAN-High and PRAN-Low groups in validation cohort GSE74777. (I) The predicting performance of 
immunotherapeutic efficiency of PRAN risk model in the GSE91061 cohort. 
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down-regulated in A549 cells than in normal cells, 

while the expression of CCL14, CX3CR1, KIF21B, and 

SLC16A4 were up-regulated in A549 cell than in normal 

cell. The protein expression results acquired from the 

Human Protein Atlas (HPA) database were consistent 

with the mRNA results, showing the significantly 

different between NSCLC tumor and normal tissues 

(Figure 11C and Supplementary Table 7). 
 

DISCUSSION 
 

As a common cancer with high morbidity and 

mortality, lung cancer still needs excellent attention 

[20]. Advanced NSCLC poses treatment challenges and 

a bleak prognosis, especially patients with metastatic 

NSCLC often experience low survival rates [21]. In 

recent years, ICIs have garnered widespread utilization 

in lung cancer treatment, particularly advanced 

metastatic NSCLC, yielding promising outcomes  

[22, 23]. Hence, investigating molecular markers 

associated with NSCLC prognosis and immunotherapy 

is imperative to inform treatment decisions for 

advanced NSCLC patients. Multiple studies support 

the use of risk models to predict tumor immunotherapy 

responses and guide personalized medicine [24–26].  

 

We rigorously examined the prognostic relevance of 

tumor programmed cell death processes in advanced 

NSCLC. We identified twelve DEGs, all showing 

significant predictive value in advanced NSCLC. 

According to RNA expression of these twelve genes, 

molecular subtyping analysis identified two distinct 

subtypes with divergent survival outcomes. Among 

them, CDKN2A exhibited the highest mutation 

 

 
 

Figure 10. Construction and validation of the PRAN score-based nomogram. (A) The nomogram plot was constructed in the training 

cohort with incorporation of PRAN and clinical characteristics. (B) Kaplan-Meier survival curves based on PRAN scores calculated using the 
nomogram. (C) ROC curves for predicting 1-year, 3-year and 8-year OS for the nomogram. (D) Decision curve analysis of nomogram, PRAN 
risk model and clinical characteristics. The black line in this Figure indicates the assumption of no patient death. (E) Nomogram calibration 
plot based on the agreement between predicted and observed values at 1, 3, and 8 years. X-axis is nomogram predicted overall survival, y-
axis is actual overall survival, dashed line is ideal performance of nomogram, and 95% confidence interval is represented by closed vertical 
line. 
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frequency and CNV deletion. CDKN2A, as a cell  

cycle regulation gene, is associated with cuproptosis 

processes and is shown to impact cancer patients’ 

prognosis [27]. 

 

Through a comprehensive approach, our study  

aimed to gain a profound understanding of the  

intricate relationship between the identified genes  

and the specific risk associated with advanced 

NSCLC. The mRNA expression of seven PRAN  

genes (CCL14, CPA3, CX3CR1, IKZF3, KIF21B,  
LINC00528, and SLC16A4) showed significant 

differences between normal and tumor samples in the 

advanced NSCLC cohort. The immunohistochemistry 

(IHC) stained images obtained from the HPA dataset 

also demonstrate differential protein expression. These 

findings were further validated through RT-qPCR 

experiments in A549 and NCI-H1299 (p53 deficient), 

and BEAS-2B cell lines, consistently showing 

significant differences in gene expression between 

normal and tumor cells. However, the expression  

of these genes in A549 and H1299 cells exhibited 

some inconsistency, potentially due to the underlying 

heterogeneity of NSCLC tumors, as A549 and H1299 

represent different subtypes with distinct genomic 

aberrations [28]. We speculate that this difference may 

arise from specific molecular mechanisms of cell lines, 

such as cell line origin, differentiation status, gene 

mutation, epigenetic regulation, and heterogeneity of 

transcription factors. In addition, A549 and H1299 are 

cell lines of adenocarcinoma and large cell carcinoma 

respectively, and they also have significant differences 

in cell morphology and molecular characteristics. This 

difference may affect the activation or inhibition of 

 

 
 

Figure 11. Comparison analysis of the expression of seven PRAN model genes between NSCLC tumor and normal samples at 
RNA and protein levels. (A) RNA expression differences of seven PRAN model genes between tumor and normal samples in TCGA-

Advanced NSCLC. (B) RNA expression differences of seven PRAN model genes between two tumor cell lines and one normal cell line. (C) The 
immunohistochemistry image of CCL4 (CAB004423), CPA3 (HPA008689), CX3CR1 (HPA046587), IKZF3 (HPA024377), KIF21B (HPA027249), and 
SLC16A4 (HPA046986) from HPA database. The URLs of the source of each image were shown in Supplementary Table 7. 
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intracellular signaling pathways, resulting in differences 

in gene expression levels. 

 

The PRAN-High group is associated with pyrimi- 

dine, spliceosome processes, and various metabolic 

pathways (e.g., hexosamine biosynthesis) based on 

biological function and signaling pathway enrichment. 

Pyrimidine synthesis enhances Notch signaling and 

upregulates c-Myc expression at the transcriptional 

level, leading to an increase in key glycolytic enzymes. 

The key enzymes involved in up-regulating pyrimidine 

synthesis, CAD and DHODH, are implicated in 

enhancing the chemoresistance of gastric cancer by 

accelerating glycolysis. Conversely, they sensitize 

cancer cells to chemotherapy in vitro and in vivo by 

inhibiting the pyrimidine biosynthesis pathway [29]. 

Pyrimidine synthesis is demonstrated up-regulation in 

Glioblastoma stem cells (GSCs) and is associated with 

poor survival in glioma patients [30]. The spliceosome 

components and splicing factor play an essential role  

in cancers. Notably, splicing alterations can profoundly 

affect downstream cellular signaling, contributing to 

cancer development and progression [31]. Metabolic 

pathways have established crucial roles in cancer 

development and proliferation over the decades. 

Moreover, it has become increasingly evident that 

metabolic pathways closely interact with immune cells 

during reprogramming cancer cell metabolism [9, 32]. 

The hexosamine biosynthesis pathway, a vital part of 

glucose metabolism, is consistently enhanced in cancers 

during progression [33]. These remarkable insights into 

the intricate connections between metabolism pathways 

and cancer biology have revealed the underlying 

biological mechanism of the PRAN risk model.  

 

Interestingly, the PRAN-High group observed 

significant enrichment of T-cell follicular helper cells 

and activated dendritic cells. The T follicular helper cell 

is related to better survival and therapeutic outcomes in 

NSCLC, which may be because the T follicular helper 

cell serves as a critical physiological source of IL-21  

for CD8 T cell infiltrating the tumor [34]. Activated 

dendritic cells serve as an antigen presentation vector, 

and the related neoantigen vaccine has become an 

effective therapeutic drug that could improve the 

survival status of patients with advanced lung cancer 

[35]. When immune-activating and immune-stimulating 

cells coexist, their mutual interactions finally have a 

poor impact on the survival outcomes of patients in  

the PRAN-High group, and the survival advantage may 

be offset [36].  

 

To facilitate the practical application of the PRAN  
risk model in clinical practice, we have combined  

the model with patients’ baseline characteristics to 

construct a more intuitive nomogram. Its superior 

performance enhances clinical transformation and aids 

in decision-making for therapeutic strategies.  

 

Furthermore, we performed sensitive drug prediction 

on the PRAN risk model. Notably, seven of these 

drugs specifically target the cell death pathway, 

leveraging the regulatory role of cell death in tumor 

biology processes to improve patient survival outcomes. 

Necrosulfonamide, as an inhibitor of necroptosis, exerts 

its action by targeting mixed lineage kinase domain-

like protein (MLKL), which is pivotal in initiating 

necroptosis and triggering apoptosis in cancer cells [37]. 

Ferris et al. uncovered the mechanism of pevonedistat 

in inducting cell death for colorectal cancer (CRC) 

therapy, and the responses were effective for both  

p53 wild-type and mutant mCRC, implying the 

applicable potent of pevonedistat in other cancers [38]. 

EX-527 could effectively reverse the AICAR-induced 

downregulation of c-Myc and metadherin (MTDH) 

expression. Moreover, without MTDH, treatment with 

EX-527 will significantly increase breast cancer cell 

death [39]. Collectively, these studies offer compelling 

evidence and elucidate the molecular mechanisms 

associated with cell death inhibitors, suggesting their 

promising potential in advanced NSCLC therapy. 

Moreover, molecule docking analysis further explores 

the optimal binding position between target PRAN 

genes and small molecule drugs. As a BCL-2 inhibitor, 

the navitoclax closely binds with proteins and amino 

acid residues of hub genes CCL14, CPA3, and CX3CR1. 

Having been demonstrated synergy therapeutic efficient 

when combined with targeted therapies in hematologic 

malignancies, the navitoclax exhibited compelling 

clinical efficacy when combined with Osimertinib for 

EGFR-mutant NSCLC patients in a phase IB clinical 

study (NCT02520778) [40]. In addition, navitoclax 

also shows increased efficacy in NSCLC patients with 

a poor response to taxane chemotherapy [41]. These 

findings shed new light and a solid foundation for  

the clinical therapy application of navitoclax. 

 

There is still a limitation in our study. We performed 

the validation experiment using NSCLC cell lines, 

which cannot reveal the heterogeneous characteristics 

and prognosis significance underlying advanced 

NSCLC tumor cells. Further studies across paired 

advanced NSCLC and normal tissues are warranted  

to fully elucidate the heterogeneity and characterize 

subtype-specific expression profiles related to NSCLC 

pathogenesis. 

 

In conclusion, our findings contribute to  

advancing precision medicine approaches in  
NSCLC management. The identified prognostic and 

immunotherapy biomarkers offer promising avenues 

for tailoring treatment strategies, optimizing patient 
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outcomes, and enhancing the overall quality of life  

for those afflicted with advanced NSCLC. As we 

continue to uncover the complex molecular landscape 

of this disease, our predictive model presents a 

valuable tool to guide clinical decision-making and 

improve patient care. Further prospective studies are 

warranted to realize this model’s potential in real-

world clinical practice fully. 

 

MATERIALS AND METHODS 
 

Data collection and processing 

 

The expression data, somatic mutation information, 

and copy number variation (CNV) profiles of  

TCGA-LUAD and TCGA-LUSC from the TCGA 

database were downloaded from UCSC Xena 

(https://xenabrowser.net/datapages/), and the corres-

ponding clinical information data were obtained using 

the R package “TCGAbiolinks”. One hundred ninety-

seven advanced tumor samples were selected as the 

training set and named TCGA-Advanced NSCLC 

(selection criteria for advanced patients: Stage III- 

IV) (Supplementary Table 2). Three public datasets 

(GSE13213, GSE61676, GSE91061, GSE74777 and 

GSE50081) with available overall survival (OS) data 

and two datasets (GSE135222 and GSE93157) with 

progression-free survival (PFS) data were downloaded 

from the GEO database as validation sets. GSE61676 

is advanced NSCLC dataset without immunotherapy, 

GSE13213 is NSCLC dataset without immunotherapy, 

GSE74777 is early LUSC dataset without immuno-

therapy, GSE50081 is early NSCLC dataset without 

immunotherapy, GSE91061 is melanoma dataset 

treated with anti-CTLA4 and PD-1, GSE135222 is 

advanced NSCLC dataset treated with anti-PD- 

1/PD-L1, and GSE93157 is lung cancer dataset  

treated with anti-PD-1. All included GEO cohorts’ 

sample information is presented in Supplementary 

Table 8. 

 

Identification of the expression and variation levels 

of PCD-related genes  

 

We collected raw transcriptome data from 197  

TCGA-Advanced NSCLC patients and 108 normal 

tissues from the TCGA-LUAD and TCGA-LUSC 

cohorts. The “limma” package was utilized to identify 

differentially expressed genes (DEGs) following the 

criteria of P adjust. < 0.05 and | log2FC| > 1. Kaplan-

Meier analysis was performed to assess the impact  

of each DEG on overall survival (OS) time. The 

“maftools” package explored somatic mutations among 

TCGA-Advanced NSCLC patients. We visualized the 

distinct characteristics of PCD-related genes using a 

circos plot created with the “RCircos” R package. 

Unsupervised clustering and functional analysis 

 

To explore the prognosis significance of PCD pathways, 

we performed the consensus unsupervised clustering 

analysis using the NMF package in R based on twelve 

PCD-related DEGs. The number of clusters k was set 

from 2 to 10. The stability of clusters obtained through 

NMF was assessed by the cophenetic correlation, which 

ranged from 0 and 1. A higher value indicated more 

excellent cluster stability. DEGs between different PCD 

clusters were identified using the “limma” R package 

with cut-off criteria of |logFC| > 1 and P adjust. < 0.05. 

The “clusterProfiler” R package was used to perform 

enrichment analysis on the DEGs.  

 

Selection of modules associated with PCD clusters 

traits by WGCNA 

 

We performed Weighted Gene Co-expression  

Network Analysis (WGCNA) using the R package 

“WGCNA” to identify PCD cluster-related genes 

based on the TPM data. We evaluated different  

soft thresholds (β values from 1 to 20) for scale 

independence and average connectivity to construct  

a scale-free network. The appropriate β value was 

selected when the scale independence exceeded 0.9 

and the average connectivity remained relatively low. 

Next, we categorized the genes into distinct modules 

by calculating the topological overlap matrix (TOM). 

Due to metastatic invariably occurring as a late event  

in tumor progression and the complex relationship 

between metastasis and cell death, some tumor cells 

may increase their ability of survival and migration  

by inhibiting apoptosis or inducing abnormal cell 

death in the process of metastasis [42]. And once the 

tumor cells successfully metastasized to other parts, 

some cells may suffer cell death due to the influence 

of heterogeneous environment [43, 44]. Correlations 

between modules and clinical characteristics were 

assessed, and modules significantly associated with 

metastatic status and PCD cluster were further 

analyzed (p < 0.05). 

 
Development and validation of the risk model 

 
Univariate Cox regression analysis was used  

to evaluate the prognosis value of the critical  

module genes and screen predictive genes (p <  

0.05). The Least Absolute Shrinkage and Selection 

Operator (LASSO) regression analysis was performed 

on candidate genes significantly associated with 

prognosis. Then, multivariate Cox regression was 

conducted on all combinations of 15 candidate genes 

screened by LASSO analysis in the TCGA Advanced 

NSCLC. The risk scores selected gene combinations 

were calculated using the multivariate Cox regression 
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coefficients. Finally, we constructed a predictive 

model with the highest accuracy and calculated risk 

scores as follows: 

 
m

i 1 i iRisk score Expression Coefficient
=

=   

 

The m is the number of signature genes for constructing 

the model; the “Expressioni
” indicates the expression 

value of signature gene in the sample; the Coefficient is 

the multivariate Cox regression coefficient of gene. 

 

The median risk score was used as cutoff value  

for patients’ classification. The receiver operating 

characteristic (ROC) curve was used to test the accuracy 

of the risk model. Therefore, the “pROC” package  

was applied to perform ROC analysis and calculate  

the area under the ROC curve (AUC) to evaluate the 

predictive performance of the PCD-related prognostic 

model. ROC curves for risk scores at 1, 3, and 8 years 

were plotted using the R package “timeROC”. 

 

We constructed a nomogram prediction model using the 

“RMS” package, incorporating the PCD risk score and 

clinical factors. Calibration and ROC curves were used 

to evaluate the prediction accuracy of the nomogram. 

Additionally, we conducted a decision curve analysis 

(DCA) to test the nomogram’s accuracy. 

 
Correlation analysis between clinical characteristics, 

mutation, and immune-related characteristics with 

the PCD risk model 

 
We performed hazard rate analysis on clinicopathological 

characteristics, including age, gender, stage, TNM stage, 

and the PCD risk score using univariate and multivariate 

Cox regression analyses. Somatic mutations were 

analyzed using the “Maftools” package. 

 
In the TCGA-Advanced NSCLC cohort, the 

CIBERSORT algorithm [45], single-cell gene set 

enrichment analysis (ssGSEA) algorithm [46], Micro-

environment Cell Populations-counter (MCPcounter) 

algorithm [47], and Estimation of Stromal and Immune 

cells in MAlignant Tumors using Expression data 

(ESTIMATE) algorithm [47] were used for quantify 

immune cells abundance.  

 
Enrichment analysis, drug susceptibility analysis 

and molecular docking simulation 

 
Gene set enrichment analysis (GSEA) was performed 

according to the fold change of all genes in the TCGA-
Advanced NSCLC cohort [48]. Differentially enriched 

KEGG pathways were identified using the Normalized 

Enrichment Score (NES) and adjusted p-value. The R 

package “clusterprofiler” was utilized for this  

analysis, with the “BH” method employed for p-value 

correction. Additionally, the cancer immunity cycle and 

114 metabolic pathways were quantified using single-

sample gene set enrichment analysis (ssGSEA) in the 

GSVA package. 

 

Cancer Therapeutics Response Portal (CTRP) is a 

public database containing gene expression of cancer 

cell line and drug sensitivity information [49, 50]. The 

CTRP_2 data was downloaded as training sets using  

the R package “oncoPredict” [51]. The “calcPhenotype” 

package was employed to construct a ridge regression 

model that could be applied to the expression profile of 

the TCGA-Advanced NSCLC cohort and predict the 

half-maximal inhibitory concentration (IC50) of drugs 

in lung cancer patients.  

 

Based on functional studies of seven prognostic genes, 

we screened five protein-coding genes in addition to 

LINC00528 and SLC16A4 for targeted drugs. Drug 

selection criteria focused on the cell death. Molecular 

docking simulations are used to predict the formation of 

stable complexes between large and small molecules. 

The structure of the proteins was obtained from the 

Protein Data Bank (https://www.rcsb.org/), and related 

small molecules were obtained from the zinc database 

(https://zinc.docking.org/). The Molecular Operating 

Environment (MOE) software was employed to 

recognize small molecule drugs and performed the 

molecular docking simulation to screen optimal docking 

posture for the anti-tumor drugs and target proteins 

according to the binding score. 

 

Cell culture and reverse transcription-quantitative 

polymerase chain reaction (RT-qPCR) 

 

Two human NSCLC cell lines, A549 and NCI-H1299, 

and one human lung bronchial epithelial cell line (BEAS-

2B) were obtained from the Stem Cell Bank, Chinese 

Academy of Sciences (Beijing, China). The NCI-H1299 

cells were cultured in RPMI 1640 medium (Biosharp, 

Anhui, China); A549 cells were cultured in F12K medium 

(Biosharp, Anhui, China); and the BEAS-2B cells were 

cultured in DMEM medium (Biosharp, Anhui, China). 

All the culture solutions were supplemented with 10% 

fetal bovine serum (FBS, Gibco). Additionally, trypsin-

EDTA (Biosharp, Anhui, China) was also needed to 

disperse the cells during the cell passage and collection. 

The cell cultures were maintained at a constant 

temperature of 37° C in a 5% CO2 atmosphere, providing 

optimal cell growth and viability conditions.  

 
RT-qPCR experiments were conducted to validate the 

differential expression of seven PCD-related genes, 

including CCL14, CPA3, CX3CR1, IKZF3, KIF21B, 
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Table 1. Primer sequences utilized for RT‐qPCR experiment in this study. 

Gene Forward primer Reverse primer Size 

GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAATA 152bp 

SLC16A4 ACCACAAGTCTTACCTCATCCTCTG TCAACCAGTACAGGCAGTATCAATG 145bp 

LINC00528 GCTGAGCTTCTCTCCCTTTCCA GTTTCCCAGAGCATAGGCAGTG 98bp 

KIF21B AAGAGCCGAGGATCAGAGAAGAC ACATCATGGAGGACAGCAGGAG 128bp 

IKZF3 ACCAAGCCATCAATAACGCCATC GCTGCTGATAACTGGAACCATCTC 107bp 

CX3CR1 CGTGGTCTTTGGGACTGTGTTC GGCTTCTTGCTGTTGGTGAGG 108bp 

CPA3 GAGTCCGAGAAAGAGACGAAAGC TGGGAGTAGGAATGGAAGGTGATG 92bp 

CCL14 TGCTGCTTCACCTACACTACCTAC CTGGCTGTTGGTCTCATAGTAATCC 72bp 

 

LINC00528, and SLC16A4 between NSCLC tumors cell 

lines (A549 and NCI-H1299) and normal lung bronchial 

epithelial cell line (BEAS-2B), and each. Total RNA 

was extracted using the TRIzol reagent (Invitrogen, 

USA) following the manufacturer’s protocol. Reverse 

RNA transcription to cDNA was obtained using 

PrimeScript® RT reagent Kit (TaKaRa, Shiga, Japan)  

in a 20 μl reaction mixture. The qPCR was performed 

with qPCR Kit (SYBR Premix Ex Taq) (TaKaRa, 

Shiga, Japan) in a 20 μl reaction mixture. Each gene 

expression reaction was performed in triplicates. The 

target gene expression was detected using the ABI7300 

Fast instrument (Thermo Fisher Scientific, USA). The 

expression levels of each gene were normalized to  

the reference gene GAPDH and analyzed using the  

2^(-ΔΔCT) method [52], which is a widely accepted 

approach in scientific research (ΔCT = CT (target  

gene) – CT (reference gene), ΔΔCT = ΔCT (NSCLC 

cells) − ΔCT (normal lung cell). The primer sequences 

are listed in Table 1, and the CT values of RT-qPCR  

are shown in Supplementary Table 9. 
 

Validation of the protein expression levels of the hub 

genes via the human protein atlas 
 

To further verify the protein expression levels  

of CCL14, CPA3, CX3CR1, IKZF3, KIF21B, 

LINC00528, and SLC16A4 in NSCLC and normal 

tissues, immunohistochemistry (IHC) data were 

downloaded from the Human Protein Atlas (HPA, 

http://www.proteinatlas.org). 
 

Statistical analysis 
 

R software (4.2.1) and corresponding R  

packages were applied for all statistical analyses.  

For nonnormally distributed variables, significant 

quantitative differences between and among groups 

were determined by the Wilcoxon or Kruskal–Wallis 

tests, respectively. The Fisher test compared immune 

responses between other groups, and p < 0.05 was 

used as the significance threshold. Both univariate  

and multivariate Cox proportional hazards  

regression analyses were performed using the R 

package “survival”, and regression coefficients, 

hazards regression, 95% CI, and p-values were 

calculated. All KM survival curves were plotted  

using the R package “survminer”, and the two-sided 

log-rank test was used to assess differences between 

groups. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The prognostic value of the 12 prognosis-related PCD genes. 
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Supplementary Figure 2. Identification of modules by WGCNA. (A) Clustering dendrogram of TCGA-Advanced NSCLC samples and 

corresponding heatmap displaying clinical traits. The color band beneath the dendrogram represents the tissue trait status. (B) Evaluation of 
the scale-free fit index (left) and mean connectivity (right) across various soft threshold power values. The appropriate power value was 
determined for subsequent module identification. (C) Cluster dendrogram representing 39 distinct colored modules, based on a dissimilarity 
measure (1-TOM).  
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Supplementary Figure 3. The candidate genes screen by LASSO regression and association analysis of mutation profiles and 
immunological factors with PRAN risk score in the TCGA-Advanced NSCLC cohort. (A) The LASSO coefficient profiles of PCD-related 

genes. (B) Two dotted vertical lines are drawn at the optimal values according to the minimum criterion (right) and the Mean-Squared Error 
criterion (left). The horizontal axis represents the log value of lambda, and the vertical axis represents the Mean-Squared Error criterion of 
the independent variable. (C) The mutation profiles revealing the different mutation frequency between the two PRAN risk groups. (D) Box 
plot representing the comparison of Tumor Mutation Burden (TMB) levels between the two PRAN risk groups. (E) Box plot displaying the 
comparison of Interferon Gamma (IFN-γ) levels between the two PRAN risk groups. (F) Box plot showing the comparison of T-cell Receptor 
(TCR) richness levels between the two PRAN risk groups. (G) Box plot illustrating the comparison of T-cell Receptor (TCR) Shannon diversity 
index between the two PRAN risk groups. 
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Supplementary Figure 4. Immune cell infiltration analysis between the two PRAN risk groups in the TCGA-Advanced NSCLC 
cohort. (A) Stromal score, immune score, and ESTIMATE score between PRAN-High and PRAN-Low groups. The expression of (B) HLA genes, 
and (C) immunostimulatory genes between PRAN-High and PRAN-Low groups. P-value: * < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001. 
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Supplementary Figure 5. The predicting performance validation of the PRAN risk model in multiple GEO cohorts. (A) Kaplan-

Meier survival analysis in validation cohort GSE50081. (B) Time-dependent ROC curves between PRAN-High and PRAN-Low groups in 
validation cohort GSE50081. (C, D) Kaplan-Meier survival analysis in validation cohort GSE135222, and GSE93157. 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 3–5, 7–9. 

 

Supplementary Table 1. The programmed cell death (PCD) genes acquired from Zou et al. 2022. 

 

Supplementary Table 2. The sample information in TCGA-Advanced NSCLC cohort. 

 TCGA_Advanced NSCLC 

 

Cluster1 

(N=153) 

Cluster2 

(N=44) 
P-value 

High_risk 

(N=98) 

Low_risk 

(N=99) 
P-value 

Age:   0.213   1.000 

<=65 65 (42.5%) 24 (54.5%)  44 (44.9%) 45 (45.5%)  
>65 88 (57.5%) 20 (45.5%)  54 (55.1%) 54 (54.5%)  
Gender:   0.010   0.267 

Female 52 (34.0%) 25 (56.8%)  34 (34.7%) 43 (43.4%)  
Male 101 (66.0%) 19 (43.2%)  64 (65.3%) 56 (56.6%)  
Stage:   0.953   0.239 

III 128 (83.7%) 36 (81.8%)  78 (79.6%) 86 (86.9%)  
IV 25 (16.3%) 8 (18.2%)  20 (20.4%) 13 (13.1%)         
T_stage:   0.665   0.769 

T1 14 (9.15%) 6 (13.6%)  9 (9.18%) 11 (11.1%)  
T2 68 (44.4%) 19 (43.2%)  42 (42.9%) 45 (45.5%)  
T3 39 (25.5%) 8 (18.2%)  27 (27.6%) 20 (20.2%)  
T4 30 (19.6%) 10 (22.7%)  19 (19.4%) 21 (21.2%)  
TX 2 (1.31%) 1 (2.27%)  1 (1.02%) 2 (2.02%)  
M_stage:   0.254   0.052 

Deficient 2 (1.31%) 1 (2.27%)  3 (3.06%) 0 (0.00%)  
M0 107 (69.9%) 25 (56.8%)  58 (59.2%) 74 (74.7%)  
M1 24 (15.7%) 8 (18.2%)  20 (20.4%) 12 (12.1%)  
MX 20 (13.1%) 10 (22.7%)  17 (17.3%) 13 (13.1%)  
N_stage:   0.896   0.418 

N0 22 (14.4%) 8 (18.2%)  16 (16.3%) 14 (14.1%)  
N1 35 (22.9%) 11 (25.0%)  23 (23.5%) 23 (23.2%)  
N2 87 (56.9%) 22 (50.0%)  56 (57.1%) 53 (53.5%)  
N3 5 (3.27%) 2 (4.55%)  1 (1.02%) 6 (6.06%)  
NX 4 (2.61%) 1 (2.27%)  2 (2.04%) 3 (3.03%)  
Tissue_origine:   0.871   0.139 

Lower lobe 51 (33.3%) 15 (34.1%)  26 (26.5%) 40 (40.4%)  
Middle lobe 9 (5.88%) 1 (2.27%)  4 (4.08%) 6 (6.06%)  
Other 17 (11.1%) 4 (9.09%)  11 (11.2%) 10 (10.1%)  
Upper lobe 76 (49.7%) 24 (54.5%)  57 (58.2%) 43 (43.4%)  
Race:   0.127   0.897 

Asian 2 (1.31%) 3 (6.82%)  2 (2.04%) 3 (3.03%)  
Black or African American 14 (9.15%) 3 (6.82%)  9 (9.18%) 8 (8.08%)  
Unknown 39 (25.5%) 7 (15.9%)  21 (21.4%) 25 (25.3%)  
white 98 (64.1%) 31 (70.5%)  66 (67.3%) 63 (63.6%)  
Smoking_Status:   0.756   0.125 

non-smoke 36 (23.5%) 12 (27.3%)  29 (29.6%) 19 (19.2%)  
Smoke 117 (76.5%) 32 (72.7%)  69 (70.4%) 80 (80.8%)  
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OS.time 468 [215;951] 692 [407;1177] 0.030 389 [144;728] 716 [420;1177] <0.001 

OS_status:   0.139   0.003 

Alive 62 (40.5%) 24 (54.5%)  32 (32.7%) 54 (54.5%)  
Dead 91 (59.5%) 20 (45.5%)  66 (67.3%) 45 (45.5%)  
TMB:   0.541   0.422 

NA 1 (0.65%) 1 (2.27%)  0 (0.00%) 2 (2.02%)  
TMB<10 144 (94.1%) 41 (93.2%)  92 (93.9%) 93 (93.9%)  
TMB>=10 8 (5.23%) 2 (4.55%)  6 (6.12%) 4 (4.04%)  

 

Supplementary Table 3. The 359 DEGs were identified between cluster 1 and cluster 2. 

 

Supplementary Table 4. The stepwise screening process of PCD hub genes for PRAN model construction, 
including 55 univariate Cox genes, 15 LASSO genes, and 7 multivariate Cox genes. 

 

Supplementary Table 5. Drug sensitivity prediction based on TCGA-Advanced NSCLC patients. 

 

Supplementary Table 6. Interaction between target protein and candidate small molecules according 
to the molecular docking analysis. 

2Q8R:ZINC150338726(navitoclax)       

Ligand  Receptor    Interaction Distance E(kcal/mol) 

S 86 OE1 GLN 20 (H) H-donor 3.87 -0.5  

O 100 O HOH 112 (G) H-acceptor 2.93 -0.6  

O 101 O HOH 117 (H) H-acceptor 2.91 -1.3  

6-ring  CB GLN 20 (H) pi-H 4.26 -0.5  

4BD9:ZINC150338726(navitoclax)       

Ligand  Receptor    Interaction Distance E(kcal/mol) 

O 52 CA GLU 136 (B) H-acceptor 3.46 -0.6  

5WN9:ZINC150338726(navitoclax)       

Ligand  Receptor    Interaction Distance E(kcal/mol) 

6-ring  CA LEU 184 (H) pi-H 4.01 -0.5  

7BQV:ZINC000066099927(AZD1480)      

Ligand  Receptor    Interaction Distance E(kcal/mol) 

N 37 5-ring TRP 380 (A) H-pi 3.71 -0.7  

6-ring  O HOH 602 (B) pi-H 3.3 -0.9  

7X4N:ZINC13476439(MG-132)       

Ligand  Receptor    Interaction Distance E(kcal/mol) 

N 38 OE2 GLU 411 (A) H-donor 3.28 -1  

O 18 NE ARG 105 (A) H-acceptor 3.16 -2  

 

Supplementary Table 7. Representative IHC staining of model genes in normal (top) and tumor (bottom) tissues 
of the NSCLC. 
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Supplementary Table 8. The sample information in GEO cohort. 

 

Supplementary Table 9. The RNA expression data of seven PRAN model genes using RT-qPCR experiment. 
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