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INTRODUCTION 
 

Stomach adenocarcinoma (STAD) is a prevalent 

pathological tissue in stomach cancer, accounting for up 

to 95%, and the mortality of which ranks fourth in 

Global Cancer Statistics 2020 [1]. For early STAD, 
surgical resection is the treatment of choice, including 

total or partial gastrectomy. Lymph node dissection is 

often performed in conjunction with surgery to assess 

tumor spread [2]. Chemotherapy is usually used as 

adjuvant therapy in advanced stages or after surgery. 

First-line treatment options may include fluorouracil-

based drugs (5-FU or tegafur) and platinum-based drugs 

(cisplatin or oxaliplatin). Radiotherapy is often used in 

combination with chemotherapy, especially in adjuvant 

therapy after surgery or for locally advanced tumors  
that cannot be surgically removed [3]. For HER2-

positive STAD, targeted agents such as trastuzumab 

(Herceptin) may be used. In recent years, immune 

checkpoint inhibitors such as pembrolizumab (Opdivo) 
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ABSTRACT 
 

Background: Fatty acid metabolism (FAM) contributes to tumorigenesis and tumor development, but the role 
of FAM in the progression of stomach adenocarcinoma (STAD) has not been comprehensively clarified. 
Methods: The expression data and clinical follow-up information were obtained from The Cancer Genome 
Atlas (TCGA). FAM pathway was analyzed by gene set enrichment analysis (GSEA) and single-sample GSEA 
(ssGSEA) methods. Univariate Cox regression analysis was conducted to select prognosis genes. Molecular 
subtypes were classified by consensus clustering analysis. Furthermore, least absolute shrinkage and 
selection operator (Lasso) analysis was employed to develop a risk model. ESTIMATE and tumour immune 
dysfunction and exclusion (TIDE) algorithm were used to assess immunity. pRRophetic package was 
conducted to predict drug sensitivity. 
Results: Based on 14 FAM related prognosis genes (FAMRG), 2 clusters were determined. Patients in C2 showed 
a worse overall survival (OS). Furthermore, a 7-FAMRG risk model was established as an independent predictor 
for STAD, with a higher riskscore indicating an unfavorable OS. High riskscore patients had higher TIDE score 
and these patients were more sensitive to anticancer drugs such as Bortezomib, Dasatinib and Pazopanib. A 
nomogram based on riskscore was an effective prediction tool applicable to clinical settings. The results from 
pan-cancer analysis supported a prominent application value of riskscore model in other cancer types. 
Conclusion: The FAMRGs model established in this study could help predict STAD prognosis and offer new 
directions for future studies on dysfunctional FAM-induced damage and anti-tumor drugs in STAD disease. 
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and pembrolizumab (Keytruda) have been used in 

certain types of advanced gastric adenocarcinoma [4]. 

There are several critical challenges in the current 

treatment of STAD. The first is the late diagnosis; many 

STAD patients are diagnosed at an advanced stage, by 

which time the tumor has usually metastasized and is 

more difficult to treat. Actually, it is the high recurrence 

rate, even after treatment, STAD still has a high 

recurrence rate, especially after surgical resection. The 

third is drug resistance and limited options for targeted 

therapy and immunotherapy [5, 6]. Currently, few 

gratifying results is found in predicting the prognosis  

of STAD sufferers with 5-year survival [7], although. 

To this end, developing potential factors to screen out 

the patient for individualized treatment is critical for  

the optimization of OS in STAD. 

 

Mounting evidence implies that metabolic 

reprogramming plays a major part in the develop- 

ment of cancer for providing energy to biological 

behavior of tumors [8]. Among all metabolic progress, 

lipid metabolism, especially FAM, is vital for the 

reproduction of cancer cells [9]. Zaytseva et al.  

[10] reported that increased expression of fatty acid 

synthase in colorectal cancer is closely relevant to 

tumor progression and poor prognosis. Evidence also 

has shown that an abnormal activation of fatty acid 

oxidation is uncovered in various tumors, which are 

relevant to growth, invasiveness and radiochemo-

therapeutic resistance of cancer cells [11–13]. Given 

that FAM disorders take a bigger portion in cancer 

development, recent research has been more focused 

on the role of biological signaling pathway in 

regulating fatty acid metabolism. For example, Qu  

et al. [14] revealed that suppressed AMPK-GATA3-

ECHS1 pathway could induce lipid accumulation and 

finally facilitate cell proliferation in clear cell renal 

cell carcinoma. Other studies also found that fatty acid 

synthesis as well as fatty acid uptake are motivated  

by mTOR signaling in cancers [15]. Luo et al.’s 

review also presented novel ideas that overcoming  

FA metabolic barriers is helpful for improving the 

effects of current immunotherapies [16]. FAM is  

also closely related to STAD progression, especially 

regulating STAD metastasis. It was found that the  

long noncoding RNA NEAT1 acts on the RPRD1B-

regulated c-Jun/c-Fos/SREBP1 axis to promote fatty 

acid metabolism and lymph node metastasis in gastric 

cancer, a phenomenon that leads to primary tumor 

implantation into lymph nodes [17]. LINC00924-

induced reprogramming of fatty acid metabolism 

through hnRNPC-regulated Mnk2 selective splicing 

promotes peritoneal metastasis of gastric cancer [18]. 
The FAM process is also a factor that influences 

immune cell function in STAD. Tissue-resident 

memory T (Trm) cells are key cells that influence the 

efficacy of immune checkpoint inhibitors in gastric 

cancer treatment. Fatty acid deficiency leads to Trm 

cell death [19]. Thus, targeting FAM pathways has 

been proven to be a prospective anticancer method. 

 

Risk assessment models in bioinformatics (biosignatures) 

play a critical role in cancer research, especially  

in individualized treatment, prognosis prediction, and 

disease surveillance. These models analyze and  

integrate large amounts of data from patients - including 

gene expression, mutations, epigenetic changes, protein 

expression levels, and other clinical information-to 

predict patient response to specific treatments, disease 

progression, and the patient’s survival probability  

[20–22]. The Cox-nnet algorithm, an artificial neural 

network-based survival analysis method for prognostic 

prediction of high-throughput histological data, predicts 

survival trends in cancer patients from gene expression 

data [23]. The DeepSurv model, a Cox proportional  

risk model based on deep learning, is able to process 

individualized survival data to recommend the best 

treatment plan for patients [24]. These tools, unlike 

traditional tools, use high-throughput data as a fulcrum to 

reveal disease progression trends or treatment response in 

cancer patients from a genomic or proteomic perspective. 

Constructing a riskscore model has been developed into  

a practical means to assess patients’ prognosis, and is a 

promising means of precision-treatment. For example, a 

prognostic riskscore model with FAMRGs for predicting 

prognosis in colorectal cancer [25], lung adenocarcinoma 

[26] or glioma patients [27] has helped select different 

treatment drugs and regimens for high or low risk core 

grade patients. Nevertheless, there is still a paucity of 

research on the prognostic riskscore model of FAMRGs 

in STAD patients. 

 

Here, we explored a FAM disorder-related molecular 

subtypes to predict OS of STAD patients. A prognostic 

signature (FAMRGs) model was established via 

univariate Cox regression analysis and Lasso regression 

analysis. We detected a potential for immunotherapy  

of the riskscore model based on tumor mutational 

burden (TMB), immune cell infiltration and TIDE 

score. Collectively, we established a riskscore signature 

for STAD patients, which may be treated as a potential 

therapeutic target for STAD. 

 

MATERIALS AND METHODS 
 

Study source 
 

The expression data and clinical follow-up  

information were obtained from The Cancer  
Genome Atlas (TCGA, https://gdc.cancer.gov/, TCGA-

STAD) database, containing gene expression profiles, 

copy number variation (CNV) data, single nucleotide 
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mutation (SNV) data. Besides, STAD Gene Expression 

Omnibus (GEO, Gene Expression Omnibus) databases 

(GSE84437) were also enrolled. The following analysis 

were performed on Sangerbox (http://sangerbox.com/) 

[28] and R program. 

 
Data preprocessing 

 
The following steps were done to the RNA-Seq data of 

TCGA-STAD: 

 

(1) the samples with no clinical follow-up information 

were removed; (2) the samples with no survival time 

were removed; (3) the samples with no Status were 

removed; (4) the Ensembl was converted to Gene 

Symbol; and (5) the expression cases with multiple 

Gene Symbols were taken as their median. 

 
The dataset of GSE84437 was processed in the 

following steps: 

 

(1) the samples without clinical follow-up information 

were removed; (2) the samples without survival time 

and survival status were removed; (3) the probes were 

converted to Gene Symbol; (4) a probe corresponding  

to more than one gene was removed; and (5) the 

expression cases with more than one Gene Symbol were 

taken as their median. 

 
Gene set enrichment analysis (GSEA) 

 

Batch effects or other unneeded variation in high-

throughput data were eliminated applying “sva” 

package [29]. Then, the enrichment of FAM pathway  

in adjacent and tumor tissues was calculated in  

TCGA-STAD and GSE84437 datasets via GSEA [30]. 

 
The single sample gene set enrichment analysis 

(ssGSEA) 

 

In this paper, the ssGSEA was carried out by GSVA  

of R package [31] for transcriptome of STAD samples 

to evaluate FAM pathway score as well as pathway 

score difference between tumors and adjacent tumors. 

Normalized enrichment score (NES) >0 suggests 

pathway activation, while NES <0 suggests pathway 

inhibition. 

 
Cluster analysis 

 

Based on FAM-related genes, grouping molecular sub-

types was executed for TCGA-STAD and GSE84437 

datasets via Consensus Cluster Plus package [32].  

During analysis, TCGA samples were clustered through 

consistency clustering (ConsensusClusterPlus, specific 

parameters: clusterAlg = “pam”, distance = “spearman”, 

sampling was repeated 500 times, each sampling ratio 

was 0.8), and based on the cumulative distribution 

function (CDF) and CDF Delta area curve determine the 

optimal number of clusters. The Kaplan-Meier (K-M) 

survival curves were plotted to observe OS difference. 

Clustering effect was determined by principal component 

analysis (PCA). 

 

Analysis of cancer immune index 

 

Estimation of Stromal and Immune cells in  

MAlignant Tumour tissues using Expression data 

(ESTIMATE) [33] was used to calculate the scale  

or abundance of major non-tumor components in a 

tumor sample, obtaining a general immune and  

stromal cell score. Microenvironment Cell Populations-

counter (MCP-counter) [34] quantified the absolute 

abundance of eight immune cells and two stromal cells. 

Tumor immune dysfunction and exclusion (TIDE) 

(http://tide.dfci.harvard.edu/) website [35] was employed 

for assessing the response rate of immune checkpoint 

inhibitors (ICIs), while the relationship between TIDE 

index and riskscore was unveiled via Pearson correlation 

analysis. 

 

Establishment and assessment of a prognostic 

riskscore model for STAD 

 

Construction of a riskscore signature was carried  

out based on Cox regression and Lasso method.  

At the same time, LASSO Cox regression analysis  

was executed to minimize the risk of overfitting.  

The following formula was applied to compute the 

riskscore for each patient. 

 

 riskscore i Expi=   

 

Here, β was the Cox regression coefficient of the 

corresponding genes, Exp i was the expression level of 

genes relevant to prognosis. 

 

According to the survey package’s survey cut-point 

function, the optimal cutoff is discovered and the 

patients are assigned into high and low riskscore groups. 

K-M curves were plotted to estimate the OS in two 

groups. The timeROC package was used to determine 

the area under curve (AUC) to predict survival rate at  

1 year, 3 years and 5 years, respectively. 

 

Independent prognostic and nomogram analysis 

 

Cox regression analyses utilizing univariate and 

multivariate methods are carried out to estimate if the 

riskscore can be acted as an independent factor for 

STAD prognosis. Over and above, a nomogram [36] is 

designed by consolidating riskscore level with common 
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clinical indicators, and define a score for each indicator. 

Then, a total score can be obtained for every patient. 

Therefore, the probable survival time of the patient  

can be evaluated. The predictive efficiency of the 

nomogram was set to 1-year, 3- year, and 4-year OS. 

Decision curve analysis (DCA) analysis was employed 

to evaluate the prognostic value of the nomogram in 

clinical practice. 

 

Drug sensitivity 

 

The pRRophetic R package [37] was used to predict 

two types of riskscore patient’s sensitivity to 62 

traditional chemotherapy drugs, and the sensitivity  

to drug therapy was expressed by half maximal 

inhibitory concentration (IC50) values and uncovered 

by a graphical heatmap. 

 

Statistical analysis 

 

The R program (version 4.1.2) as well as Sangerbox 3.0 

(http://vip.sangerbox.com/) was used for statistical 

analysis. Statistical significance was defined as p < 

0.05. 

 

Data availability statement 

 

The datasets generated and/or analyzed during the current 

study are available in the (GSE84437) repository, 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE84437), (GSE13522) repository, (https://www. 

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13522), 

(GSE78220) repository, (https://www.ncbi.nlm.nih. 

gov/geo/query/acc.cgi?acc=GSE78220) and (GSE91061) 

repository, (https://www.ncbi.nlm.nih.gov/geo/query/ 

acc.cgi?acc=GSE91061). 

 

RESULTS 
 

Abnormally dysregulated fatty acid metabolism in 

STAD 
 

Abundant researches have mentioned that FAM is 

essential for cancer progression and is constantly 

disturbed in various cancers [38]. Therefore, in this 

research, we firstly studied the status of FAM pathway 

in TCGA-STAD cohorts. Through the GSEA and 

ssGSEA method, FAM pathway is disordered in tumor 

tissues, compared with para-cancer samples (Figure 

1A, 1B). 

 

Identification of FAM relevant genes closely related 

to STAD prognosis 

 

In TCGA-STAD cohorts, we researched coding genes 

significantly correlated with FAM pathway scores, 

based on Spearman correlation analysis (|r| >0.35,  

p < 0.05) and univariate Cox analysis. Ultimately, 14 

genes were predominantly correlated with prognosis, 

all of which were identified as risk factors as hazard 

ratios (HR) >1 (Figure 1C). Their expression levels 

showed remarkable differences between cancer and 

para-STAD samples (Figure 1D). Some of these genes 

were found gene mutation (Figure 1E). Furthermore, 

the CNV of these 14 genes revealed higher loss  

than gain (Figure 1F). These data demonstrated that 

dysregulated fatty acid metabolism was associated with 

STAD. 

 

Identification of molecular subtypes and biological 

role analysis 

 

Based on the aforementioned 14 genes, TCGA-STAD 

cohort were clustered, using the “Consensus Cluster 

Plus” package with K = 2 (Figure 2A, 2B). The cohort 

was separated into two molecular subtypes, called C1 

and C2 (Figure 2C). To confirm the rationality of our 

classification, we performed PCA analysis using above 

14 differentially expressed genes, and the results 

disclosed clear boundaries between the two subtypes 

(Figure 2D) Same classification and validation results 

were also got on the GSE84437 dataset (Supplementary 

Figure 1A). Next, the OS analysis found that sub- 

type C1 exhibited a better prognosis than subtype C2 

(Figure 2E, 2F). Additionally, the expression heatmap 

distribution of these 14 genes in TCGA data is shown in 

Figure 2G. 

 

Biological role analysis of molecular subtypes 

 

Immune infiltration in different subtypes was probed 

utilizing the ssGSEA method based on immune  

cell genes from literature [39], and compared the 

immune differences between two subtypes. The results 

showed that in the TCGA dataset, 24 of 28 immune 

cells had remarkable differences between two sub-

types. The immune score of the C1 subtype with 

better prognosis was lower, both for innate immunity 

and acquired immunity (Figure 3A, 3B). We also 

used ESTIMATE and MCP-counter to perform 

immune scoring, and found that the immune score of 

the C1 subtype was still lower (Figure 3C, 3D), 

indicating that C1 had lower immune infiltration. 

Further GSEA analysis between molecular subtypes 

revealed that C2 sub-type with poor prognosis is 

closely related to metabolic pathways including  

the HYPERTROPHIC_CARDIOMYOPATHY_HCM 

pathway and DILATED_CARDIOMYOPATHY 

pathway (Figure 3E). Similar GSEA analysis  
result was also seen on the GSE84437 dataset 

(Supplementary Figure 1B). Specifically, the lower 

degree of immune infiltration of the C1 subtype may 

8555

http://vip.sangerbox.com/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84437
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13522
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13522
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78220
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE91061
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE91061


www.aging-us.com 5 AGING 

affect its responsiveness to immunotherapy, and  

the metabolic pathways of the C2 subtype hint at the 

role of metabolic abnormalities in its tumor biology, 

which may be worse for this subtype related to the 

prognosis. 

Establishment of a clinical prognosis model applying 

FAMRGs and validation 

 

To accurately evaluate the risk of each STAD patient, a 

risk prognosis model was set up using the intersection 

 

 
 

Figure 1. Fatty acid metabolism pathway and related prognostic gene analysis. (A, B) Fatty acid metabolism pathway analysis via 

ssGSEA and GSEA. (C) Genes closely related to FAM related gene pathway score in TCGA-STAD dataset. (D) Gene expression levels between 
STAD cancer tissue and para-carcinoma tissue. (E) Single nucleotide variation analysis of genes in TCGA-STAD dataset. (F) Copy number 
variation analysis. *p < 0.05, ***p < 0.001, ****p < 0.0001. 
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of 1721 differentially expressed genes between C1 and 

C2 using the TCGA and GSE84437 datasets. We 

randomly divided GSE84437 dataset into train and test 

datasets (1:1 ratio). Via univariate COX analysis and 

Lasso method, seven vital genes were identified, and the 

hazard ratio of these genes was shown in Figure 4A–4C. 

Next, we built a 7-gene riskscore signature and stratified 

patients into high and low-risk groups on the base of 

median riskscore. riskscore = −0.181 × PMAIP1 −0.274 

× REEP4 −0.267 × SLC27A2 + 0.161 × KRT17 + 0.227 

× CRTAC1 + 0.207 × SPIRE1 −0.338 × NCF. In the 

meantime, we confirmed the model in three validating 

groups (the testing set, the entire GSE84437 and TCGA 

datasets), respectively, and similar results were obtained 

(Figure 4D–4G). Results of K-M analysis characterized a 

higher OS in low-risk group. The high AUC values 

demonstrated the accuracy of the model in predicting the 

1-, 3- and 5-year survival rates in the above datasets, due 

to higher AUC values (>0.6). The AUC values of 1 year, 

3 years and 5 years in the training set are 0.75, 0.76 and 

0.81 respectively. The AUC values for 1 year, 3 years 

and 5 years in the validation set are 0.79, 0.73 and 0.69 

respectively. The AUC values at 1, 3, and 5 years in the 

GSE84437 cohort were 0.78, 0.74, and 0.74, respectively. 

The AUC values at 1, 3, and 5 years in the TCGA cohort 

were 0.61, 0.67, and 0.72, respectively. To sum up, the 

data proved that built riskscore signature had a big latent 

capacity in predicting the SO of STAD crowds. 

Mutation and clinical characteristics in two risk 

groups 

 

The distribution of TMB between two risk groups was 

carried out, and no obvious difference was seen in 

Figure 5A. Nevertheless, a significant difference was 

observed when we combined risk groups with TMB 

for K-M analysis (Figure 5B). Top 20 gene mutation 

characteristics in two risk groups from TCGA 

databases were displayed in Figure 5C. T stage (T1-

T4), N stage (N0–N3), M stage (M0-M1), Age (≤65 

years or >65 years) and Gender (female or male) are 

five basic clinicopathological characteristics, which 

were used to describe differences in riskscores among 

clinical subgroups. Applying the TCGA dataset, we 

subsequently investigated the association between 

clinical characteristics and the riskscore. The riskscore 

was obviously different among tumor and T stages, 

and the riskscore was higher in more advanced STAD 

(Figure 5D), although the differences in riskscore by, 

N stage, M stage, Age and Gender were not significant 

(Figure 5D). These analyses indicated that the 

FAMRGs riskscore signature had clinical significance. 

 

Construction and estimation of the nomogram 

 

In addition to FAMRGs riskscore model, Age, Gender 

and TNM stage are also prognostic indicators for 

 

 
 

Figure 2. Identification of molecular subtypes. (A) Cumulative distribution function. (B) Delta area. (C, D) Heatmap and PCA plots of 
sample clustering when k = 2 in TCGA-STAD. (E, F) K-M survival analysis of C1 and C2 in TCGA-STAD and GSE84437 datasets. (G) Expression 
levels of 14 genes in C1 and C2 subtypes based on TCGA-STAD dataset. 
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STAD. It was expected to check if FAMRGs riskscore 

could be treated as an independent prognostic indicator. 

In TCGA-STAD queue, univariate Cox analysis 

represented that established FAMRGs riskscore, Age, T 

stage, N stage, M stage and Stage were all markedly 

associated with prognosis (Figure 6A). Multivariate 

Cox regression analysis implied that FAMRGs riskscore 

signature, Age, and M stag were noticeably correlated 

with prognosis (Figure 6B). The analysis suggested  

that FAMRGs riskscore model was an independent 

prognostic indicator for STAD patients. 

 

We constructed a nomogram using TCGA-STAD 

cohort, by integrating FAMRGs riskscore model, Age 

and M stage indicators (Figure 6C). The calibration 

curves illuminated a favorable degree of compliance 

between the predicted and actual survival time at  

1-, 3- and 4-year OS rates (Figure 6D). Furthermore,  

the DCAs illustrated that the nomogram did well  

in forecasting prognostic benefits of STAD patients 

(Figure 6E). 

 

Pathway scoring in risk grouping related to the 

progression of tumor 

 

We downloaded 41 pathways in ‘h. all. v7.4. symbols. 

Gmt’ file from the GSEA website, scored them  

using ssGSEA method, and compared them in two risk 

groups of TCGA-STAD cohort. 39 pathways showed 

marked differences as presented in Figure 7A. Then the 

relevance between these 41 pathways and our riskscore 

was calculated. The riskscore was positively correlated 

 

 
 

Figure 3. Analysis of immune infiltration and gene set enrichment analysis. (A) Analysis of 28 immune cells using CIBERSORT. (B) 

The distribution of innate and acquired immunity in TCGA-STAD dataset. (C) Analysis of immune infiltration using ESTIMATE. (D) Analysis of 
immune infiltration using MCP-counter. (E) GSEA pathways score analysis between C1 and C2 in TCGA-STAD. *p < 0.05, **p < 0.01, ***p < 
0.001, ***p < 0.0001. Abbreviation: ns: no significance. 
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with TGF_ BETA_ SIGNALING, MYOGENESIS, 

APICAL_JUNCTION and EPITHELIAL_ 

MESENCHYMAL_ TRANSITION pathway with a  

P-value < 0.05 (Figure 7B). 

 

In another way, we obtained 13 pathway markers or 

pathways related to tumor from a reference [40]. Then, 

we calculated the Pearson relevance between riskscore 

and ssGSEA score of these gene markers or pathways. 

We found that riskscore positively correlated with 

Homologous recombination, DNA replication, and  

Base error repair (Figure 7C). Besides, EMT1, EMT2, 

EMT3, WNT target, FGFR3 related, Cell cycle had 

higher scores in high riskscore group (Figure 7D). 

Immunotherapy and drug sensitivity analysis 

applying FAMRGs riskscore 

 

After confirming the performance of the 7-gene 

signature in describing clinical characteristics patients 

with STAD. Studies upon immunotherapy were also 

conducted. Here, we firstly applied TIDE software to 

estimate the potential for immunotherapy in two risk 

groups. In Figure 7A, it can be seen that the TIDE  

score was lower in low-risk group, indicating a higher 

likelihood of immunotherapy and more possibility  

to benefit from immunotherapy. Moreover, the 

Dysfunction score and Exclusion score are still lower  

in low-risk group (Figure 7A). Correlations between 

 

 
 

Figure 4. Construction and validation of a prognostic risk signature in TCGA-STAD based on hub FAM-related genes. (A) 

Lambda trajectory of differentially expressed genes. (B) Confidence interval under lambda. (C) Forest map of FAM-related hub genes. (D) 
ROC and K-M survival analysis of riskscore in GSE84437-train dataset. (E) ROC and K-M survival analysis of riskscore in GSE84437-test 
dataset. (F) ROC and K-M survival analysis of riskscore in TCGA dataset. (G) ROC and K-M survival analysis of riskscore in GSE84437 dataset. 
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riskscore and TIDE, Dysfunction, and Exclusion were 

simultaneously executed, and the results unveiled that 

our riskscore showed a significant positive correlation 

with TIDE, Exclusion, and Dysfunction (Supplementary 

Figure 2). Immunotherapy treated data (IMvigor210, 

GSE135222, GSE78220, and GSE91061) were also 

applied. We employed our method to calculate riskscore 

scores, and obtained the optimal cutoff K-M curve.  

The results showed the proportion of progressive 

disease (PD)/stable disease (SD) in the high-risk group 

was higher (Figure 7B–7E). All above data collectively 

indicated that the possibility of high-risk grouping 

gaining benefits from immunotherapy are relatively 

low. 

 

At the same time, we studied the sensitivity of 61 

traditional chemotherapy drugs in two risk groups. The 

results exhibited that 3 drugs were sensitive to high- 

risk groups, while the rest 59 drugs were sensitive to 

low-risk groups (Figure 7F). Taken together, the study 

might demonstrate why patients with low riskscore have 

a good prognosis and why patients with low risk often 

exhibit a better response to immunotherapy. 

The performance of riskscore model in pan cancer 

 

We further expanded cancer range, and applied  

the riskscore model to calculate the riskscore of the 

remaining 32 types of cancers in TCGA database, and 

carried out K-M analysis based on LogRank method 

under four time and state of OS, Progression free 

survival (PFI), Disease free interval (DFI), and Disease 

specific survival (DSS). As seen in Figure 8, under OS 

time and status, our riskscore model showed intense 

discrepancy between high and low riskscores among 32 

cancer species. Furthermore, riskscore showed notable 

differences at least 10 cancer species (under DFI time 

and state). This result indicates that our riskscore also 

has the potential to be used for prognostic evaluation  

in other cancer models. These studies suggest that the 

riskscore model we established may be useful for future 

cancer treatment and prognosis research. 
 

DISCUSSION 
 

STAD is a fatal cancer with unfavorable therapeutic 

response and survival rate. Factors (as such low 

 

 
 

Figure 5. Somatic mutation analysis and clinicopathological characteristics based on riskscore in TCGA cohort. (A) Analysis of 

somatic mutation in risk groups. (B) Distribution of TMB in risk groups. (C) K-M curve combining risk grouping with TMB. (D) The 
distribution of riskscore among different clinicopathological characteristics in the TCGA queue. 
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diagnostic rates at an early stage, high degree of 

intratumor heterogeneity, together with drug resistance) 

result in the unfavorable survival outcomes of STAD 

patients [41–43]. A growing number study has suggested 

that the FAM pathway showed importance in tumor 

progression and possesses pro-tumor potentials [10, 44]. 

Exploring FAM-relevant subtyping in STAD cohorts 

will help disclose distinct states of the tumor and 

implement precise therapy strategies. 

 

In present research, we firstly demonstrated dys-

regulated FAM in STAD. Subsequently, 14 FAM-related 

 

 
 

Figure 6. Establishment and assessment of the nomogram in TCGA-STAD queue. Forest plot of the (A) univariate and (B) 

multivariate Cox regression analyses. (C) The nomogram plot was constructed based on Age, M stage and FAMRGs riskscore. (D) Calibration 
plot of the nomogram. (E) DCA of the nomogram for 1-, 2- and 4-year OS. 
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coding genes were significantly correlated with 

prognosis. Then they were applied for molecular typing. 

Two subtypes defined as C1 and C2 clusters displayed 

differentiated prognosis. Immune infiltration and GSEA 

analysis disclosed that C2 subtype with worse OS had a 

higher immune score,  and was tightly correlated with

 

 
 

Figure 7. Immunotherapy and drug sensitivity assessment. (A) TIDE score between high- and low-risk groups. (B–E) Riskscore 

survival curve and immunotherapy distribution in IMvigor210, GSE135222, GSE78220 and GSE91061 datasets. (F) Differential heatmap 
analysis of 62 chemotherapeutics in high and low riskscore groups. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001. 
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HYPERTROPHIC_CARDIOMYOPATHY_HCM 

pathway and DILATED_CARDIOMYOPATHY 

pathways, which were also reported in another STAD 

article [45] based on fatty acid-related molecular typing. 

The CIBERSORT analysis revealed that in C2 subtype,  

the levels of immature and activated B cells, and

 

 
 

Figure 8. Prognostic analysis of our riskscore signature at different times in pan cancer. (The numbers inside represent the HR 

value, and the *in parentheses after it represents the log Rank P-value of HR. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. The gray 
NA represents that there is no corresponding survival time and status in the tumor or that HR values cannot be calculated). 
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activated dendritic cells, central memory CD4 and 

CD8 T cells, microphages, natural killer T cells as  

well as mast cells were significantly higher. These 

results were similar to others’ findings [46, 47]. These 

immune results indicated that cluster C2 owns an 

intense immunosuppressive tumor microenvironment 

(TME). In terms of cancer immunoediting theory, 

tumor cells in immune escape state can circumvent the 

damage of immune cells and are highly malignant, 

which ultimately leads to lower patient survival rates 

[48]. In advanced stage, most tumor cells can secrete 

TGF-β. Elevated TGF-β can prevent immature T cells 

from differentiating into Th1 cells, and promotes T 

cells to transform into Treg subpopulations, and 

inhibits the antigen presentation function of dendritic 

cells, finally leading to immune escape of tumor cells 

[49]. Therefore, in the riskscore signature established 

on the basis of subtypes, riskscore was positively 

correlated with TGF_BETA_SIGNALING pathway, 

may also indirectly explain the immune escape of 

tumor cells. 

 

As one of the most essential characteristics in malignant 

tumors, distant metastasis is a comprehensive process, 

which is responsible for over 90% mortality of cancer-

related [50, 51]. During this process, tumor epithelial-

mesenchymal transition (EMT) has a substantial impact 

on tumor cell metastasis and diffusion at an early  

stage, that is proved to be the main process of human 

gastric cancer [52]. In our study, a FAMRGs riskscore 

signature was established and evaluated its biologic 

function. We disclosed that in high riskscore group, 

EMT1, EMT2, EMT3, WNT target and FGFR3 related 

pathway score were higher. It’s well-known that these 

marker genes or pathways participated in regulating the 

EMT process. On the other hand, the riskscore was 

obviously higher in more advanced STAD patients. 

These two findings imply that FAMRGs riskscore 

signature could help identify the disease development 

status of STAD patients. 

 

Seven FAMRGs (PMAIP1, REEP4, SLC27A2, KRT17, 

CRTAC1, SPIRE1, NCF1) were utilized to construct  

a riskscore model. The riskscore signature was 

demonstrated to be an independent factor for prognosis 

of STAD patients, and was able to differentiate the 

sensitivity of patients to prevalent therapeutic drugs. 

PMAIP1 is a P53 response gene and acts as a protective 

factor because its facilities activation of the apoptotic 

program in mitochondria, and the suppression of 

PMAIP1 could lead to venetoclax resistance in acute 

myeloid leukemia cell line [53, 54]. In the meantime, 

the downregulation of PMAIP1 resulted in cell 
multiplication and cell motility in non-small cell lung 

cancer [55]. REEP4 is a known endoplasmic reticulum 

membrane protein, and was identified as a key 

morphogenetic factor in coordinating nuclear envelope 

reformation with mitotic nuclear pore complexes 

biogenesis [56, 57]. Interestingly, it was the first  

time, that REEP4 was discovered in STAD disease. 

SLC27A2 is a fatty acid transporter [58]. Recent 

research uncovered that SLC27A2 may suppress the 

epithelial-to-mesenchymal transition through SLC27A2-

CDK3-EMT axis [59]. While, in another research, 

SLC27A2 showed cancer promoting properties. Tao  

et al. [60] found that suppression of SLC27A2 could 

weaken neuroblastoma survival, as such inhibiting tumor 

growth, extending survival time, and exerting synergistic 

anti-tumor effects in animal experiments. The complex 

function of SLC27A2 needs deepening studies. KRT17 

is a type I intermediate filament. The initial multiple data 

research showed that KRT17 may be regarded as one of 

the prognostic biomarkers for gastric cancer [61]. Newly 

published research focused on diffuse gastric cancer, 

demonstrated that KRT17/YAP/IL6 axis contributed  

to maintaining E-cadherin loss, EMT feature, and 

metastasis of this cancer [62]. These two papers suggest 

an important role of KRT17 in STAD. Through 

bioinformatics data analysis, CRTAC1 was also 

identified as 1 of 8 key genes for a risk model used for 

gastric adenocarcinoma prognosis [63], strengthening 

the significance of this gene in STAD research. 

Neutrophil cytosolic factor 1 (NCF1), is a subunit of the 

NADPH oxidase 2 complex. The researches about NCF1 

variant were mainly related to autoimmune diseases  

such as lupus erythematosus [64, 65]. Nowadays, 

utilizing bioinformatics analysis tools, From the brown 

module, which indicated a strong connection to genetic 

connectivity, NCF1 was found as a pivotal gene, which 

can be treated as a bio-markers for diagnosing early  

lung cancer [66]. Surprisingly, NCF1 was also screened 

as a hub gene in a necroptosis riskscore signature for 

gastric cancer [67]. However, the role of SPIRE1 in 

cancer is a paucity of studies. 

 

Based on the currently known functions of these seven 

genes. As a P53-responsive gene, PMAIP1 plays a key 

role in the apoptosis process. In STAD, PMAIP1 may 

play a protective role in inhibiting tumor growth by 

enhancing the apoptotic response. However, PMAIP1 

may be inactivated in some gastric adenocarcinoma cells 

due to abnormalities in the P53 pathway, leading to 

increased resistance to chemotherapy drugs. Therefore, 

we speculate that PMAIP1 may be an important marker 

for predicting STAD treatment response and developing 

new treatment strategies. The discovery of REEP4 

provides a new perspective that endoplasmic reticulum 

membrane proteins may play a role in cell division and 

nuclear structure reorganization in STAD. Abnormal 
expression of REEP4 may lead to abnormal cell cycle 

regulation, thereby promoting disordered proliferation 

and metastasis of STAD cells. SLC27A2 As a fatty acid 
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transporter, SLC27A2 plays a dual role in regulating 

lipid metabolism in tumor cells. In STAD, SLC27A2 

may promote or inhibit tumor progression by affecting 

lipid metabolism. This bidirectional effect may depend 

on specific cellular context and microenvironmental 

conditions, indicating that the role of SLC27A2 in 

STAD is variable and complex. KRT17 plays a key role 

in maintaining cell structure and signaling. In STAD, 

KRT17 may promote inflammatory response and EMT 

characteristics by activating the YAP/IL6 axis, thereby 

enhancing tumor invasiveness and metastasis. Therefore, 

KRT17 may be a driver of STAD progression and 

metastasis. The role of CRTAC1 in the prognosis of 

gastric adenocarcinoma suggests that it may affect the 

tumor microenvironment or interact with specific cell 

signaling pathways. The expression of CRTAC1 may  

be related to cell adhesion, migration or immune 

evasion mechanism in STAD, affecting tumor growth 

and immune response. As part of the NADPH oxidase 

complex, NCF1 plays an important role in generating 

reactive oxygen species (ROS) and regulating immune 

responses. In STAD, abnormal expression of NCF1 

may lead to oxidative stress response and changes in  

the immune microenvironment, promoting tumor cell 

survival and immune evasion. Although there are fewer 

studies on SPIRE1 in cancer, its role in cytoskeletal 

reorganization and organelle trafficking suggests that it 

may play a role in the migration and invasion of STAD 

cells. Changes in the expression of SPIRE1 may affect 

the dynamic behavior of tumor cells and thus play a role 

in the metastasis process of STAD. These speculations 

provide a theoretical basis for future experimental 

verification and may reveal new therapeutic targets and 

strategies to improve the prognosis and therapeutic 

effects of STAD patients. 

 

Immune checkpoint inhibitors (ICIs) bring bright to 

patients with advanced cancer because of their powerful 

effect and less side effects. Only a few patients benefit 

from this method, yet. As a result, there is imperative 

demand to select the crowd with a high response rate for 

precise therapy. 
 

Our study revealed that the low-risk group had a 

tendency towards higher TMB (p = 0.078). In line with 

previous findings, there is an independent predictive 

relationship between high TMB and good response  

to immune checkpoint inhibitor therapy in different 

types of cancer. There is an independent predictive 

relationship between high TMB and favorable response 

to immune checkpoint inhibitor therapy in different 

types of cancer [68]. High TMB was shown to be a 

predictor of treatment efficacy with nivolumab plus 
ipilimumab, suggesting that patients with high TMB 

may benefit from this combination immunotherapy [69]. 

Another study also found that patients with higher TMB 

were more likely to benefit from PD-L1 inhibitor 

treatment [70]. This is consistent with the trend of our 

study results. Patients in the low-risk group had higher 

TMB and a higher degree of response to immuno-

therapy. Except for TMB, TIDE score is an innovative 

immunotherapy biomarker to ICIs [35]. The higher TIDE 

score, the bigger chance to tumor immune escape [71].  

In other words, the lower the TIDE score, the better 

therapeutic potential to ICIs. Current research showed 

that STAD patients in low-risk group had lower TIDE 

scores, were more likely to receive immunotherapy and 

benefit more from it. 

 

One limitation for this research is that it’s a bioinformatic 

analysis based on two public datasets. The practical 

prognostic values of the FAMRGs riskscore model 

should be confirmed in independent and multicenter 

STAD cohorts with larger sample sizes in the future. 

 

CONCLUSION 
 

Taken together, we applied FAM-derived genes to 

establish a FAMRGs riskscore signature, which displayed 

powerful advantages in the prognosis evaluation of STAD 

patients. FAMRGs riskscore signature constructed in  

the current study could offer a valuable viewpoint and  

a helpful way for deeply exploring the role of FAM and 

targeting immunotherapy during cancer progression in 

STAD. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Identification of molecular subtypes and gene set enrichment analysis. (A) Heatmap of sample 

clustering when k = 2 in GSE84437 dataset. (B) GSEA pathways score analysis between C1 and C2 in GSE84437 dataset. 

 

 

 
 

Supplementary Figure 2. Scatter plots of correlation analysis between TIDE score and riskscore. 
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