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INTRODUCTION 
 

According to estimates by the World Health 

Organization (WHO), hepatocellular carcinoma (HCC) 

is the main reason behind cancer deaths worldwide, 

which accounts for more than 90% of primary liver 

cancers and is the fifth most commonly occurring 

malignancy [1, 2]. Patients with HCC commonly 

exhibit underlying liver disease, and various factors that 

increase the likelihood of developing HCC have been 

established, including viral infection with hepatitis C 

virus (HCV), viral infection with hepatitis B virus 

(HBV), cirrhosis, metabolic syndrome, alcoholism, as 

well as the consumption of aflatoxin B1 and smoking 
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ABSTRACT 
 

Background: Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide. Cancer cells’ 
local infiltration, proliferation, and spread are mainly influenced by the protein hydrolyzing function of 
different matrix metalloproteinases (MMPs). However, no study has determined the relationship between 
MMPs and prognostic prediction in HCC. 
Methods: Expression profiles of mRNA and MMPs-related genes were obtained from publicly available 
databases. Cox regression and LASSO Cox regression analysis were used to identify and predict MMPs-related 
prognostic signature and construct predictive models for overall survival (OS). A nomogram was used to 
validate the accuracy of the prediction model. Drug prediction was performed using the Genomics of Drug 
Sensitivity in Cancer (GDSC) dataset, and single-cell clustering analysis was performed to further understand 
the significance of the MMPs-related signature. 
Results: A MMPs-related prognostic signature (including RNPEPL1, ADAM15, ADAM18, ADAMTS5, CAD, 
YME1L1, AMZ2, PSMD14, and COPS6) was identified. Using the median value, HCC patients in the high-risk 
group showed worse OS than those in the low-risk group. Immune microenvironment analysis showed that 
patients in the high-risk group had higher levels of M0 and M2 macrophages. Drug sensitivity analysis revealed 
that the IC50 values of sorafenib, cisplatin, and cytarabine were higher in the high-risk group. Finally, the single-
cell cluster analysis results showed that YME1L1 and COPS6 were the major genes expressed in the monocyte 
cluster. 
Conclusions: A novel MMPs-related signature can be used to predict the prognosis of HCC. The findings of this 
research could potentially impact the predictability of the prognosis and treatment of HCC. 
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[3]. Despite notable progress in the management of 

HCC, encompassing surgical procedures like resection 

and liver transplantation, localized therapies such as 

ablation, transcatheter arterial chemoembolization, and 

transcatheter arterial radiation embolization, as well  

as systemic treatments, the outlook for HCC remains 

unsatisfactory. The estimated overall survival rate after 

five years is below 20% due to most patients being 

diagnosed at intermediate or advanced stages of the 

disease [4, 5]. The use of biomarkers is crucial in 

diagnosing diseases early, predicting prognosis, and 

optimizing treatment strategies, which leads to improved 

patient survival [6]. The high heterogeneity of HCC, 

coupled with the complex etiologic factors, makes 

prognostic prediction challenging. Therefore, it is 

essential to identify new prognostic models. 

 

Solid tumors are complex structures composed of  

cancer cells surrounded by a vascularized, dynamic 

tumor stroma containing a variety of nonmalignant  

cells, such as myeloid cells and fibroblasts, which play  

an essential role in angiogenesis, cell motility, and extra- 

cellular matrix (ECM) remodeling [7]. Cancerous cells’ 

local infiltration, proliferation, and spread are mainly 

influenced by the proteolytic function of different matrix 

metalloproteinases (MMPs). These enzymes promote  

the activation of the immunity cells and facilitate the 

process of growth, movement, invasion, metastasis, and 

angiogenesis by breaking down components of the ECM 

and releasing growth factors, cytokines, or their receptors 

that bind to the cell surface [8]. Although multiple studies 

have verified that MMPs are significantly increased in 

nearly all types of certain types of cancer in humans, 

including bladder cancer and HCC, and their expression 

is commonly linked to unfavorable survival outcomes [9–

13]. Nevertheless, the complete understanding of MMPs-

related genes in the prognosis of HCC remains elusive. 

 

In this study, patient data and mRNA expression data  

of HCC samples were collected from the TCGA data- 

base. Then, an MMPs-related prognostic signature was 

identified, and validation of this signature was conducted 

using cohorts from TCGA-LIHC and the ICGC-LIRI- 

JP. Additionally, we verified the cellular distribution  

and expression of these predictive genes using single-

cell clustering analysis. This finding enhanced our 

understanding of the predictive model related to MMPs 

in HCC and contributed to the identification of possible 

novel therapeutic targets for HCC. 

 

MATERIALS AND METHODS 
 

Datasets 

 

The database Mammalian Degradome 

(http://degradome.uniovi.es/dindex.html) was used to 

look for MMPs-related genes. RNA sequencing profiles 

and patient information for 374 HCC samples were 

downloaded from The Cancer Genome Atlas (TCGA) 

database (https://portal.gdc.cancer.gov/). In addition, 

231 HCC patients from the International Cancer 

Genome Consortium for the Study of Liver Cancer in 

Japan (ICGC-LIRI-JP) dataset and their corresponding 

clinical characteristics were obtained from the ICGC 

database (https://dcc.icgc.org/). Furthermore, a single-

cell sequencing set of HCC (GSE189903) was down-

loaded from the GEO database (https://www.ncbi.nlm. 

nih.gov/geo/). The acquisition of all publicly available  

data adheres to the publication and database access 

policies for the mentioned databases. A flowchart for 

bioinformatics analysis of publicly available datasets 

from the TCGA, ICGC, and GEO databases is shown in 

Figure 1. 

 

Identification of prognostic MMPs-related DEGs 

 

A univariate Cox regression analysis was performed to 

assess the predictive potential of MMPs-related genes  

and identify the association between MMPs-related 

differentially expressed genes (DEGs) and survival 

status in the TCGA-LIHC cohort. 

 

Consensus clustering of prognostic MMPs-related 

DEGs 

 

Clustering analysis of the expression patterns  

of survival-related MMP genes to explore the  

association between their expression and survival 

status was performed using the “ConsensuClusterPlus” 

package. One hundred replicates were performed  

with a pltem value of 0.8 to verify the stability of  

the subtypes. The clustering effect was best when  

the k-value was set to 2. Kaplan-Meier analysis was 

performed using the “survminer” package to estimate 

the differences in overall survival (OS) and progression-

free survival (PFS) between different clusters. A log-

rank test was performed to assess differences in 

survival. The above survival-related genes between  

the two clusters were analyzed using the “limma” 

package in R. 

 

Construction and validation of MMPs-related 

prognostic signature 

 

For modeling purposes, unnecessary genes were 

removed by using LASSO Cox regression. The risk 

score was then calculated using a formula derived  

from the correlation coefficient and gene expression 

value obtained from the multifactorial Cox regression 
analysis. The formula was then applied to determine  

the scores, which were then used to categorize patients 

based on the median into high-risk and low-risk groups. 
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Subsequently, the TCGA cohort was assigned as a 

training cohort and a testing cohort, with the testing 

cohort serving as an internal validation cohort and the 

ICGC as an external validation cohort, both used to 

validate the predictive model. 

 

To investigate the gene expression distribution in  

the predictive model, two separate analyses, namely t-

distributed stochastic neighbor embedding (t-SNE) and 

principal component analysis (PCA), were undertaken 

to assess positioning for two distinct risk groups. We 

evaluated the OS between training and the testing 

cohorts by employing Kaplan-Meier analysis and 

visualized the results using the “survminer” package. 

The AUC was calculated at 1-, 3-, and 5-year intervals 

using the “time ROC” package to assess the accuracy of 

the predictive model. 

 

Risk score independent prognostic analysis 

 

Univariate and multivariate Cox regression analyses 

assessed the relationship between risk factors and 

prognosis. Forest maps were plotted to show the 

independent predictive value of the risk score. A 

nomogram was created using the risk score and other 

clinical indicators to predict 1-, 3- and 5-year OS of  

HCC patients. To further evaluate the discriminative and 

predictive ability of the nomogram, we also calculated 

the concordance index (C-index). The C index values 

varied from 0.5 to 1.0, whereby a higher C index value 

indicates a higher discriminative ability of the prediction 

model [14]. 

 

Analysis of functional enrichment 

 

The analyses of Gene Ontology (GO) and the  

Kyoto Encyclopedia of Gene and Genomes (KEGG) 

were accomplished using the “clusterProfiler” package. 

Furthermore, we used Gene Set Enrichment Analysis 

(GSEA) to determine the significance of the MMPs-

related prognostic signature in differentiating between 

the low and high-risk groups. 

 

Evaluation of the infiltration of immune cells 

 

We employed single-sample Gene Set Enrichment 

Analysis (ssGSEA) as well as Cell-type Identification 

By Estimating Relative Subsets Of RNA Transcripts 

(CIBERSORT) to assess the magnitude with which the 

infiltration of immune cells was observed in different 

clusters and groups of the immune analysis. Gene set for 

ssGSEA was acquired via previous study [15]. The 

number of iterations of CIBERSORT was set to 1000. 

We excluded samples for which the P-value was less 

than 0.05. Additionally, the correlation between the 

immune cell profiles and the MMPs-related prognostic 

signature was examined using Spearman’s correlation. 

Based on the TCGA-LIHC profile of solid tumor 

expression, six immune subtypes (immune C1-C6) were 

identified, including wound healing, IFN-γ dominant, 

 

 
 

Figure 1. Flowchart for bioinformatics analysis in this study. 
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inflammatory, lymphocyte depleted, immunologically 

quiet, and TGF-beta dominant [16]. A two-way analysis 

of variance (ANOVA) was used to examine the 

correlation between the risk score and immune subtypes. 

 

Analysis of drug sensitivity 

 

Genomics of Drug Sensitivity in Cancer (GDSC, 

https://www.cancerrxgene.org/) is an accessible data- 

set that provides comprehensive data regarding the 

sensitivity of cancer cells to drugs as well as drug-

response molecular markers [17]. By employing  

the package of “oncopredict”, we distinguished the 

responsiveness to different groups of medications, 

enabling the assessment of 198 therapeutic compounds. 

The sensitivity scores were then evaluated to determine 

the predicted IC50 of all drugs in HCC patients. 

 

Profiling of RNA-seq at the single-cell level 

 

The R package “Seurat” was used for unsupervised 

clustering of single cells from cancer or normal 

samples, and “Seurat” for annotation. Two clustering 

methods for dimensionality reduction, tSNE and 

Uniform Manifold Approximation and Projection 

(UMAP) were used in this study. The expression of  

the MMPs-related signature was visualized using the 

“VlnPlot” function of the “Seurat” R package. 

 

Statistics analysis 

 

All statistical analyses were performed using R software 

(version 4.2.3). Continuous variables were tested using 

the student t-test, while categorical variables were tested 

using the chi-squared test. A P-value < 0.05 was 

considered significant. 

 

RESULTS 
 

Identification of prognostic MMPs-related DEGs 

 

This study obtained 203 well-defined MMPs- 

related genes (Supplementary Table 1). A total of  

13 prognostic MMPs-related DEGs significantly 

correlated with OS were identified from TCGA- 

LIHC cohort by univariate Cox regression analysis 

based on the criterion of FDR<0.005, including  

RNPEPL1, MMP1, ADAM9, ADAM15, ADAM17, 

ADAM18, ADAMTS5, XPNPEP1, CAD, YME1L1,  

AMZ2, PSMD14, and COPS6. (Figure 2A) Afterward, 

 

 
 

Figure 2. Identification of prognostic MMPs-related DEGs in hepatocellular carcinoma. (A) Prognostic MMPs-related DEGs are 

identified from MMPs-related genes through univariate Cox regression analysis. (B) GO enrichment analysis of prognostic MMPs-related 
DEGs, including biological processes (BP), molecular functions (MF), and cellular components (CC). (C) KEGG enrichment analysis of 
prognostic MMPs-related DEGs. (D) HCC patients were divided into two clusters according to the consensus clustering matrix (k = 2). 
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functional enrichment, including GO and KEGG 

analysis, was performed. The results of GO analysis 

indicated that the prognostic MMPs-related DEGs  

were mainly involved in extracellular matrix degrada- 

tion, collagen catabolic process, membrane protein 

ectodomain proteolysis, membrane protein proteolysis, 

and extracellular matrix organisation (Figure 2B). The 

KEGG analysis result also suggested that the prognostic 

MMPs-related DEGs were involved in alanine, aspartate, 

and glutamate metabolism, Notch signaling pathway, 

PAR signaling pathway, and IL-17 signaling pathway 

(Figure 2C). 

 

Consensus clustering analysis was then performed 

based on the expression levels of prognostic MMPs-

related DEGs. HCC patients could be divided into the 

highest intra-group correlation and the lowest inter-

group correlation (Figure 2D). 

 

The OS and FPS rates of the two clusters were 

evaluated, revealing that cluster 1 demonstrated a 

significantly superior survival status in comparison  

to cluster 2 (P<0.001) (Figure 3A). The levels of 

prognostic MMPs-related DEGs were also evaluated in 

both clusters, and cluster 1 showed lower expression of 

these genes compared to cluster 2 (P=0.017) (Figure 

3B). CIBERSORT was used to determine if the harmful 

effects of prognostic MMPs-related DEGs in HCC 

resulted from the infiltration of immune cells. This 

analysis revealed 22 different immune cell profiles from 

Cluster 1 and Cluster 2. According to the CIBERSORT 

analysis, the number of M0 macrophages in cluster 2 

showed a substantial decrease when compared with 

cluster 1 (Figure 3C). 

 

Construction and validation of the MMPs-related 

prognostic signature 

 

Subsequently, a LASSO Cox regression analysis was 

carried out on prognostic MMPs-related DEGs, using 

the one standard error (SE) approach and 10-fold  

cross-validation. Consequently, nine prognostic MMPs-

related DEGs were determined to be characteristic  

risk genes. Ultimately, the MMPs-related prognostic 

signature was formulated using HCC samples from  

the TCGA-LIHC cohort. The risk score was determined 

by linearly combining gene expression levels with  

their respective regression coefficients. The risk score 

for the correlation coefficient between MMPs-related 

prognostic signature can be calculated using the 

following formula: risk score = (0.0086×expression 

level of RNPEPL1) + (0.0009× expression level of 

ADAM15) + (0.5255×expression level of ADAM18) + 
(0.110× expression level of ADAMTS5) + (0.0126× 

expression level of CAD) + (0.0018×expression level  

of YME1L1) + (0.0025×expression level of AMZ2) + 

(0.0114×expression level of PSMD14) + (0.0011× 

expression level of COPS6) (Figure 4A, 4B). 

 

In the entire, training and testing cohorts of the  

TCGA-LIHC, the heatmap displays the variation in  

the expression of genes between the high and low- 

risk groups. According to the median risk score, HCC 

patients were divided into high-risk and low-risk groups. 

The TCGA-LIHC cohort showed that the low-risk group 

had a considerably extended OS duration compared  

to the high-risk group. The results of PCA indicated a 

remarkable ability of the risk genes to discriminate 

between the two groups. The distribution of risk scores 

indicated a significant increase in the number of fatalities 

in the high-risk group as compared to the low-risk group. 

The results of the TCGA-LIHC cohort and the TCGA-

LIHC training and testing cohorts showed that patients 

in the low-risk group had significantly longer OS than 

patients in the high-risk group (P<0.001). (Figure 4C, 

4E) In addition, additional verification was performed in 

the ICGC-LIRI-JP cohort, and it was observed that the 

low-risk group had significantly longer OS than the 

high-risk group (P<0.001). To examine the reliability of 

the model, the AUC values for OS, which is a time-

dependent measure, were calculated by determining the 

area under the ROC curves. The respective AUC values 

for the 1-, 3-, and 5-year OS were 0.677, 0.716, and 

0.669 (Figure 4F). 

 

Independent predictive value of the risk model 

 

To evaluate the individual impact of the model on  

HCC prognosis, univariate and multivariate Cox 

regression analyses were performed in both TCGA-

LIHC training and testing cohorts. This analysis 

involved considering clinical features and the risk 

score. For both the training and testing cohorts, 

univariate Cox regression analysis demonstrated that  

a high-risk score was an independent predictor of 

adverse patient survival (P<0.001, HR=3.053, 95%  

CI: 2.071-4.502 and P<0.001, HR=3.316, 95% CI: 

1.977-5.563, respectively (Figure 4G). 

 

The outcome was anticipated and validated through 

the use of multivariate Cox regression analysis, which 

additionally demonstrated the use of the risk model to 

be an independent prognostic factor for HCC patients 

in both the training cohort (P<0.001, HR=2.690, 95% 

CI: 1.766-4.097) and the testing cohort (P=0.002, 

HR=2.467, 95% CI: 1.409-4.317), irrespective of other 

clinical factors (Figure 4H). 

 

To further demonstrate the importance of the prognostic 
signature associated with MMPs, the ROC results 

indicate that risk scores can achieve a tremendous overall 

advantage compared to clinicopathological features in 
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Figure 3. Clinicopathological characteristics of the two clusters classified by prognostic MMPs-related DEGs. (A) Kaplan–Meier 

curves for the OS and PFS in the two clusters. (B) Comparison of the expression of survival-related MMPs genes in the two clusters.  
(C) CIBERSORT analysis of infiltrating immune cells in the two clusters. 
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Figure 4. Construction and validation of the MMPs-related prognostic signature. (A) LASSO regression with tenfold cross-validation 

found nine prognostic genes using the minimum λ. (B) LASSO coefficient profiles of nine prognostic genes of HCC. (C, D) Heatmap, PCA plot, 
distribution, survival status, Kaplan-Meier curves for OS and ROC curves demonstrated the predictive efficiency of the risk score in entire, 
training, and testing cohorts. (E) Validation of the MMPs-related prognostic signature in the training cohort of TCGA-LIHC. (F) The validation 
of the MMPs-related prognostic signature in the ICGC-LIRI-JP cohort. (G) Univariate analysis of risk score and clinicopathological 
characteristics in the TCGA-LIHC training and testing cohorts. (H) Multivariate analysis of risk score and clinicopathological characteristics in 
the TCGA-LIHC training and testing cohorts. 
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both the TCGA-LIHC and ICGC-LIRI-JP cohorts. The 

analysis involved examining the correlation between 

clinicopathological features and risk scores (Figure 5A). 

In the TCGA group, the risk scores were found to be 

associated with the T stage and tumor stage (P<0.001), 

whereas no association was found with age, sex, and 

grade (P>0.05) (Figure 5B). Furthermore, the associated 

risk score increases as the tumor stage rises (Figure 5C). 

The heatmap displays the variation in the expression  

of the prognostic signature related to MMPs across 

different clinical characteristics and risk categories within 

the TCGA-LIHC cohort (Figure 5D). Combining five 

prognostic factors generated a nomogram to predict the 

OS at 1-, 3-, and 5-year using the TCGA-LIHC data 

(Figure 5E). The calibration curves for the prediction of 

OS at 1-, 3-, and 5-year are in good agreement with the 

observed values (Figure 5F). 

 

Functional analysis of MMPs-related prognostic 

signature 

 

GSEA was performed to identify the biological 

processes and signaling pathways in which the  

MMPs-related prognostic signature was enriched.  

The results showed that the MMPs-related prognostic 

signature in the high-risk group was mainly enriched  

in embryonic morphogenesis, external encapsulating 

structure organization, morphogenesis of an epithelium, 

ossification, and skeletal system development. In 

contrast, the low-risk group was significantly enriched 

in xenobiotic catabolic process, high-density lipoprotein 

particle, arachidonic acid monooxygenase activity, 

aromatase activity, and oxidoreductase activity acting 

on paired donors with incorporation or reduction of 

molecular oxygen reduced flavin or flavoprotein as one 

donor and incorporation of one atom of oxygen (Figure 

5G). Results from GSEA also indicated that the MMPs-

related prognostic signature was mainly enriched in 

pathways including ECM receptor interaction, cytokine-

cytokine receptor interaction, dilated cardiomyopathy, 

focal adhesion, and neuroactive ligand-receptor inter-

action in the high-risk group. On the other hand,  

the group with low risk primarily had an abundance  

of metabolic pathways such as primary bile acid 

biosynthesis, beta-alanine, glycine serine and threonine, 

linoleic acid, and tryptophan metabolism (Figure 5H). 

 

Analysis of immune infiltration in high- and low-risk 

groups 

 

According to the analysis of ssGSEA, it was found that 

the group at high risk showed increased levels of 

expression for four immune cells, specifically aDCs, 
iDCs, macrophages, and Treg. The low-risk showed 

increased levels of three immune cells: mast cells, 

neutrophils, and NK cells (Figure 6A). Moreover,  

the high-risk group exhibited enhanced functionality  

of immune cells, such as APC co-stimulation, CCR, 

Parainflammation, and MHC class I, compared to  

the low-risk group (Figure 6B). Using CIBERSORT 

analysis, 22 immune cell profiles were detected in  

the low and high-risk groups. The results showed that 

the high-risk group had a higher percentage of M0  

and M2 macrophages, while the low-risk group had 

larger CD8 T and naive B cells (Figure 6C, 6D). 

Spearman correlation analysis revealed a significant 

positive correlation between 9 MMPs-related prognostic 

genes and CD4 memory-activated T cells and M0 

macrophages (Figure 6E). 

 

Additionally, we examined the association between 

immune infiltrations and risk score to elucidate the role 

of the MMPs-related prognostic signature in the immune 

microenvironment. Only C1 to C4 subtypes were 

detected in patients with HCC, as C5 and C6 subtypes 

were absent. The results of our study suggest a strong 

association between immune-infiltrating subcategories, 

specifically the C1 and C2 subcategories, and elevated 

risk scores in the TCGA-LIHC cohort. This implies that 

the MMPs-related prognostic signature might influence 

the presence of immune infiltrates in individuals 

diagnosed with HCC (Figure 6F). 

 

Analysis of drug sensitivity 

 

Afterward, we examined the responsiveness of  

various chemotherapy drugs in distinct risk categories. 

We observed that the IC50 levels of sorafenib, 

cytarabine, cisplatin, dihydro rotenone, fludarabine, 

gemcitabine, irinotecan, oxaliplatin, ribociclib, and 

mitoxantrone exhibited greater values within the  

high-risk group. While in the low-risk group, the IC50 

values of osimertinib, lapatinib, gefitinib, dasatinib,  

and 5-fluorouracil were elevated (Figure 6G and 

Supplementary Figure 1). 

 

Validation of single-cell RNA-seq 

 

Seurat was employed for dimensionality reduction 

(Supplementary Figure 2) and clustering of the single-

cell data, while SingleR was employed for cell-type 

annotation (Figure 7A, 7B). In the single-cell dataset, 

the expression of 8 genes belonging to the MMPs-

related prognostic signature was identified. These  

genes include YME1L1, AMZ2, RNPEPL1, ADAM15, 

PSMD14, COPS6, ADAMTS5, and CAD. Among these 

genes, YME1L1 and ADAM15 were predominantly 

expressed in clusters of endothelial cells, while AMZ2, 

PSMD14, and COPS6 were predominantly expressed in 
clusters of hepatocytes. Additionally, YME1L1 and 

COPS6 were the main genes expressed in clusters of 

monocytes (Figure 7C, 7D). 
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Figure 5. Relationship between risk score and clinicopathological features. (A) Multi-index ROC curve of the MMPs-related 

prognostic signature in TCGA-LIHC and ICGC-LIRI-JP cohorts. (B) Comparison of the predictive role of risk score for multiple clinicopathological 
features. (C) Comparison of risk scores for multiple clinicopathological features. (D) Summarized heatmap of the distribution of clinical 
characteristics and the MMPs-related prognostic signature in TCGA. (E) Nomogram for the quantitative prediction of 1-, 3-, and 5-year 
survival. (F) Calibration plots for predicting 1-, 3-, and 5-year survival. (G) The results of GO annotation for low-risk and high-risk groups by 
GSEA. (H) The KEGG annotation results of low-risk and high-risk groups by GSEA. 
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Figure 6. Comparison of immune infiltration and drug sensitivity analysis. (A) The scores of 16 immune cells were detected by 

ssGSEA analysis. (B) The scores of 13 immune-related functions were detected by ssGSEA analysis. (C, D) 22 types of immune cells were 
identified by CIBERSORT analysis. (E) Correlation analysis between 22 types of immune cell proportions and MMPs-related prognostic 
signature. (F) The risk score of various immune infiltration subtypes. (G) Sensitivity of different chemotherapeutic agents in different risk 
groups. 
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DISCUSSION 
 

HCC, being a medical concern for society, continues to 

have a bleak outlook. It is crucial to investigate primary 

molecular indicators associated with the advancement 

and prediction of HCC, which can be employed as 

targets for therapy. From a pool of 203 genes related to 

MMPs, we obtained 13 prognostic MMPs-related DEGs. 

Following this, a predictive model was built utilizing 

LASSO Cox regression analysis, and nine MMPs-related 

genes were identified as a prognostic signature, showing 

an independent correlation with the prediction of HCC 

 

 
 

Figure 7. Single-cell RNA-seq profiling in hepatocellular carcinoma. (A) t-SNE and UMAP plots colored by different cell clusters.  
(B) The cell types are identified by marker genes. (C) Expression of MMPs-related prognostic signature in each cluster. 
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prognosis. RNPEPL1, a member of the M1 family of 

zinc metal peptide enzymes, consists of 12 enzymes  

in humans and employs Zn2+ as the central active site 

[18]. The individuals in this household participate in 

various activities, ranging from breaking down peptides 

and retrieving amino acids in overall cellular proteolysis 

to controlling physiological signaling sequences by 

breaking down peptide hormones and processing 

peptides displayed on class I MHC molecules [19]. 

Research has verified that blockers of these enzymes 

have demonstrated potential in managing different 

ailments, including high blood pressure, swelling, and 

even certain types of tumors [20–23]. ADAM15, a 

disintegrin and metalloproteinase 15, is a member of the 

ADAM family. It participates in numerous physiological 

and pathological processes by breaking down ECM  

and releasing membrane-bound precursors that control 

cell interactions and the extracellular matrix [24]. 

ADAM15 includes innumerable substrates, including 

essential molecules for cell regulation like E-cadherin 

and N-cadherin, TGFβ, and EGFR ligands [25]. 

Moreover, previous studies have shown that ADAM15 

promotes the synthesis of pro-MMP-9 and enhances  

the breakdown of gelatin by facilitating MMP-9 

mediation [26]. The presence of ADAM15 has been 

recorded in different types of cancerous tumors, 

including breast, prostate, and bladder cancer [27–29].  

A recent investigation validated that ADAM15 is linked 

to unfavorable prognosis in patients with HCC and may 

be regarded as a promising biomarker for diagnosing  

and treatment of HCC [30]. ADAMTS, an enzyme with 

a thrombospondin motif known as secreted ADAM, can 

degrade the ECM and is involved in various biological 

and pathological processes, such as tissue structure, 

inflammation, blood vessel formation, and cancer [31]. 

ADAMTS5, a protease family member, is upregulated in 

non-small cell lung cancer (NSCLC) patients with 

glioblastoma and lymph node metastasis [32, 33]. 

Additionally, research findings indicate that ADAMTS5 

may impede the advancement of HCC, presenting an 

opportunity for further exploration regarding ADAMTS5 

as a potential prognostic marker and promising 

therapeutic target in HCC [34]. The YME1L1 gene, 

belonging to the AAA group of ATPases and an ATP-

dependent metalloprotease encoded by the nuclear 

genome, is situated within the inner mitochondrial 

membrane, positioning its protease domain towards  

the intermembrane space [35]. The mitochondria’s entry 

of YME1L1 is accompanied by protein hydrolysis 

through the activity of the mitochondrial processing 

peptidase, which splits off the sequence destined for  

the mitochondria [36]. It is believed that YME1L1 is 

also implicated in the process of nuclear mitochondrial 
DNA insertion, and the increased expression of 

YME1L1 is strongly linked to ovarian cancer and the 

advancement of tumors [37]. 

Regarding the remaining genes within the set of  

signature genes, carbamoyl phosphate synthetase 2, 

aspartate transcarbamylase, and dihydroorotase (CAD) 

play a crucial role as they encode CAD. These  

enzymes are essential for pyrimidine synthesis, new 

pyrimidine nucleotides, protein glycosylation, and the 

biosynthesis of phospholipids in mammals [38, 39]. CAD 

is responsible for initiating the di-(UDP)-dependent 

glycosylation process, resulting in the production of 

UDP. There is a significant association between elevated 

CAD expression and an unfavorable prognosis of  

HCC [40, 41]. PSMD14, also known as Rnp11, is a 

metalloproteinase that includes the JAB1/MPN/Mov34 

(JAMM) domain and has a Zn2+-ion in its active center 

[42]. PSMD4, functioning as a ubiquitin-degrading 

enzyme within the proteasome’s 19S regulatory granules, 

can control numerous biological processes, such as the 

stability of proteins, the advancement of cancer, and 

resistance to drugs [43]. COPS6, a member of the JAMM 

family, has recently been verified to facilitate tumor 

advancement and decrease the infiltration of CD8+ T-

cells by suppressing the synthesis of IL-6, thus promoting 

tumor immune escape from cancer [44, 45]. 

 

Active participants in the development of HCC include 

diverse immune cells found within the tumor immune 

microenvironment, including macrophages, natural killer 

(NK) cells, DCs, tumor-associated endothelial cells 

(ECs), cancer-associated fibroblasts (CAFs), abnormal 

tumor vasculature, CD4+, and CD8+ T cells, and 

myeloid-derived immunosuppressive cells (MDSCs) 

[46]. A comprehensive examination was conducted to 

investigate the association between the signature related 

to MMPs and the infiltration of immune cells in HCC. 

We noticed that the high-risk population showed a higher 

level of immune cell infiltrations, including aDCs, iDCs, 

macrophages, and Treg cells. In contrast, the low-risk 

group showed an increased presence of activated mast 

cells, neutrophils, and NK cells. According to the 

CIBERSORT analysis, the high-risk group exhibited a 

higher quantity of M0 and M2 macrophages. In contrast, 

the low-risk group presented a higher presence of naive  

B cells and CD8+ T cells. Moreover, the vulnerable 

population demonstrated enhanced functionality of 

immune cells, such as APC co-stimulation, CCR, 

parainflammation, and MHC class I. This implies that  

the predictive function of the MMPs-associated pattern 

could potentially be linked to macrophages. 

 

Tumor-related macrophages (TRMs) are an essential 

component of the tumor surroundings and play a  

role in controlling blood vessel formation, modifying 

the extracellular structure, promoting the growth of 
cancer cells, spreading, suppressing the immune system,  

and developing resistance to chemotherapy and 

immunotherapy that targets checkpoints [47]. Different 
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functional phenotypes can be achieved by polarizing 

TAMs, which play a crucial role in inflammation 

related to tumors. The M1 macrophages, which are 

induced by interferon alone or in combination with 

lipopolysaccharide, and the M2 macrophages, which IL-

4 or IL-13 induces, are the subgroups that have been 

extensively studied. The M1 phenotype of activated 

macrophages can stimulate anti-tumor immune responses 

by various means, such as presenting antigens to 

adaptive immune cells, generating pro-inflammatory 

cytokines, and engulfing tumor cells [48, 49]. Tumor-

associated macrophages (TAMs), which are polarized 

toward the M2 phenotype, may also secrete the cytokine 

CCL22, leading to an increase in tumor invasion as well 

as the induction of EMT through activating Smad2/3 

and Smad1/5/8 and upregulating Snail [50]. 

 

Furthermore, the secretion of CCL17 by M2 macrophages 

is intricately associated with tumor stemness and  

EMT, operating through the TGF-β1 and Wnt/β-catenin 

signaling pathways [51]. Moreover, studies have shown 

that M2 macrophages can protect tumor in a positive 

feedback loop by releasing HGF in HCC [52]. The 

current study may explain the decreased responsiveness 

to chemotherapeutic agents with high risk. Although 

macrophages are not detected in this dataset, our results 

show that YME1L1 and COPS6 are the significant genes 

expressed in monocyte clusters. Circulating monocytes 

are the primary source of infiltrating macrophages in 

tumors, so our results may suggest a potential role for 

YME1L1 and COPS6 in macrophage polarization in 

HCC. 

 

There are several limitations to this study. First,  

this study uses public datasets for different patient 

cohorts, and the results might be heterogeneous in data 

processing and patient selection. Although we validated 

our gene signature in external datasets, prospective 

cohorts with more HCC patients are needed to validate 

our risk models. Second, the function of the MMPs-

related signature in the carcinogenesis and progression 

of HCC needs to be further investigated. 

 

CONCLUSIONS 
 

A MMPs-related prognostic signature (including 

RNPEPL1, ADAM15, ADAM18, ADAMTS5, CAD, 

YME1L1, AMZ2, PSMD14, and COPS6) was identified. 

These findings could potentially impact the predictability 

of the prognosis and treatment of HCC. 
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Supplementary Figure 1. Comparison of the sensitivity of various chemotherapeutic agents in distinct risk groups of the 
TCGA-LIHC cohort. 
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Supplementary Figure 2. Single-cell RNA-seq profiling in hepatocellular carcinoma. (A, B) The Seurat package is used to filter data 

from individual cells. (C) Utilizing dimensionality reduction and the Seurat package, single-cell data can be clustered. 
 

 

 
  

8685



www.aging-us.com 20 AGING 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1. 

 

Supplementary Table 1. The matrix metalloproteinases-related genes in Mammalian Degradome database. 
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