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ABSTRACT

Background: It is unknown what variables contribute to the formation and multiplication of low-grade gliomas
(LGG). An emerging process of cell death is called cuproptosis. Our research aims to increase therapeutic
options and gain a better understanding of the role that cuproptosis-related genes play in the physical
characteristics of low-grade gliomas.

Methods: The TCGA database was utilized to find cuproptosis genes that may be used to develop LGG risk
model. Cox analysis in three different formats: univariate, multivariate, and LASSO. The gene signature’s
independent predictive ability was assessed using ROC curves and Cox regression analysis based on overall
survival. Use of CGGA data and nomogram model for external validation Immunohistochemistry, gene
mutation, and functional enrichment analysis are also employed to clarify risk models’ involvement. Next, we
analyzed changes in the immunological microenvironment in the risk model and forecasted possible
chemotherapeutic drugs to target each group. Finally, we validated the protein expression levels of
cuproptosis-related genes using LGG and adjacent normal tissues in a small self-case-control study.

Results: This study developed a glioma predictive model based on five cuproptosis-associated genes. Compared
to the high-risk group, the low-risk group’s OS was significantly longer. The ROC curves showed high genetic
signature performance in both groups. The signature-based categorisation was also linked to clinical
characteristics and molecular subgroups. The prognosis of individuals with grade 2 or 3 glioma is also influenced
by our risk model. Immunological testing revealed that the high-risk group had more immune cells and
immunological function. The risk model also predicted immunotherapy and chemotherapy medication results.
Also, this study confirmed that the expression of cuproptosis-related genes by Western blot.

Conclusion: We developed a prediction model for LGG patients using genes associated with cuproptosis. With
acceptable prediction performance, this risk model may effectively stratify the prognosis of glioma patients.

INTRODUCTION Classification of Tumors of the Central Nervous

System [4], diffuse gliomas are described as WHO
Glioma, the most common kind of primary intracranial grades Il and Ill astrocytic tumors, grade Il and IlI
tumor, accounts for about 81 percent of all malignant oligodendrogliomas, grade IV glioblastomas, and
brain tumors [1]. There is no effective treatment [2, 3]. related diffuse gliomas of childhood. Glioblastoma
According to the 2016 World Health Organization (WHO grade 1V) is deadlier than low-grade gliomas
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(LGG, classes Il and I1I) [5, 6]. Even with significant
surgical resection, radiation, and temozolomide
therapy, the median survival time for glioblastoma is
just 16 months [7, 8]. Regardless of the development of
genetic markers like IDH mutation and 1p/19q
deletion, LGG diagnosis, therapy, and prognosis
remain critical needs [9]. Further molecular research is
needed to improve the existing diagnosis and therapy
of this severe tumor.

Cell death may occur at even low levels of intracellular
concentrations of copper, which is required as a
cofactor for enzymes across the animal world [10].
Recent research has revealed the mechanism by which
this copper-dependent cell death occurs: direct binding
of copper ions to lipid acylated components of the
tricarboxylic acid cycle (TCA) in mitochondrial
respiration results in lipid acylated protein aggregation
and subsequent downregulation of iron-sulfur cluster
proteins, resulting in proteotoxic stress and, ultimately,
cell death [11]. Under normal circumstances, cellular
copper levels are tightly regulated to maintain proper
cellular function. However, certain conditions such as
disrupted copper metabolism, inflammation, or tumor
development can lead to an accumulation of excess
copper within cells. Excessive copper ions can interact
with various molecules inside the cell, including
proteins, DNA, and redox molecules. These
interactions may disrupt the cellular environment,
trigger a series of cell signaling pathways, and
ultimately result in cell death through apoptosis.
Although research on cuprotosis is still in its early
stages, studies have suggested that excessive copper
ions can induce apoptosis in certain types of tumors,
potentially having antitumor effects. There have been
no investigations of cuprotosis in tumors, and this
finding is likely to lead to the creation of novel cancer
therapies.

The tumor microenvironment (TME) comprises various
non-cancerous cell types, including immune cells,
inflammatory cells, vascular cells, fibrotic cells, and
even adipocytes [12]. Cancer-promoting growth
factors and cytokines are released by TAMs,
increasing tumor invasion, impairing immune cell
function, and encouraging angiogenesis [13, 14].
Additionally, glioma immunotherapy has been
identified to cause drug resistance [15]. Exploring
TAMs’ regulating mechanisms and defining the
prognostic value of TAMs’ associated signature can
help enhance tumor therapy.

In this research, we used cuproptosis-related genetic
traits and immune response characteristics to help
predict customized survival and treatment choices for
individuals with LGG patients.

MATERIALS AND METHODS
Data collection and processing

Cuproptosis-associated genes were identified in a recent
publication [8] (Supplementary Table 1). Normal brain
tissue samples were obtained from the GTEx dataset
(https://xenabrowser.net/datapages/). The  materials
utilized to build the risk model were collected from the
TCGA (https://portal.gdc.cancer.gov/) database and
contained gene expression and clinical information files
(Supplementary Table 2). Gene expression data and
clinical  information files from the CGGA
(http://www.cgga.org.cn/) database were utilized to
validate the results (Supplementary Table 3). All of the
data collected from the CGGA and TCGA sources was
converted to log2(x+1) form in order to be used in
future study. In order to undertake a differential analysis
of cuproptosis-related genes, we used the R package
“limma” (LogFC >1, FDR <0.05). We employed the R
package “survival” to identify prognostic genes among
those associated with cuproptosis (P < 0.05). The
samples with missing clinical information and survival
of less than 30 days were excluded, and the clinical
information in the TCGA and CGGA databases
utilized in this investigation was processed as indicated
in Table 1.

The risk model’s development and validation

Genes linked with prognosis and differentially
expressed in grade Il and Il gliomas will be chosen for
intersection. To design a simple and reliable model, the
least absolute shrinkage and selection operator
(LASSO) regression analysis was used to screen the
optimum genes. With the least mean square, the best
lambda and associated variables were frequently found.
The following equation yields the prognostic model’s
riskscore:

RiskScore =" Exp. (Genei) x coef . (Genei)

(where Exp. (Genei) and Coef. (Genei) are the
expression of Genei in a particular patient, and
coefficients of the Genei in the multivariate cox
regression analysis).

Patients were separated into high and low risk groups
based on the median value of the risk score in order to
identify TCGA patients as low or high risk. The OS of
patients in various risk categories was examined using
the R packages “survival” and “survminer.” The
prediction effect of the model was tested using the R
package “survROC” at 1, 2, 3, 4, and 5 years. PCA and
t-SNE analyses were done using the R packages
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Table 1. Clinical characteristics.

Variables Group Number (TCGA) Number (CGGA)
Gender Female/Male 218/262 250/339
Age <40/>40 233/247 306/283
Grade G2/G3 248/232 269/230

“Rtsne” and “ggplot2” to identify patients with varying
risk levels who might be separated into two groups.
Patients from the CGGA cohort were utilized to verify
the model using the same approach as the TCGA
cohort.

The nomogram’s construction and evaluation

In the TCGA cohort, we used univariate analysis on
clinicopathologic characteristics and our signature.
Following that, the significant prognostic factors (P <
0.05) were included in the multivariate Cox regression
analysis. The nomogram was created using the R
package “rms,” and factors of predictive value in
multivariate analysis (P < 0.05) were included. The
consistency between anticipated and actual survival
results was assessed wusing calibration curves.
Nomograms, gene risk models, and clinicopathologic
variables were also compared using time-dependent
ROC curves.

Protein levels of predictive signature

In the Human Protein Atlas database (HPA,
http://www.proteinatlas.org/), protein expression data
and immunohistochemistry findings for 32 human
tissues are accessible, properly identifying the proteins
in each tissue or organ. In this work, the protein
expression levels of prognostic indicators in normal,
low-grade, and high-grade glioma tissues were
investigated utilizing HPA.

Functional enrichment of high-and low-risk genes

The R package “limma” was used to examine
differentially expressed genes in the high and low risk
groups (FDR <0.05, LogFC >1). The R packages
“org.Hs.eg.db,” “digest,” and “GOplot” were used to
conduct GO and KEGG enrichment analysis and
visualization.

Tumor mutational burden and immune checkpoints

There are various alterations in tumor cells that make
them stand out from normal cells, making them easier
for the immune system to identify. As a result, patients
with  increased TMB  should have  more
immunotherapeutic effects. The TCGA database was
used to retrieve mutation data from Mutect software,

and R was used to compute TMB. In the TCGA cohort,
TMB levels were compared between high- and low-risk
groups. Immune checkpoint expression was also
examined between the two high-risk groups.

Estimation of TME (tumor immune environment)
cell infiltration

The proportions of different immune cells in tumor
tissues and in high and low-risk groups were studied
using the CIBERSORT deconvolution method in
this research, and the findings were displayed in the
form of bar and violin plots. The TIMER website
(http://timer.cistrome.org/) was then utilized to examine
the expression of immune cells such as macrophages,
neutrophils, B cells, CD4+ T cells, CD8+ T cells, and
dendritic cells in the high and low-risk groups. The
expression levels of the 16 immune cells and 13
immunological activities among the high and low-risk
groups were evaluated using a single-sample genomic
enrichment analysis (sSGSEA). Heatmaps were used to
visualize the findings of both studies.

Chemotherapy and

prediction

immunotherapy response

Each grade 11 and 111 glioma patient’s chemotherapeutic
response was predicted using the Genomics of Drug
Sensitivity in Cancer public pharmacogenomic database
(GDSC, http://www.cancerrxgene.org/). The R package
“pRRophetic” was used to forecast drug sensitivity
(IC50) values.

Western blot

Western blotting was implemented to further verify the
differential expression levels of the above genes
between normal and LGG tissues. Normal brain tissues
were obtained from patients with epilepsy who were
undergoing temporal lobe resection. LGG tissues which
were histologically diagnosed as grade 11 (G2), grade IlI
(G3) was obtained from patients who received tumor
resection.

The collected tissues were separately homogenized and
lysed in RIPA lysis buffer containing protease and
phosphatase inhibitors at 0-4°C. The homogenized
protein samples were centrifuged at 1000 g for 15 min
at 4°C to extract cytoplasmic proteins. The Bio-Rad
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protein assay kit was used to determine the protein
concentration. The protein samples were homogenized
with a prepared loading buffer and then boiled for 5 min
at 100°C. Equal amounts of protein samples were
separated through SDS-PAGE at 80 V for 1 h.
Afterwards, the protein samples were transferred onto
polyvinylidene difluoride (PVDF) membranes at 50 V
for 1 h. The membranes were incubated for 12 h with
the primary antibodies. Following this, the membranes
were incubated with secondary anti-rabbit or anti-mouse
horseradish peroxidase (HRP) antibodies. Ultimately,
the membranes were visualized with the enhanced
chemiluminescence (ECL) solution.

Statistical analysis

Evaluation of the differential between the tumor and the
surrounding tissue A T-test was used to examine the
tissue. The overall survival rates were examined. Using
the Kaplan-Meier method, overall survival prediction
markers were found using univariate and multivariate
Cox regression models. The R The platform is used for
data statistical analysis (version 4.1.2). P-values less
than 0.05 were regarded statistically significant (P <
0.05, P < 0.01, ™P < 0.001, ™P < 0.0001).

Data availability

This research employed normal brain tissue samples
from the GTEx dataset (https://xenabrowser.
net/datapages/). Gene expression datasets from glioma
tissue can be obtained from the TCGA (https://portal.
gdc.cancer.gov/) and CGGA (http://www.cgga.org.cn/)
databases. Specific data sets can be obtained by
contacting the corresponding author.

RESULTS

Cuproptosis-associated genes’ differential expression
and prognostic analysis

The obtained cuproptosis-associated genes were
subjected to differential and prognostic analyses in
normal and grade 2 and 3 glioma patients, as shown in
Figure 1A, 1B, with three down-regulated and six up-
regulated genes. The prognostic analysis revealed that
eight genes were suitable for screening (Figure 1C). The
intersection of the two genes was taken, and five
overlapping genes were obtained (SLC31A1, FDX1,
GCSH, DLD, PDHB, Figure 1D). As shown in Figure
1E, all six pathways that may be enriched for
differentially expressed genes were investigated, and all
six pathways were linked to amino acids. Finally, the
mutations of SLC31Al, FDX1, GCSH, DLD, and
PDHB were checked. Only DLD had the highest
mutation rate of 2.8% (Figure 1F).

Development and validation of a cuproptosis-
associated gene-based glioma prognostic model

TCGA and CGGA cohorts are used in the training and
testing phases, respectively, to increase the predictive
model’s accuracy and precision. We identified five
genes from the prior study that would be used in the
next prognostic model. Cox regression analysis was
used to build a gene signature using the absolute
minimum shrinkage and selection operator (LASSO)
(Figure 2A, 2B). We discovered that patient risk scores
were adversely connected to the survival rate of glioma
patients (Figure 2C). When the Kaplan-Meier curve was
used for survival analysis, it revealed that the low-risk
group had a much greater survival rate than the high-
risk group (Figure 2D). The area under the ROC curve
(AUC) for the overall survival risk score was 0.825 over
one year, 0.749 over two years, 0.729 over three years,
0.690 over four years, and 0.685 over five years (Figure
2E). Patients with varied levels of risk were separated
into two groups based on the findings of the PCA and
the t-SNE test (Figure 2F, 2G).

We exploited the CGGA cohort as a validation group
for the prognostic model that was developed by the
TCGA cohort. We divided the calculated risk scores
into high-risk and low-risk groups based on median
values, with patients in the high-risk group having a
higher probability of early death than patients in the
low-risk group (Figure 2H). The survival curves
revealed that the low-risk group had a much greater
survival rate than the high-risk group (Figure 2I). The
ROC curve reveals an AUC of 0.670 in 1 year, 0.703 in
2 years, 0.695 in 3 years, 0.701 in 4 years, and 0.703 in
5 years (Figure 2J). The PCA and t-SNE results
suggested that patients with varying risks were well
split into two groups (Figure 2K, 2L).

Finally, we used the TCGA and CGGA datasets to
conduct survival and ROC analyses on each of these
five genes in glioma (Table 2). These findings suggest
that our risk model outperforms single genes in terms of
survival prediction.

Risk model-clinical trait relationships

To further evaluate the risk model’s dependability, we
compared the risk score to individual clinical features
from the TCGA and CGGA cohorts. In the TCGA
cohort, only tumor grade was connected with the risk
score substantially, and GCSH and PDHB were
favorably associated with the risk score, but FDX1,
SLC31A1, and DLD were negatively associated with
the risk score (Figure 3A). The CGGA cohort study
provided further support for the TCGA findings (Figure
3B). Following that, we ran a survival study on the risk
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model’s subtypes of clinical features. Survival results 3C-3E). By studying the CGGA cohort (Figure 3F-

by age, gender, and tumor grade were comparable to the 3H), we achieved similar findings with the TCGA
overall survival outcome in the TCGA cohort (Figure cohort. Thus, our risk model demonstrated some
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Figure 1. Identification of cuproptosis-related genes. (A) Gene expression heatmap. (B) Gene expression volcano plot. (C) Survival-
associated genes. (D) Intersecting gene differences and prognosis. (E) Differential genes’ possible pathways. (F) Gene mutations analysis.
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predictive value for survival in terms of clinical feature
subtypes. Finally, we conducted a survival analysis
onthe levels of expression of different genes in
the risk model. The TCGA dataset is shown in

Figure 4AA-4E, whereas the CGGA dataset is
represented in Figure 4F-4J. All of these findings
reinforce the notion that our model has a high prediction
ability for survival.
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Figure 2. Building and testing a cuproptosis prognostic model. C-G denotes the TCGA cohort, whereas H-L denotes the CGGA cohort.
(A, B) Visualization of LASSO regression. (C) Risk survival status plot. (D) Kaplan-Meier curve result. (E) The AUC of the prediction of 1, 2, 3, 4,
5-year survival rate of LGG. (F) PCA plot. (G) t-SNE plot. (H) LASSO regression visualization. (1) The outcome of the Kaplan-Meier curve. (J)
The AUC for predicting LGG survival rates of 1, 2, 3, 4, and 5 years. (K) PCA plot. (L) t-SNE plot.
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Table 2. Survival prediction using genetic and risk models.

ROC (AUC value)

Database Gene Survival (p-value) One year Twoyears Threeyears Fouryears Five years
SLC31A1 9.667¢—04 0.76 0.702 0.679 0.612 0.594
FDX1 0.021 0.591 0.629 0.624 0.614 0.603
TCGA GCSH 0.001 0.223 0.339 0.345 0.351 0.354
DLD 0.086 0.587 0.584 0.605 0.564 0.592
PDHB 6.601e—04 0.262 0.350 0.400 0.374 0.339
riskScore 1.82e—06 0.825 0.749 0.729 0.690 0.685
SLC31A1 5.039e—-06 0.599 0.622 0.606 0.604 0.607
FDX1 1.548e—06 0.53 0.598 0.611 0.63 0.643
CGGA GCSH 1.658e—04 0.36 0.377 0.382 0.385 0.393
DLD 4.266e—04 0.523 0.57 0.558 0.575 0.587
PDHB 0.182 0.5 0.505 0.519 0.516 0.504
riskScore 4.952¢e—14 0.67 0.703 0.695 0.701 0.703
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Figure 3. Clinically relevant heatmaps and survival analysis of subtypes of clinical features. (A) Clinical relevance heatmap for the TCGA
cohort. (B) Clinical relevance heatmap for the CGGA cohort. (C—E) The TCGA cohort's survival analysis. (F-H) The CGGA cohort’s survival analysis.
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Nomogram construction and assessment

In the TCGA cohort, univariate and multivariate Cox
regression studies found certain clinical features
associated with glioma prognosis (Figure 5A). A
nomogram was created based on several independent
prognostic criteria, including riskscore, age, gender, and
grade, to increase prediction capacity and give a
quantitative tool for predicting the survival outcomes of
glioma patients in clinical practice (Figure 5B).
Calibration curves indicated that there was an excellent
match between the actual probability of 1-year, 3-year,
and 5-year OS and the anticipated probability of the
nomogram (Figure 5C). We also used decision curves
and ROC curves for risk scores and clinical features to

B

high risk+high LD ~* high risk+Low DLD

low risk+Low DLD

- low risk+high DLD

high risk+high FDX1 -+ high risk+Low FDX1

= low risk+high FDX1

predict survival at 1, 3, and 5 years. Figure 5D-5F show
the decision curves for 1, 3, and 5 years, respectively,
while Figure 5G-5I depict the ROC curves for 1, 3, and
5 years. All of these analytical methodologies
demonstrate that our risk model has strong survival
prediction ability.

Immunohistochemistry testing of five genes in the
risk model
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Figure 4. Analysis of the risk Scores and genes for survival. (A—E) Cohort of the TCGA. (F-J) Cohort of the CGGA.
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we utilized the HPA database and data from the TCGA
and GTEx datasets to run a bioinformatics study to
verify the expression of the five genes used to build the
risk model in glioma patients. All of the data indicated
that SLC31A1, FDX1, and DLD protein expression
levels rose with tumor grade, whereas GCSH and PDHB
protein expression levels dropped (Figure 6C—6L).

cuproptosis-related genes between high-risk and low-
risk groups to investigate the biological roles and

processes of genes linked with risk scores. We
discovered 843 potential pathways in the GO
enrichment study, including BP, CC, and MF

(Supplementary Table 4). Figure 7A, 7B depicts several
of the top-ranked pathways, which are mostly connected

Gene enrichment analysis of cuproptosis-related

genes

This research employed GO enrichment analysis and
KEGG pathway analysis of differentially expressed

to extracellular matrix and structure, cell adhesion,
and chromosomes. We enriched 50 pathways
(Supplementary Table 5) in the KEGG enrichment
analysis, most of which included ECM-receptor
interactions and complement and coagulation cascades,
among other things (Figure 7C, 7D).
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Analysis of gene correlations and mutations

We used the STRING website to conduct a functional
protein association network analysis of the differentially
expressed genes in high-and low-risk groups
(Supplementary Table 6). By measuring the number of
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mutations of genes in the high and low-risk groups. For
the low-risk and high-risk groups, respectively, Figure
8C, 8D show the top 20 genes with the greatest
mutation frequency. Finally, co-expression relationships
between tumor mutational burden and risk score (Figure
8E) and their expression in the high and low-risk groups
were investigated (Figure 8E, 8F).

Immunization and the risk model

Conventional treatment for gliomas, which have a high
risk of recurrence and aggressiveness, is not effective.
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The purpose of this study was to see whether our risk
models might be used to guide glioma immunotherapy
based on their correlation with immune infiltration.
Three approaches, CIBERSORT, TIMER, and ssGSEA,
are used to examine the connection between risk models
and vaccination in this research. Figure 9 depicts the
association between immune cells and the risk model
using the CIBERSORT approach. Figure 9A shows the
expression of immune cells in each TCGA cohort
sample. The violin plot then visualizes the findings of
the statistical analysis of immune cell infiltration in the
high-and low-risk groups (Figure 9B).
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Following that, we used the TIMER and ssGSEA scores (Figure 10). Using the TIMER method, we

methodologies to explore the relationship between discovered that in the high-risk group, all six immune
immune cells and immunological function and risk cell types were increased. We used the ssGSEA method
A B 2 ; .3 sesss-cz.5%8
Enc - -
CCNAZ - . 2OB8955505555332858
CDK1 + L] ':U:H.(DCI0.00UQOI—U!UJOCD!ZZ
CDC20 - ° skSCOre el ose B o B 0 02 1t 03 0 wor w030 03 0 s 0 an e [
AURKE . LC31A1 ot 03 e 4 03 sar e 030 03 e am eswmnss | o
CCNB2 - . FDX1 0 oos [l are 07 so60m o 01 006 ams 0 w000 oo 0w 002 002 a1 v :
cé'rfél 1 : GOSHER o1 ors [l +m o0 am-aau-am 0 o250 03 025 o1 am-amoom-amooz | | oo
CDCAS 1 . DLD skt a8 o7 soif o7 068 65 as 000t 68 61 6 438 ase 026 a1 s ase
Bgﬁé? 1 . Cgﬁiza..m.m ot er ] o2 - 04
KiF20a ] . S o N . -
g . CDK1uss a3t o -at0m ™ 02
’Aﬁ’éﬁ‘?\ 1 . CDC20 nar a3 o1 28 oo “ :
NUSAP1 - e AURKB 53 s22 005 -22 -0m. am 0
KIF2C . CONB2/am a1 00 -a28 o1 st il
UBEZC 1 : TOP2A set ss¢ o 42t sas - o2
RM2 . CCNB1 nar 636 oar a3 01 3 o :
BRCe S KIF11 a0 03 oonem o on 04
MELK 1 . BUB1B 03 032 cot a4 022 -00r 08 020 03 028 632 03 o oas [ o3r 03 63 03 om
CENPF - . CDCAB s 035 005 021 004 -06
wiies ] . BUBH [BRE oc: RN oo I8 !
KIF4A . KIF20A s a6 062 oz o7 08
e ] : NCAPG oa1 952 on 41 028 ’
KIF15 | . NDC80 ez 035 oar -a26 ase »
v T T T T
0 25 50 75 100
Counts
Altered in 226 (97%) of 233 samples. Altered in 222 (95.69%) of 232 samples.
96 8756
@ o
= =
o 0 No. of sampleszcr'r o . 0 No. of sxampleslls‘1
IDH1 89% | IDH1 66% I
TP53 r 41% IR TP53 50% [
ATRX 33% ATRX | 38% [
cic \ F rm 1 28% HEE cic | 1 12% Il
T il | 8% N i | | | 1%
PIK3CA ] 6% | PIK3CA | [l | 1 9% Wl
FUBP1 | [I]] 10% W FUBP1 | I | 3% |
EGFR | 1% EGFR | | | 12%
NOTCH1 | I i | 5% NOTCHT | | ] 6% |l
NF1 | I | 2% NF1 | I Ll 8% M
PTEN Iy | 2% PTEN | | N i 8% W
mMucts| | ] T} | 4% mucts i I |I | | 5% N
PIK3R1 | | | 3% PIK3R1 | | | 4% ||
IDH2 /Il 5% 1 IDH2 M 13% |
RYR2 | ] | ]3% Ryr2| I | | Il I5% N
SMARCA4 r | 4% SMARCA4 | I | |l 4% |
FLG | | 2% FLG | | | B |
ZBTB20 | | ] 3% ZBTB20 | | | 3% |
HMCN1 | 1% Hment i | || | |1 |1 6% N
ARID1A | Il | | 2% ARID1IA | | |1 | 1 4% |
= Missense_Mutation In_Frame_Del Risk = Missense_Mutation = Frame_Shift_Ins Risk
= Frame_Shift_Del = Translation_Start_Sitt  u high = Frame_Shift_Del = In_Frame_Ins = high
= Nonsense_Mutation = Multi_Hit u low = Nonsense_Mutation = Translation_Start_Site = low
= Frame_Shift_Ins In_Frame_Del = Multi_Hit
1.8e-13
1
.
.
51.0. H
2 5 10
k-] B
— 3
= risk =
@ c
k e g
@ + high S
0! 3
5" 2 05
=]
0.0 0.0
- 6 1 2 Low High
Risk score Risk

Figure 8. Correlation and mutation analysis of genes. (A) The number of interactions between proteins. (B) Analysis of the
correlation between genes and risk scores. (C) Mutation analysis of genes in the low-risk group. (D) Mutation analysis of genes in the high-
risk group. (E) TMB and risk score co-expression analysis. (F) Analysis of TMB in high-and low-risk groups.

WWWw.aging-us.com 8708 AGING



to examine the expression of 16 immune cells and 13
immunological functions in species from the high-and
low-risk groups. The findings revealed that the majority
of them were elevated in the high-risk group.

Immune  checkpoint  blockade
chemotherapeutic sensitivity

(IcB) and

We conducted a correlation study between the
expression levels of 12 essential genes and risk scores
in ICB to investigate the potential relevance of risk
models in the treatment of ICB in grade Il and grade 111
gliomas. The findings revealed that the risk score was
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highly associated with all 12 important genes (Figure
11A-11M). Next, we looked at the response of
immunotherapy in high- and low-risk groups,
respectively. For individuals with a high risk of
complications,  immunotherapy  improved their
outcomes (Figure 11N). Finally, we discovered three
medicines (Cisplatin, Gemcitabine, and Parthenolide)
that may be employed in glioma chemotherapy. A high-
risk score was shown to be related to a lower half-
inhibitory  concentration ~ (IC50) of  chemo-
therapeutic medications  (Figure 110-11Q). This

demonstrated that the model may be used to predict
chemosensitivity.
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Western blot

The protein expression level of SLC31A1, FDX1, DLD,
GCSH, PDHB protein was confirmed. The results showed
that compared with normal tissues, the protein expression
level of SLC31A1, FDX1, DLD was higher. Whereas
GCSH, PDHB protein was lower (Figure 12A, 12B).

DISCUSSION

LGG is more common among the elderly. People who
are younger (on average, 41 years old) have a better
chance of surviving, with a median survival duration of
seven years [16]. Resistant cancer and recurrence are
unavoidable, despite significant advancements in
neurosurgery and other forms of treatment, including

chemotherapy and radiation [17]. Malignancy has great
variation as a result of biological processes. Some
patients have indolent fates, whereas others acquire
high-grade gliomas with unpleasant consequences [18].
However, despite the fact that LGG is considered less
aggressive, patients often have a wide range of survival
results [19]. As a result, current research is focused on
developing new indicators that may accurately predict
patients’ prognoses.

The genetic and molecular heterogeneity of LGG affects
the effectiveness of immunotherapies [20]. The LGG
immune microenvironment is a complicated neuro-
inflammatory network that includes both positive and
negative immune regulators [21]. Copper induces
cell death by a mechanism known as protein lipid
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Figure 10. The link between immune cell infiltration and risk models, based on TIMER and ssGSEA methodologies.
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acylation, which is mostly seen in the TCA cycle [8, 22,
23]. Currently, no research on cuproptosis-related genes
in malignancies has been published. If a full
investigation of its associated genes in glioma can be
undertaken, it may lead to more successful customized
glioma treatment techniques. Here, we created a risk
model that may help determine the prognosis of patients
with low-grade gliomas and provide information about
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those tumors’ immune characteristics. Additionally, the
results from this study may potentially serve as a useful
resource for guiding the treatment of low-grade glioma.

We formulated a risk model for the disease based on
five cuproptosis-associated genes: SLC31Al, FDX1,
GCSH, DLD, and PDHB. Increased messenger RNA
(mRNA) levels in colorectal carcinogenesis have been
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Figure 11. Immune checkpoints and chemotherapy sensitivity. (A—M) Relationship between risk model and immunological
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found in human solute carrier family 31 member 1
(SLC31A1), a copper transporter 1 (CTR1), a homo-
logous high-affinity plasma membrane copper
transporter that impacts dietary copper absorption [24,
25]. Exosomal miR-375 from hMSCs has been found to
impede the development of glioma cells by inhibiting
SLC31A1, making it a viable target for the treatment of
gliomas [26]. Elesclomol induces a novel kind of
copper-dependent cell death, which is enhanced by the
ferredoxin 1 (FDX1) protein, which binds and lowers
the elesclomol-Cu (ii) complex. This novel method of
cell death demonstrates how a change in energy
metabolism may be used to enhance the efficiency of a
cancer targeting medication and hence prevent cancer
cells from adapting to proteasome inhibition and
developing treatment resistance [27]. The findings
demonstrated that FDX1 knockdown mostly enhanced
glycolysis and fatty acid oxidation while altering amino
acid metabolism, offering new insights into the
oncogenic function of FDX1 in LUAD [28]. GCSH has
the potential to evaluate the viability of breast cancer
cells [29] and is a candidate gene for non-ketotic
hyperglycemia [30-32]. For the time being, no studies
of GCSH in glioma have been reported. As an
autoantigen unique to endometrial cancer patients,
dihydrolipoamide dehydrogenase (DLD) has been
discovered in mitochondria. Endometrial cancer may be
diagnosed using IgA autoantibodies against DLD [33].
The DLD genotype appears to elevate the risk of
Alzheimer’s disease, independent of APOE [34]. MiR-
3663-3p levels were shown to be considerably greater in
glioma tissues, where they increased cell proliferation,
protected against apoptosis, and accelerated invasion by
directly targeting PDHB [35]. Pseurotin A has the
ability to target a number of metabolic enzymes
(including PDHB) in the fight against glioma [36]. In
addition, PDHB has been associated with the
development of several diseases [37-40].

Through GO enrichment analysis and KEGG pathway
analysis, we have identified close associations between
copper death-related genes and the following pathways,
Extracellular matrix (ECM) and structure: The ECM
plays a crucial role in providing structural support to
cells and tissues. It is involved in various cellular
processes such as cell migration, proliferation, and
differentiation. Enriched pathways related to the ECM
may include signaling pathways involved in ECM
remodeling, cell-matrix interactions, and tissue
development. Cell adhesion: Cell adhesion pathways
are involved in mediating the physical attachment
between cells and their surrounding environment. These
pathways regulate processes such as cell migration,
tissue morphogenesis, and immune response. Enriched
pathways may include adhesion molecule signaling,
integrin-mediated signaling, and cytoskeletal re-
modeling. Chromosomes: Chromosomal pathways are
associated with the organization, replication, and
maintenance of DNA within the nucleus. Enriched
pathways related to chromosomes could involve DNA
replication and repair mechanisms, mitotic cell division,
and epigenetic regulation. By exploring these enriched
pathways, we may gain insights into the molecular
mechanisms underlying the involvement of cuproptosis
in various biological and pathological contexts.

Although our research has established a model for
evaluating the prognosis of glioma, there are certain
limitations to our work. More samples are needed, and
we need to keep testing the model to see if it needs any
tweaks. One method of cell death is via the process of
cuproptosis. Further research on the mechanism of
cuproptosis induction is required. It’s encouraging to
know that this model, which uses gene expression to
predict survival rates, might give an innovative
approach to the search for more effective LGG therapy
options.
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Figure 12. Western blot (A, B) of SLC31A1, FDX1, DLD, GCSH, PDHB protein.
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CONCLUSIONS

With the use of five cuproptosis-associated genes, we
were able to create and verify a predictive model, which
may be a predictor of response to LGG patients and
immunotherapy. Despite its retrospective nature
limiting the breadth of our research, additional
experimental investigations are necessary to consolidate
these insights and elucidate the underpinning processes.
In conclusion, the goal of this research was to create a
predictive model related to cuproptosis that could be
used to predict survival in LGG patients on an
independent basis. Moreover, it holds potential in
shaping treatment strategies by gauging responsiveness
to immune checkpoint inhibitors and chemotherapeutic
agents, among other interventions.
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