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INTRODUCTION 
 

Glioma, the most common kind of primary intracranial 
tumor, accounts for about 81 percent of all malignant 

brain tumors [1]. There is no effective treatment [2, 3]. 

According to the 2016 World Health Organization 

Classification of Tumors of the Central Nervous 

System [4], diffuse gliomas are described as WHO 

grades II and III astrocytic tumors, grade II and III 

oligodendrogliomas, grade IV glioblastomas, and 

related diffuse gliomas of childhood. Glioblastoma 

(WHO grade IV) is deadlier than low-grade gliomas 
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ABSTRACT 
 

Background: It is unknown what variables contribute to the formation and multiplication of low-grade gliomas 
(LGG). An emerging process of cell death is called cuproptosis. Our research aims to increase therapeutic 
options and gain a better understanding of the role that cuproptosis-related genes play in the physical 
characteristics of low-grade gliomas. 
Methods: The TCGA database was utilized to find cuproptosis genes that may be used to develop LGG risk 
model. Cox analysis in three different formats: univariate, multivariate, and LASSO. The gene signature’s 
independent predictive ability was assessed using ROC curves and Cox regression analysis based on overall 
survival. Use of CGGA data and nomogram model for external validation Immunohistochemistry, gene 
mutation, and functional enrichment analysis are also employed to clarify risk models’ involvement. Next, we 
analyzed changes in the immunological microenvironment in the risk model and forecasted possible 
chemotherapeutic drugs to target each group. Finally, we validated the protein expression levels of 
cuproptosis-related genes using LGG and adjacent normal tissues in a small self-case-control study. 
Results: This study developed a glioma predictive model based on five cuproptosis-associated genes. Compared 
to the high-risk group, the low-risk group’s OS was significantly longer. The ROC curves showed high genetic 
signature performance in both groups. The signature-based categorisation was also linked to clinical 
characteristics and molecular subgroups. The prognosis of individuals with grade 2 or 3 glioma is also influenced 
by our risk model. Immunological testing revealed that the high-risk group had more immune cells and 
immunological function. The risk model also predicted immunotherapy and chemotherapy medication results. 
Also, this study confirmed that the expression of cuproptosis-related genes by Western blot. 
Conclusion: We developed a prediction model for LGG patients using genes associated with cuproptosis. With 
acceptable prediction performance, this risk model may effectively stratify the prognosis of glioma patients. 
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(LGG, classes II and III) [5, 6]. Even with significant 

surgical resection, radiation, and temozolomide 

therapy, the median survival time for glioblastoma is 

just 16 months [7, 8]. Regardless of the development of 

genetic markers like IDH mutation and 1p/19q 

deletion, LGG diagnosis, therapy, and prognosis 

remain critical needs [9]. Further molecular research is 

needed to improve the existing diagnosis and therapy 

of this severe tumor. 

 

Cell death may occur at even low levels of intracellular 

concentrations of copper, which is required as a 

cofactor for enzymes across the animal world [10]. 

Recent research has revealed the mechanism by which 

this copper-dependent cell death occurs: direct binding 

of copper ions to lipid acylated components of the 

tricarboxylic acid cycle (TCA) in mitochondrial 

respiration results in lipid acylated protein aggregation 

and subsequent downregulation of iron-sulfur cluster 

proteins, resulting in proteotoxic stress and, ultimately, 

cell death [11]. Under normal circumstances, cellular 

copper levels are tightly regulated to maintain proper 

cellular function. However, certain conditions such as 

disrupted copper metabolism, inflammation, or tumor 

development can lead to an accumulation of excess 

copper within cells. Excessive copper ions can interact 

with various molecules inside the cell, including 

proteins, DNA, and redox molecules. These 

interactions may disrupt the cellular environment, 

trigger a series of cell signaling pathways, and 

ultimately result in cell death through apoptosis. 

Although research on cuprotosis is still in its early 

stages, studies have suggested that excessive copper 

ions can induce apoptosis in certain types of tumors, 

potentially having antitumor effects. There have been 

no investigations of cuprotosis in tumors, and this 

finding is likely to lead to the creation of novel cancer 

therapies. 

 

The tumor microenvironment (TME) comprises various 

non-cancerous cell types, including immune cells, 

inflammatory cells, vascular cells, fibrotic cells, and 

even adipocytes [12]. Cancer-promoting growth 

factors and cytokines are released by TAMs, 

increasing tumor invasion, impairing immune cell 

function, and encouraging angiogenesis [13, 14]. 

Additionally, glioma immunotherapy has been 

identified to cause drug resistance [15]. Exploring 

TAMs’ regulating mechanisms and defining the 

prognostic value of TAMs’ associated signature can 

help enhance tumor therapy. 

 

In this research, we used cuproptosis-related genetic 
traits and immune response characteristics to help 

predict customized survival and treatment choices for 

individuals with LGG patients. 

MATERIALS AND METHODS 
 

Data collection and processing  

 

Cuproptosis-associated genes were identified in a recent 

publication [8] (Supplementary Table 1). Normal brain 

tissue samples were obtained from the GTEx dataset 

(https://xenabrowser.net/datapages/). The materials 

utilized to build the risk model were collected from the 

TCGA (https://portal.gdc.cancer.gov/) database and 

contained gene expression and clinical information files 

(Supplementary Table 2). Gene expression data and 

clinical information files from the CGGA 

(http://www.cgga.org.cn/) database were utilized to 

validate the results (Supplementary Table 3). All of the 

data collected from the CGGA and TCGA sources was 

converted to log2(x+1) form in order to be used in 

future study. In order to undertake a differential analysis 

of cuproptosis-related genes, we used the R package 

“limma” (LogFC >1, FDR <0.05). We employed the R 

package “survival” to identify prognostic genes among 

those associated with cuproptosis (P < 0.05). The 

samples with missing clinical information and survival 

of less than 30 days were excluded, and the clinical 

information in the TCGA and CGGA databases 

utilized in this investigation was processed as indicated 

in Table 1. 

 

The risk model’s development and validation 

 

Genes linked with prognosis and differentially 

expressed in grade II and III gliomas will be chosen for 

intersection. To design a simple and reliable model, the 

least absolute shrinkage and selection operator 

(LASSO) regression analysis was used to screen the 

optimum genes. With the least mean square, the best 

lambda and associated variables were frequently found. 

The following equation yields the prognostic model’s 

riskscore: 

 

 . ( ) . ( )RiskScore Exp Genei coef Genei=   

 

(where Exp. (Genei) and Coef. (Genei) are the 

expression of Genei in a particular patient, and 

coefficients of the Genei in the multivariate cox 

regression analysis). 

 

Patients were separated into high and low risk groups 

based on the median value of the risk score in order to 

identify TCGA patients as low or high risk. The OS of 

patients in various risk categories was examined using 

the R packages “survival” and “survminer.” The 
prediction effect of the model was tested using the R 

package “survROC” at 1, 2, 3, 4, and 5 years. PCA and 

t-SNE analyses were done using the R packages 
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Table 1. Clinical characteristics. 

Variables Group Number (TCGA) Number (CGGA) 

Gender Female/Male 218/262 250/339 

Age ≤40/>40 233/247 306/283 

Grade G2/G3 248/232 269/230 

 

“Rtsne” and “ggplot2” to identify patients with varying 

risk levels who might be separated into two groups. 

Patients from the CGGA cohort were utilized to verify 

the model using the same approach as the TCGA 

cohort. 

 

The nomogram’s construction and evaluation 

 

In the TCGA cohort, we used univariate analysis on 

clinicopathologic characteristics and our signature. 

Following that, the significant prognostic factors (P < 

0.05) were included in the multivariate Cox regression 

analysis. The nomogram was created using the R 

package “rms,” and factors of predictive value in 

multivariate analysis (P < 0.05) were included. The 

consistency between anticipated and actual survival 

results was assessed using calibration curves. 

Nomograms, gene risk models, and clinicopathologic 

variables were also compared using time-dependent 

ROC curves. 

 

Protein levels of predictive signature 

 

In the Human Protein Atlas database (HPA; 

http://www.proteinatlas.org/), protein expression data 

and immunohistochemistry findings for 32 human 

tissues are accessible, properly identifying the proteins 

in each tissue or organ. In this work, the protein 

expression levels of prognostic indicators in normal, 

low-grade, and high-grade glioma tissues were 

investigated utilizing HPA. 

 

Functional enrichment of high-and low-risk genes 

 

The R package “limma” was used to examine 

differentially expressed genes in the high and low risk 

groups (FDR <0.05, LogFC >1). The R packages 

“org.Hs.eg.db,” “digest,” and “GOplot” were used to 

conduct GO and KEGG enrichment analysis and 

visualization. 

 

Tumor mutational burden and immune checkpoints 

 

There are various alterations in tumor cells that make 

them stand out from normal cells, making them easier 

for the immune system to identify. As a result, patients 

with increased TMB should have more 

immunotherapeutic effects. The TCGA database was 

used to retrieve mutation data from Mutect software, 

and R was used to compute TMB. In the TCGA cohort, 

TMB levels were compared between high- and low-risk 

groups. Immune checkpoint expression was also 

examined between the two high-risk groups. 

 

Estimation of TME (tumor immune environment) 

cell infiltration 

 

The proportions of different immune cells in tumor 

tissues and in high and low-risk groups were studied 

using the CIBERSORT deconvolution method in  

this research, and the findings were displayed in the 

form of bar and violin plots. The TIMER website 

(http://timer.cistrome.org/) was then utilized to examine 

the expression of immune cells such as macrophages, 

neutrophils, B cells, CD4+ T cells, CD8+ T cells, and 

dendritic cells in the high and low-risk groups. The 

expression levels of the 16 immune cells and 13 

immunological activities among the high and low-risk 

groups were evaluated using a single-sample genomic 

enrichment analysis (ssGSEA). Heatmaps were used to 

visualize the findings of both studies. 

 

Chemotherapy and immunotherapy response 

prediction 

 

Each grade II and III glioma patient’s chemotherapeutic 

response was predicted using the Genomics of Drug 

Sensitivity in Cancer public pharmacogenomic database 

(GDSC, http://www.cancerrxgene.org/). The R package 

“pRRophetic” was used to forecast drug sensitivity 

(IC50) values. 

 

Western blot 

 

Western blotting was implemented to further verify the 

differential expression levels of the above genes 

between normal and LGG tissues. Normal brain tissues 

were obtained from patients with epilepsy who were 

undergoing temporal lobe resection. LGG tissues which 

were histologically diagnosed as grade II (G2), grade III 

(G3) was obtained from patients who received tumor 

resection. 

 

The collected tissues were separately homogenized and 

lysed in RIPA lysis buffer containing protease and 

phosphatase inhibitors at 0–4°C. The homogenized 

protein samples were centrifuged at 1000 g for 15 min 

at 4°C to extract cytoplasmic proteins. The Bio-Rad 
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protein assay kit was used to determine the protein 

concentration. The protein samples were homogenized 

with a prepared loading buffer and then boiled for 5 min 

at 100°C. Equal amounts of protein samples were 

separated through SDS-PAGE at 80 V for 1 h. 

Afterwards, the protein samples were transferred onto 

polyvinylidene difluoride (PVDF) membranes at 50 V 

for 1 h. The membranes were incubated for 12 h with 

the primary antibodies. Following this, the membranes 

were incubated with secondary anti-rabbit or anti-mouse 

horseradish peroxidase (HRP) antibodies. Ultimately, 

the membranes were visualized with the enhanced 

chemiluminescence (ECL) solution. 

 

Statistical analysis 

 

Evaluation of the differential between the tumor and the 

surrounding tissue A T-test was used to examine the 

tissue. The overall survival rates were examined. Using 

the Kaplan-Meier method, overall survival prediction 

markers were found using univariate and multivariate 

Cox regression models. The R The platform is used for 

data statistical analysis (version 4.1.2). P-values less 

than 0.05 were regarded statistically significant (*P < 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). 

 

Data availability 

 

This research employed normal brain tissue samples 

from the GTEx dataset (https://xenabrowser. 

net/datapages/). Gene expression datasets from glioma 

tissue can be obtained from the TCGA (https://portal. 

gdc.cancer.gov/) and CGGA (http://www.cgga.org.cn/) 

databases. Specific data sets can be obtained by 

contacting the corresponding author. 

 

RESULTS 
 

Cuproptosis-associated genes’ differential expression 

and prognostic analysis 

 

The obtained cuproptosis-associated genes were 

subjected to differential and prognostic analyses in 

normal and grade 2 and 3 glioma patients, as shown in 

Figure 1A, 1B, with three down-regulated and six up-

regulated genes. The prognostic analysis revealed that 

eight genes were suitable for screening (Figure 1C). The 

intersection of the two genes was taken, and five 

overlapping genes were obtained (SLC31A1, FDX1, 

GCSH, DLD, PDHB, Figure 1D). As shown in Figure 

1E, all six pathways that may be enriched for 

differentially expressed genes were investigated, and all 

six pathways were linked to amino acids. Finally, the 

mutations of SLC31A1, FDX1, GCSH, DLD, and 

PDHB were checked. Only DLD had the highest 

mutation rate of 2.8% (Figure 1F). 

Development and validation of a cuproptosis-

associated gene-based glioma prognostic model 

 

TCGA and CGGA cohorts are used in the training and 

testing phases, respectively, to increase the predictive 

model’s accuracy and precision. We identified five 

genes from the prior study that would be used in the 

next prognostic model. Cox regression analysis was 

used to build a gene signature using the absolute 

minimum shrinkage and selection operator (LASSO) 

(Figure 2A, 2B). We discovered that patient risk scores 

were adversely connected to the survival rate of glioma 

patients (Figure 2C). When the Kaplan-Meier curve was 

used for survival analysis, it revealed that the low-risk 

group had a much greater survival rate than the high-

risk group (Figure 2D). The area under the ROC curve 

(AUC) for the overall survival risk score was 0.825 over 

one year, 0.749 over two years, 0.729 over three years, 

0.690 over four years, and 0.685 over five years (Figure 

2E). Patients with varied levels of risk were separated 

into two groups based on the findings of the PCA and 

the t-SNE test (Figure 2F, 2G). 

 

We exploited the CGGA cohort as a validation group 

for the prognostic model that was developed by the 

TCGA cohort. We divided the calculated risk scores 

into high-risk and low-risk groups based on median 

values, with patients in the high-risk group having a 

higher probability of early death than patients in the 

low-risk group (Figure 2H). The survival curves 

revealed that the low-risk group had a much greater 

survival rate than the high-risk group (Figure 2I). The 

ROC curve reveals an AUC of 0.670 in 1 year, 0.703 in 

2 years, 0.695 in 3 years, 0.701 in 4 years, and 0.703 in 

5 years (Figure 2J). The PCA and t-SNE results 

suggested that patients with varying risks were well 

split into two groups (Figure 2K, 2L). 

 

Finally, we used the TCGA and CGGA datasets to 

conduct survival and ROC analyses on each of these 

five genes in glioma (Table 2). These findings suggest 

that our risk model outperforms single genes in terms of 

survival prediction. 

 

Risk model-clinical trait relationships 

 

To further evaluate the risk model’s dependability, we 

compared the risk score to individual clinical features 

from the TCGA and CGGA cohorts. In the TCGA 

cohort, only tumor grade was connected with the risk 

score substantially, and GCSH and PDHB were 

favorably associated with the risk score, but FDX1, 

SLC31A1, and DLD were negatively associated with 
the risk score (Figure 3A). The CGGA cohort study 

provided further support for the TCGA findings (Figure 

3B). Following that, we ran a survival study on the risk 
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model’s subtypes of clinical features. Survival results 

by age, gender, and tumor grade were comparable to the 

overall survival outcome in the TCGA cohort (Figure 

3C–3E). By studying the CGGA cohort (Figure 3F–

3H), we achieved similar findings with the TCGA 

cohort. Thus, our risk model demonstrated some 

 

 
 

Figure 1. Identification of cuproptosis-related genes. (A) Gene expression heatmap. (B) Gene expression volcano plot. (C) Survival-

associated genes. (D) Intersecting gene differences and prognosis. (E) Differential genes’ possible pathways. (F) Gene mutations analysis. 
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predictive value for survival in terms of clinical feature 

subtypes. Finally, we conducted a survival analysis 

on the levels of expression of different genes in 

the risk model. The TCGA dataset is shown in 

Figure 4A–4E, whereas the CGGA dataset is 

represented in Figure 4F–4J. All of these findings 

reinforce the notion that our model has a high prediction 

ability for survival. 

 

 
 

Figure 2. Building and testing a cuproptosis prognostic model. C-G denotes the TCGA cohort, whereas H-L denotes the CGGA cohort. 

(A, B) Visualization of LASSO regression. (C) Risk survival status plot. (D) Kaplan-Meier curve result. (E) The AUC of the prediction of 1, 2, 3, 4, 
5-year survival rate of LGG. (F) PCA plot. (G) t-SNE plot. (H) LASSO regression visualization. (I) The outcome of the Kaplan-Meier curve. (J) 
The AUC for predicting LGG survival rates of 1, 2, 3, 4, and 5 years. (K) PCA plot. (L) t-SNE plot. 
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Table 2. Survival prediction using genetic and risk models. 

Database Gene Survival (p-value) 
ROC (AUC value) 

One year Two years Three years Four years Five years 

TCGA 

SLC31A1 9.667e−04 0.76 0.702 0.679 0.612 0.594 

FDX1 0.021 0.591 0.629 0.624 0.614 0.603 

GCSH 0.001 0.223 0.339 0.345 0.351 0.354 

DLD 0.086 0.587 0.584 0.605 0.564 0.592 

PDHB 6.601e−04 0.262 0.350  0.400  0.374 0.339 

riskScore 1.82e−06 0.825 0.749 0.729 0.690  0.685 

CGGA 

SLC31A1 5.039e−06 0.599 0.622 0.606 0.604 0.607 

FDX1 1.548e−06 0.53 0.598 0.611 0.63 0.643 

GCSH 1.658e−04 0.36 0.377 0.382 0.385 0.393 

DLD 4.266e−04 0.523 0.57 0.558 0.575 0.587 

PDHB 0.182 0.5 0.505 0.519 0.516 0.504 

riskScore 4.952e−14 0.67 0.703 0.695 0.701 0.703 

 

 
 

Figure 3. Clinically relevant heatmaps and survival analysis of subtypes of clinical features. (A) Clinical relevance heatmap for the TCGA 

cohort. (B) Clinical relevance heatmap for the CGGA cohort. (C–E) The TCGA cohort's survival analysis. (F–H) The CGGA cohort’s survival analysis. 
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Nomogram construction and assessment 

 

In the TCGA cohort, univariate and multivariate Cox 

regression studies found certain clinical features 

associated with glioma prognosis (Figure 5A). A 

nomogram was created based on several independent 

prognostic criteria, including riskscore, age, gender, and 

grade, to increase prediction capacity and give a 

quantitative tool for predicting the survival outcomes of 

glioma patients in clinical practice (Figure 5B). 

Calibration curves indicated that there was an excellent 

match between the actual probability of 1-year, 3-year, 

and 5-year OS and the anticipated probability of the 

nomogram (Figure 5C). We also used decision curves 

and ROC curves for risk scores and clinical features to 

predict survival at 1, 3, and 5 years. Figure 5D–5F show 

the decision curves for 1, 3, and 5 years, respectively, 

while Figure 5G–5I depict the ROC curves for 1, 3, and 

5 years. All of these analytical methodologies 

demonstrate that our risk model has strong survival 

prediction ability. 

 

Immunohistochemistry testing of five genes in the 

risk model 

 

The percentage of G2 and G3 in the high and low risk 

groups in the TCGA (Figure 6A) and CGGA (Figure 

6B) datasets was initially examined. G2 was more 

prevalent in the low-risk group, whereas G3 was more 

prevalent in the high-risk group. Subsequently, 

 

 
 

Figure 4. Analysis of the risk Scores and genes for survival. (A–E) Cohort of the TCGA. (F–J) Cohort of the CGGA. 
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we utilized the HPA database and data from the TCGA 

and GTEx datasets to run a bioinformatics study to 

verify the expression of the five genes used to build the 

risk model in glioma patients. All of the data indicated 

that SLC31A1, FDX1, and DLD protein expression 

levels rose with tumor grade, whereas GCSH and PDHB 

protein expression levels dropped (Figure 6C–6L). 

 

Gene enrichment analysis of cuproptosis-related 

genes 

 

This research employed GO enrichment analysis and 

KEGG pathway analysis of differentially expressed 

cuproptosis-related genes between high-risk and low-

risk groups to investigate the biological roles and 

processes of genes linked with risk scores. We 

discovered 843 potential pathways in the GO 

enrichment study, including BP, CC, and MF 

(Supplementary Table 4). Figure 7A, 7B depicts several 

of the top-ranked pathways, which are mostly connected 

to extracellular matrix and structure, cell adhesion,  

and chromosomes. We enriched 50 pathways 

(Supplementary Table 5) in the KEGG enrichment 

analysis, most of which included ECM-receptor 

interactions and complement and coagulation cascades, 

among other things (Figure 7C, 7D). 

 

 
 

Figure 5. Validation of the risk model based on the TCGA cohort’s nomogram model. (A) Univariate and multivariate Cox 

regression forest plots in LGG. (B) Nomogram for LGG sufferers’ OS. (C) Calibration plot of the nomogram for OS probability prediction at 1, 
3, and 5 years. (D–F) 1, 3, 5 years decision curve. (G–I) ROC curves for 1-, 3-, and 5-years survival prediction. 
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Analysis of gene correlations and mutations 

 

We used the STRING website to conduct a functional 

protein association network analysis of the differentially 

expressed genes in high-and low-risk groups 

(Supplementary Table 6). By measuring the number of 

protein-protein interactions each gene has (Figure 8A), 

we were able to identify the top 30 genes with the most 

protein-protein interactions. An investigation of the 

relationships between the top 14 gene candidates, five 

genes linked to cuproptosis, and the risk score is shown 

in Figure 8B. As a follow-up, we examined the 

 

 
 

Figure 6. Expression of five genes in different tumor grades. (A) G2 and G3 distribution in high- and low-risk groups in the TCGA 

cohort. (B) G2 and G3 distribution in high- and low-risk groups in the CGGA cohort. (C–G) Five genes examined via IHC. (H–L) Expression of 
five genes in normal, LGG, and GBM. 
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mutations of genes in the high and low-risk groups. For 

the low-risk and high-risk groups, respectively, Figure 

8C, 8D show the top 20 genes with the greatest 

mutation frequency. Finally, co-expression relationships 

between tumor mutational burden and risk score (Figure 

8E) and their expression in the high and low-risk groups 

were investigated (Figure 8E, 8F). 

 

Immunization and the risk model 

 

Conventional treatment for gliomas, which have a high 

risk of recurrence and aggressiveness, is not effective. 

The purpose of this study was to see whether our risk 

models might be used to guide glioma immunotherapy 

based on their correlation with immune infiltration. 

Three approaches, CIBERSORT, TIMER, and ssGSEA, 

are used to examine the connection between risk models 

and vaccination in this research. Figure 9 depicts the 

association between immune cells and the risk model 

using the CIBERSORT approach. Figure 9A shows the 

expression of immune cells in each TCGA cohort 

sample. The violin plot then visualizes the findings of 

the statistical analysis of immune cell infiltration in the 

high-and low-risk groups (Figure 9B). 

 

 
 

Figure 7. Functional analysis of genes that are differently expressed in high and low risk groups. (A, B) GO enrichment analysis. 

(C, D) KEGG enrichment analysis. 
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Following that, we used the TIMER and ssGSEA 

methodologies to explore the relationship between 

immune cells and immunological function and risk 

scores (Figure 10). Using the TIMER method, we 

discovered that in the high-risk group, all six immune 

cell types were increased. We used the ssGSEA method 

 

 
 

Figure 8. Correlation and mutation analysis of genes. (A) The number of interactions between proteins. (B) Analysis of the 

correlation between genes and risk scores. (C) Mutation analysis of genes in the low-risk group. (D) Mutation analysis of genes in the high-
risk group. (E) TMB and risk score co-expression analysis. (F) Analysis of TMB in high-and low-risk groups. 
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to examine the expression of 16 immune cells and 13 

immunological functions in species from the high-and 

low-risk groups. The findings revealed that the majority 

of them were elevated in the high-risk group. 

 

Immune checkpoint blockade (ICB) and 

chemotherapeutic sensitivity 

 

We conducted a correlation study between the 

expression levels of 12 essential genes and risk scores 

in ICB to investigate the potential relevance of risk 

models in the treatment of ICB in grade II and grade III 

gliomas. The findings revealed that the risk score was 

highly associated with all 12 important genes (Figure 

11A–11M). Next, we looked at the response of 

immunotherapy in high- and low-risk groups, 

respectively. For individuals with a high risk of 

complications, immunotherapy improved their 

outcomes (Figure 11N). Finally, we discovered three 

medicines (Cisplatin, Gemcitabine, and Parthenolide) 

that may be employed in glioma chemotherapy. A high-

risk score was shown to be related to a lower half-

inhibitory concentration (IC50) of chemo-

therapeutic medications (Figure 11O–11Q). This 

demonstrated that the model may be used to predict 

chemosensitivity. 

 

 
 

Figure 9. The CIBERSORT method for immune cell and risk model analysis. (A) A histogram of the percentage of 22 immune cell 

species in TCGA samples. (B) Violin plot of the percentage of immune cells in the sample. 
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Western blot 

 

The protein expression level of SLC31A1, FDX1, DLD, 

GCSH, PDHB protein was confirmed. The results showed 

that compared with normal tissues, the protein expression 

level of SLC31A1, FDX1, DLD was higher. Whereas 

GCSH, PDHB protein was lower (Figure 12A, 12B). 
 

DISCUSSION 
 

LGG is more common among the elderly. People who 

are younger (on average, 41 years old) have a better 

chance of surviving, with a median survival duration of 

seven years [16]. Resistant cancer and recurrence are 

unavoidable, despite significant advancements in 

neurosurgery and other forms of treatment, including 

chemotherapy and radiation [17]. Malignancy has great 

variation as a result of biological processes. Some 

patients have indolent fates, whereas others acquire 

high-grade gliomas with unpleasant consequences [18]. 

However, despite the fact that LGG is considered less 

aggressive, patients often have a wide range of survival 

results [19]. As a result, current research is focused on 

developing new indicators that may accurately predict 

patients’ prognoses. 

 

The genetic and molecular heterogeneity of LGG affects 

the effectiveness of immunotherapies [20]. The LGG 

immune microenvironment is a complicated neuro-

inflammatory network that includes both positive and 

negative immune regulators [21]. Copper induces  

cell death by a mechanism known as protein lipid 

 

 
 

Figure 10. The link between immune cell infiltration and risk models, based on TIMER and ssGSEA methodologies. 
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acylation, which is mostly seen in the TCA cycle [8, 22, 

23]. Currently, no research on cuproptosis-related genes 

in malignancies has been published. If a full 

investigation of its associated genes in glioma can be 

undertaken, it may lead to more successful customized 

glioma treatment techniques. Here, we created a risk 

model that may help determine the prognosis of patients 

with low-grade gliomas and provide information about 

those tumors’ immune characteristics. Additionally, the 

results from this study may potentially serve as a useful 

resource for guiding the treatment of low-grade glioma. 

 

We formulated a risk model for the disease based on 

five cuproptosis-associated genes: SLC31A1, FDX1, 

GCSH, DLD, and PDHB. Increased messenger RNA 

(mRNA) levels in colorectal carcinogenesis have been 

 

 
 

Figure 11. Immune checkpoints and chemotherapy sensitivity. (A–M) Relationship between risk model and immunological 

checkpoints. (N) Immunotherapy response and risk score. (O–Q) Chemotherapy sensitivity and risk score. 
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found in human solute carrier family 31 member 1 

(SLC31A1), a copper transporter 1 (CTR1), a homo-

logous high-affinity plasma membrane copper 

transporter that impacts dietary copper absorption [24, 

25]. Exosomal miR-375 from hMSCs has been found to 

impede the development of glioma cells by inhibiting 

SLC31A1, making it a viable target for the treatment of 

gliomas [26]. Elesclomol induces a novel kind of 

copper-dependent cell death, which is enhanced by the 

ferredoxin 1 (FDX1) protein, which binds and lowers 

the elesclomol–Cu (ii) complex. This novel method of 

cell death demonstrates how a change in energy 

metabolism may be used to enhance the efficiency of a 

cancer targeting medication and hence prevent cancer 

cells from adapting to proteasome inhibition and 

developing treatment resistance [27]. The findings 

demonstrated that FDX1 knockdown mostly enhanced 

glycolysis and fatty acid oxidation while altering amino 

acid metabolism, offering new insights into the 

oncogenic function of FDX1 in LUAD [28]. GCSH has 

the potential to evaluate the viability of breast cancer 

cells [29] and is a candidate gene for non-ketotic 

hyperglycemia [30–32]. For the time being, no studies 

of GCSH in glioma have been reported. As an 

autoantigen unique to endometrial cancer patients, 

dihydrolipoamide dehydrogenase (DLD) has been 

discovered in mitochondria. Endometrial cancer may be 

diagnosed using IgA autoantibodies against DLD [33]. 

The DLD genotype appears to elevate the risk of 

Alzheimer’s disease, independent of APOE [34]. MiR-

3663-3p levels were shown to be considerably greater in 

glioma tissues, where they increased cell proliferation, 

protected against apoptosis, and accelerated invasion by 

directly targeting PDHB [35]. Pseurotin A has the 

ability to target a number of metabolic enzymes 

(including PDHB) in the fight against glioma [36]. In 

addition, PDHB has been associated with the 

development of several diseases [37–40]. 

Through GO enrichment analysis and KEGG pathway 

analysis, we have identified close associations between 

copper death-related genes and the following pathways, 

Extracellular matrix (ECM) and structure: The ECM 

plays a crucial role in providing structural support to 

cells and tissues. It is involved in various cellular 

processes such as cell migration, proliferation, and 

differentiation. Enriched pathways related to the ECM 

may include signaling pathways involved in ECM 

remodeling, cell-matrix interactions, and tissue 

development. Cell adhesion: Cell adhesion pathways 

are involved in mediating the physical attachment 

between cells and their surrounding environment. These 

pathways regulate processes such as cell migration, 

tissue morphogenesis, and immune response. Enriched 

pathways may include adhesion molecule signaling, 

integrin-mediated signaling, and cytoskeletal re-

modeling. Chromosomes: Chromosomal pathways are 

associated with the organization, replication, and 

maintenance of DNA within the nucleus. Enriched 

pathways related to chromosomes could involve DNA 

replication and repair mechanisms, mitotic cell division, 

and epigenetic regulation. By exploring these enriched 

pathways, we may gain insights into the molecular 

mechanisms underlying the involvement of cuproptosis 

in various biological and pathological contexts. 

 

Although our research has established a model for 

evaluating the prognosis of glioma, there are certain 

limitations to our work. More samples are needed, and 

we need to keep testing the model to see if it needs any 

tweaks. One method of cell death is via the process of 

cuproptosis. Further research on the mechanism of 

cuproptosis induction is required. It’s encouraging to 

know that this model, which uses gene expression to 

predict survival rates, might give an innovative 

approach to the search for more effective LGG therapy 

options. 

 

 
 

Figure 12. Western blot (A, B) of SLC31A1, FDX1, DLD, GCSH, PDHB protein. 
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CONCLUSIONS 
 

With the use of five cuproptosis-associated genes, we 

were able to create and verify a predictive model, which 

may be a predictor of response to LGG patients and 

immunotherapy. Despite its retrospective nature 

limiting the breadth of our research, additional 

experimental investigations are necessary to consolidate 

these insights and elucidate the underpinning processes. 

In conclusion, the goal of this research was to create a 

predictive model related to cuproptosis that could be 

used to predict survival in LGG patients on an 

independent basis. Moreover, it holds potential in 

shaping treatment strategies by gauging responsiveness 

to immune checkpoint inhibitors and chemotherapeutic 

agents, among other interventions. 
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Please browse Full Text version to see the data of Supplementary Tables 2–6. 

 

Supplementary Table 1. Gene for cuproptosis. 
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DLD 
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GCSH 

DLST 

DLAT 

PDHA1 

PDHB 

SLC31A1 

ATP7A 

ATP7B 

 

Supplementary Table 2. TCGA clinical data. 

 

Supplementary Table 3. CGGA clinical data. 

 

Supplementary Table 4. GO enrichment analysis results file. 

 

Supplementary Table 5. KEGG enrichment analysis results file. 

 

Supplementary Table 6. STRING analysis results file. 
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