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INTRODUCTION 
 

Parkinson’s disease (PD) ranks second after 

Alzheimer’s disease (AD) as the commonest neuro-

degenerative disease, and it is characterized by the loss 

of dopaminergic neurons in substantia nigra pars 

compacta (SNpc) and the accumulation of α-synuclein 

in Lewy bodies [1, 2]. Currently, in clinical practice, 

levodopa remains the most effective drug for 

controlling the symptoms of PD; in addition, 

monoamine oxidase B/catechol-O-methyltransferase 

inhibitor is the alternative for treating PD, but these 
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ABSTRACT 
 

Background: Parkinson’s disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic 
neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA 
(miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. 
Methods: We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-
tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a 
cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and 
traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain 
tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and 
ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 
was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow 
cytometry. 
Results: Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice 
and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a 
cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of  
α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, 
and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein 
protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, 
ROCK2 was identified as the direct target of miR-101a-3p. 
Conclusion: MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 
expression, suggesting that miR-101a-3p is a promising therapeutic target for PD. 
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drugs cannot block the degeneration of dopaminergic 

neurons [3, 4]. In this context, the development of more 

effective drugs is still the primary goal of PD 

prevention and treatment. 

 

As a kind of small non-coding RNA with a length of 

20–22 nucleotides, microRNAs (miRNAs) participate in 

mRNA cleavage or post-transcriptional silencing via 

targeting messenger RNA (mRNA) 3′-untranslated 

region (3′UTR), thus regulating the expression of 

related genes [5, 6]. MiRNAs are dysregulated in many 

diseases including PD [7]. For instance, in PD patients, 

miR-155-5p expression is increased, while miR-146a-

5p expression is decreased [8]. MiR-101a-3p is an 

important miRNA. Some studies have found that 

inhibiting miR-101a-3p can promote myocardial 

infarction [9], and miR-101a-3p is also reported to 

participate in neuron apoptosis after ischemic brain 

injury [10]. Notably, miR-101a-3p has been shown to 

delay the occurrence of AD by suppressing amyloid 

precursor protein (APP) expression [11], which 

suggests that miR-101a-3p exerts neuroprotective 

function in neurodegenerative diseases. 

 

Rho-associated coiled-coil containing protein kinase 2 

(ROCK2), a serine-threonine protein kinase, is a 

downstream effector of Rho GTPases, which can affect 

the contraction and movement of various cells in brain, 

including endothelial cells, vascular smooth muscle, 

neurons, neuroglia and so on. Besides, ROCK2 is 

regarded as the potential therapeutic target for various 

neurological diseases, such as traumatic brain injury 

[12], spinal cord injury [13], subarachnoid hemorrhage 

[14], and neurodegenerative diseases [15, 16]. The 

expression levels of ROCK1 and ROCK2 are increased 

in the brain tissue of dead PD patients [17–19]. So, 

inhibition of ROCK activity is considered as a potential 

strategy for the treatment of PD. It has been found that 

in the mouse PD model, oral administration of ROCK 

inhibitor fasudil activates Akt signaling pathway, 

reduces the death of dopaminergic neurons, and 

maintains the integrity of axons [20]. Additionally, in 

pre-clinical research, down-regulating ROCK2 delays 

PD progression [21, 22]. 

 

This study explored the possible mechanisms of miR-

101a-3p and ROCK2 in PD pathogenesis to provide 

new targets for PD prevention and treatment. 

 

MATERIALS AND METHODS 
 

Animals 

 

C57B/6J mice (8 weeks old; weight: 20–30 g) were 

obtained from the Model Animal Research of Wuhan 

University. The mice were kept in a 12-h light/dark 

cycle with food and water available ad libitum at a 

temperature of 22–25°C. All experiments were 

approved by the Animal Ethics Committee of Renmin 

Hospital of Wuhan University (approved on March 9th, 

2023) and performed according to the Guide for the 

Care and Use of Laboratory Animals by the National 

Institutes of Health and the American Physiological 

Society. 

 

Mouse model of PD and micro-injection 

 

The mouse model of PD was constructed as previously 

described [23, 24]. Mice were injected intraperitoneally 

with normal saline (control) or 1-methyl 4-phenyl 1, 2, 

3, 6-tetrahydropyridine hydrochloride (MPTP, 

M325913; Toronto Research Chemicals, Canada)  

4 times at intervals of 2 h on day 0. The MPTP dose  

for the mouse was 20 mg/kg each time. On the 3rd day, 

the mice were tested in the experiments. The 

intracerebroventricular injection of miR-101a-3p 

mimics was performed according to the previously 

described method [25]. Briefly, the mice were 

anesthetized and fixed. A small hole (2.5–3.0 mm deep) 

was made 0.5 mm behind the bregma and 1 mm 

laterally, and then a micro-syringe (Hamilton, NV, 

USA) was employed for intracerebroventricular 

injection of miR-101a-3p mimics (RiboBio, 

Guangzhou, China). MiR-101a-3p mimics (dissolved in 

1.25 µL of Entranster™ in vivo transfection reagent 

(Engreen, Beijing, China)) were injected 48 h before 

MPTP treatment at a dose of 2.5 µg/2.5 µL per mouse. 

After the behavioral experiments, the mice were 

euthanized and beheaded, and then SNpc tissue was 

isolated from the brain of the mouse with microsurgical 

procedure and cryopreserved at −80°C. 

 

miRNA expression profile analysis 

 

“miRNA Parkinson” was searched in GEO database 

(http://www.ncbi.nlm.nih.gov/geo/), and the dataset 

GSE16658 (which contains miRNA expression profile 

data of peripheral blood mononuclear cells from 19 

Parkinson’s patients and 13 controls) was obtained. The 

data were analyzed according to the criterion “P < 0.05 

and Log2(Fold Change) >1 or Log2(Fold Change) <−1” 

to screen out differentially expressed miRNAs. 

 

Cell culture, treatment and transfection 

 

Mouse neuroblastoma cell Neuro-2a (ATCC, 

Manassas, VA, USA) was utilized to establish an 

in-vitro PD model. The cells were cultured in an 

incubator containing 5% CO2 at 37°C. The medium 
was Dulbecco’s modified Eagle’s medium (DMEM; 

HyClone, Logan, UT, USA) containing 10% fetal 

bovine serum (v/v) (Gibco, Grand Island, NY, USA) 
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and 0.1% gentamycin (w/v) (HyClone, Logan, UT, 

USA). Neuro-2a cells were exposed to 1 mM  

1-methyl-4-phenylpyridinium (MPP+) for 24 h to 

construct an in-vitro PD model [26, 27]. From 

GenePharma (Shanghai, China), the oligonucleotides 

and plasmids were obtained. Neuro-2a cells were 

transfected with ROCK2 plasmids employing 

Lipofectamine™ 3000 (Invitrogen, Carlsbad, CA, 

USA) 24 h before exposure to MPP+. 

 

Swimming test 

 

The mouse was placed in a glass swimming tank 

(length: 40 cm; width: 25 cm; height: 16 cm), to 

conduct a swimming test. The tank was filled with 

water (temperature: 22–25°C) to a depth of 12 cm. The 

scoring rules are: 0, no swimming with head above the 

surface of water; 1, occasional swimming while floating 

with hind paws; 2, alternation between swimming float 

and passive floating; 3, swim continuously. The higher 

the score, the better the mouse’s condition [28]. 

 

Traction test 

 

The muscular strength and balance of mice were tested 

through traction test as previously described [29]. 

Specifically, 7 days after the PD model was constructed, 

the mouse’s front paws were put on a horizontal rope 

(diameter: 5 mm) about 70 cm from the ground. The 

scoring rules are as follows (according to the mouse’s 

hindlimbs grasping the rope): 0, fall from the rope; 1, no 

hind paw grasps the rope; 2, one hind paw grasps the 

rope; 3, both hindlimbs grasp the rope. The higher the 

score, the better the mouse’s muscular strength and 

balance. 

 

Rotarod test 

 

The rotarod test was applied for measuring the motor 

coordination and balance of the mice [30]. The mouse 

was placed on a rod with a diameter of 3 cm, and the 

rotation speed of the rod was increased from 4 rpm to 

40 rpm within 5 min. The mice were tested 2 times a 

day and 3 times per mouse at intervals of 15 min. 

Training experiments were performed 3 days before 

modeling. The motor function recovery test was 

performed 7 days after the PD model was constructed, 

and the time when the mice fell off was recorded. The 

longer the mouse stays, the better its motor coordination 

and balance abilities. 

 

Western blot assay 

 
RIPA lysis buffer (Beyotime, Shanghai, China) was 

utilized to lyse SNpc tissues or Neuro-2a cells to extract 

total protein, and then a bicinchoninic acid protein assay 

kit (Beyotime, Shanghai, China) was employed to 

determine the protein concentration. The protein 

samples were mixed with the loading buffer, and heated 

in boiling water for protein denaturation. Next, sodium 

dodecyl sulfate polyacrylamide gel electrophoresis was 

performed, and subsequently the proteins were 

transferred to a polyvinylidene difluoride (PVDF) 

membrane (Millipore Corporation, Bedford, MA, 

USA). The PVDF membrane, after being blocked with 

5% skim milk for 1 h at room temperature, was 

incubated overnight with the corresponding primary 

antibodies (α-Synuclein Rabbit mAb #4179, ROCK2 

Rabbit mAb #9029, PTEN Rabbit mAb #9188, Akt 

Rabbit mAb #4691, Phospho-Akt Rabbit mAb #4060, 

GAPDH Rabbit mAb #5174, Cell Signaling 

Technology, MA, USA) at 4°C. After that, the 

membranes were incubated with the secondary antibody 

(anti-rabbit IgG, HRP-linked antibody #7074) for 1.5 h 

at room temperature. Eventually, the enhanced 

chemiluminescence kit (Beyotime, Shanghai, China) 

was used for developing the protein bands, and ImageJ 

software (NIH, Bethesda, MD, USA) was adopted to 

analyze the relative amount of protein, with GAPDH as 

the internal reference. 

 

Dual-luciferase reporter gene assay 

 

The binding site of miR-101a-3p to ROCK2 3′UTR was 

predicted using TargetScan version 7.2 

(http://www.targetscan.org/vert_72/). Wild type (WT) 

and mutant type (MUT) ROCK2 3′UTR were 

synthesized according to the binding sequence. Then 

they were inserted into the plasmid pGL3-control vector 

(Promega, Madison, WI, USA) to construct luciferase 

reporter gene plasmids (WT-ROCK2 and MUT-

ROCK2). Subsequently, the plasmids were respectively 

co-transfected with miR-101a-3p mimic or control 

(miR-control) into 293T cells. Ultimately, the luciferase 

reporter gene detection system (E1910, Promega, 

Madison, WI, USA) was used for detection of the 

luciferase activity. 

 

Quantitative real-time PCR (qRT-PCR) 

 

TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was 

employed to extract total RNA from SNpc tissues and 

Neuro-2a cells. The RNA was reverse-transcribed into 

cDNA with a PrimeScript RT Reagent Kit (Perfect Real 

Time) (Takara, Otsu, Japan). Quantitative analysis of 

gene expression was carried out utilizing SYBR Premix 

Ex Taq™ II Kit (Takara, Otsu, Japan). The expression 

level of miR-101a-3p was normalized by U6, and the 

expression level of ROCK2 was normalized by 
GAPDH. The relative expression level was calculated 

by the 2−ΔΔCt method. Below are the primer sequences 

(F: forward; R: reverse): 
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miR-101a-3p F: 5′-TGGGCTACAGTACTGTGATA-

3′; miR-101a-3p R: 5′-TGCGTGTCGTGGAGTC-3′; 

ROCK2 F: 5′-TTGGTTCGTCATAAGGCATCAC-3′; 

ROCK2 R: 5′-TGTTGGCAAAGGCCATAATATCT-

3′; U6 F: 5′-CGCTTCACGAATTTGCGTGTCAT-3′: 

U6 R: 5′-GCTTCGGCACATATACTAAAAT-3′; 

GAPDH F: 5′-GGGAAGCCCATCACCATCTTC-3′; 

GAPDH R: 5′-AGAGGGGCCATCCACAGTCT-3′. 

 

Cell apoptosis assay 

 

Cell apoptosis was detected with the Annexin V-FITC/ 

propidium iodide (PI) double staining apoptosis 

detection kit (Beyotime, Shanghai, China). After Neuro-

2a cells were collected and washed with phosphate 

buffer saline, they (3 × 105 cells in each sample) were 

resuspended, and 5 µL of Annexin V-FITC and 5 µL of 

PI were added in the suspension. The cell suspension 

was fully mixed, and incubated for staining at 4°C in 

the dark for 30 min. The stained cells were washed 

3 times with binding buffer to remove excessive dye, 

and then resuspended in 500 µL of binding buffer. The 

samples were examined on BD FACS Canto II (BD 

Biosciences, San Jose, CA, USA) within 1 h, and the 

data were analyzed by FlowJo version 10.2 software 

(FlowJo, LLC Ltd., Ashland, OR, USA). 

 

Statistical analysis 

 

GraphPad Prism 7.0 software (GraphPad Software Inc., 

La Jolla, CA, USA) was the data analysis tool, and the 

results were shown as “mean ± standard deviation 

(SD)”. Unpaired student’s t-test was conducted for 

comparison between two groups. For more than two 

groups, one-way ANOVA was performed, followed by 

Tukey’s post-hoc test. Statistical significance was 

defined as P < 0.05. 

 

Data availability statement 

 

The data used to support the findings of this study are 

available from the corresponding author upon request. 

 

RESULTS 
 

miR-101a-3p is significantly down-regulated in PD 

 

To study the role of miRNAs in PD, first of all, 

GSE16658 microarray dataset was analyzed through 

GEO2R, and it was revealed that, 19 miRNAs were 

significantly down-regulated in peripheral blood 

mononuclear cells of PD patients (Figure 1A). Among 

them, has-miR-101 was markedly down-regulated 

(Figure 1B), and has-miR-101 corresponds to mmu-

miR-101a-3p (miR-101a-3p) in mice, so it was selected 

as the follow-up research target. Subsequently, we 

constructed a mouse model of PD by intraperitoneal 

injection of MPTP. Swimming test, traction test and 

rotarod test showed that as against the normal saline 

group, the scores of the mice in MPTP group were 

decreased remarkably, suggesting that PD mice had a 

significant decline in motor and balance, and showed 

severe neurological injury (Figure 1C–1E). Western 

blot indicated that compared with the normal saline 

group, the expression of the PD marker protein  

α-synuclein in the mice of the MPTP group was 

observably elevated (Figure 1F), which indicated that 

the PD mouse model was successfully established. qRT-

PCR revealed that miR-101a-3p was markedly under-

expressed in the SNpc of the mice in MPTP group 

compared with the normal saline group (Figure 1G). 

Collectively, the above data suggest that dysregulation 

of miR-101a-3p contributes to PD pathogenesis. 

 

miR-101a-3p inhibits ROCK2 expression 

 

Next, we explored miR-101a-3p’s downstream targets. 

miRDB, miRWalk and TargetScan databases were 

searched to predict the possible downstream targets of 

miR-101a-3p, among which ROCK2 is reported to be 

associated with the pathogenesis of nervous system 

diseases [12–19] (Figure 2A). The binding site of miR-

101a-3p with ROCK2 3′UTR was predicted through the 

TargetScan database, and accordingly, the luciferase 

reporter gene vectors were constructed (Figure 2B). 

Subsequently, the luciferase reporter gene assay 

indicated that compared with the miR-control group, 

miR-101a-3p mimics markedly reduced the luciferase 

activity of the cells transfected with WT ROCK2 

reporter, yet failed to significantly affect that of MUT 

ROCK2 reporter (Figure 2C). Then, ROCK2 expression 

in the SNpc of the mice in two groups was detected by 

qRT-PCR and Western blot assays, and it was revealed 

that compared with the normal saline group, ROCK2 

expression in MPTP group was markedly increased 

(Figure 2D, 2E). The above-mentioned evidence 

suggests that miR-101a-3p suppresses ROCK2 

expression, and their dysfunction may contribute to PD 

pathogenesis. 

 

miR-101a-3p mimic represses ROCK2 expression 

and alleviates neurological damage of PD mice 

 

To confirm the role of miR-101a-3p in PD, we 

overexpressed miR-101a-3p in mouse brain tissues by 

intracerebroventricular injection of miR-101a-3p mimics, 

and then evaluated the neurological function of mice. In 

comparison to MPTP+miR-control group, miR-101a-3p 

was remarkably up-regulated in SNpc tissues of mouse 
after miR-101a-3p overexpression (Figure 3A). 

Swimming test, traction test and rotarod test showed that 

in comparison with MPTP+miR-control group, the
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scores of mice after miR-101a-3p overexpression were 

increased significantly (Figure 3B–3D). Furthermore, 

compared with the MPTP+miR-control group, the 

expression of PD marker protein α-synuclein in mice 

overexpressing miR-101a-3p was markedly reduced 

(Figure 3E). qRT-PCR and Western blot showed that 

compared with the MPTP+miR-control group, ROCK2 

expression in mice overexpressing miR-101a-3p was 

decreased significantly (Figure 3F, 3G). The afore-

mentioned findings imply that miR-101a-3p mimic 

represses ROCK2 expression in PD mice and mitigates 

the neurological injury of PD mice. 

 

Dysregulation of miR-101a-3p and ROCK2 in 

neruo-2a cells treated with MMP+ 

 

Subsequently, Neuro-2a cells were treated with 

neurotoxin MPP+ to construct an in vitro model of PD.

 

 
 

Figure 1. miR-101a-3p is lowly expressed in peripheral blood mononuclear cells of PD patients and brain tissues of mice 
with PD. (A) The volcano plot shows the differentially expressed miRNAs in the in peripheral blood mononuclear cells of PD patients (vs. 

healthy controls) in the GSE16658 dataset. (B) The heat map shows the expression profile of significantly down-regulated miRNAs in 
GASE16658. (C) Swimming test was adopted to score the motor ability of mice in normal saline group and MPTP group (n = 3 in both 
groups). (D) Traction test was adopted to score the balance ability of mice in normal saline group and MPTP group (n = 3 in both groups). 
(E) Rotarod test was adopted to evaluate the balance ability of mice in normal saline group and MPTP group (n = 3 in both groups).  
(F) Western blotting was applied to detect the expression of α-synuclein protein in mice of the normal saline group and MPTP group (n = 3 
in both groups). (G) qRT-PCR was applied to detect miR-101a-3p expression in SNpc of mice in the normal saline group and MPTP group  
(n = 3 in both groups). **P < 0.01 and ***P < 0.001. 
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Western blot showed that compared with the control 

group, the expression of α-synuclein protein in the cells 

of MPP+ group was remarkably enhanced (Figure 4A). 

qRT-PCR revealed that as against the control group, 

miR-101a-3p expression in MPP+ group was observably 

lowered (Figure 4B). Flow cytometry was performed to 

detect cell apoptosis, and in contrast to the control 

group, the apoptosis level of the cells in MPP+ group 

was noticeably elevated (Figure 4C). qRT-PCR and 

Western blotting showed that the ROCK2 mRNA and 

protein expression levels in MPP+ group were 

significantly higher compared with the control group 

(Figure 4D, 4E). 

 

miR-101a-3p mimic suppresses MPP+-induced 

apoptosis of Neuro-2a cells 

 

To determine the biological functions of miR-101a-3p 

in MPP+-induced Neuro-2a cells, Neuro-2a cells were 

transfected with miR-101a-3p mimics or miR-control 

before MPP+ treatment. qRT-PCR indicated that  

miR-101a-3p expression was markedly up-regulated  

in MPP++miR-101a-3p group as against that in 

MPP++miR-control group (Figure 5A), whereas 

ROCK2 expression in MPP++miR-101a-3p group was 

markedly inhibited (Figure 5B, 5C). Moreover, 

compared with MPP++miR-control group, the 

expression of PD marker α-synuclein in the 

MPP++miR-101a-3p group was remarkably down-

regulated (Figure 5D), and the apoptosis level of Neuro-

2a cells was remarkably reduced after transfection of 

miR-101a-3p (Figure 5E). These findings suggest that 

miR-101a-3p mimic significantly inhibits ROCK2 

expression in Neuro-2a cells and attenuates the 

apoptosis of Neuro-2a cells induced by MPP+. 

 

miR-101a-3p alleviates the injury of Neuro-2a cells 

treated with MPP+ by inhibiting ROCK2 

 

To decipher the role of miR-101a-3p/ROCK2 axis in 

mitigating PD-related neurological injury, we 

transfected ROCK2 overexpression plasmids into 

Neuro-2a cells, and after transfection, ROCK2 was 

highly expressed in Neuro-2a cells (Figure 6A, 6B). We 

then transfected miR-101a-3p mimics and miR-101a-3p 

mimics + ROCK2 overexpression plasmids into 

 

 
 

Figure 2. ROCK2 is the target of miR-101a-3p. (A) The Venn diagram shows the results of the miRDB, miRWalk and TargetScan 

databases to predict possible downstream targets of mmu-miR-101a-3p. (B) Bioinformatics analysis was conducted to predict the binding site 
between miR-101a-3p and ROCK2, and WT-ROCK2 and MUT-ROCK2 luciferase reporter gene vectors were constructed. (C) 293T cells were 
co-transfected with miR-101a-3p mimic or miR-control and WT-ROCK2 or MUT-ROCK2. After 48 h, the luciferase activity of each group of 
cells was determined. (D) ROCK2 mRNA expression levels of the mice in the normal saline group and MPTP group were detected by qRT-PCR. 
(E) Western blot was performed to detect ROCK2 protein expression level in the normal saline group and MPTP group. ***P < 0.001. 
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Neuro-2a cells, respectively, and qRT-PCR confirmed 

that in comparison to the MPP++miR-101a-3p mimic+ 

vector group, there was no significant change in miR-

101a-3p expression in the MPP++miR-101a-3p 

mimic+ROCK2 plasmid group (Figure 6C). qRT-PCR 

and Western blotting indicated that in comparison with 

the MPP++miR-101a-3p mimic+vector group, ROCK2 

expression in the MPP++miR-101a-3p mimic+ROCK2

 

 
 

Figure 3. miR-101a-3p mimic inhibits ROCK2 expression and neurological damage in PD mice. To confirm the role of miR-101a-

3p in PD mice, miR-101a-3p mimics were intracerebroventricularly injected into the mice to overexpress miR-101a-3p before 
intraperitoneal injection of MPTP into the mice. There were 4 groups: saline group, MPTP group, MPTP+miR-control group, and MPTP+miR-
101a-3p mimic group (n = 3 in each group). (A) qRT-PCR was performed to detect the expression levels of miR-101a-3p in mice in each 
group. (B) Swimming test was conducted to score the motor ability of each group of mice. (C) Traction test was conducted to score the 
balance ability of each group of mice. (D) Rotarod test was conducted to score the balance ability of each group of mice. (E) Western blot 
was performed to detect α-synuclein protein expression in each group of mice. (F) Detection via qRT-PCR of ROCK2 mRNA expression level 
in each group of mice. (G) Western blot detection of ROCK2 protein expression levels in each group of mice. **P < 0.01 and ***P < 0.001. 

8738



www.aging-us.com 8 AGING 

plasmid group was increased remarkably (Figure 6D, 

6E), and α-synuclein protein expression was also 

increased significantly (Figure 6F). Moreover, flow 

cytometry showed that compared with MPP++miR-

101a-3p mimic+vector group, the apoptosis level of the 

cells in MPP++miR-101a-3p mimic+ROCK2 plasmid 

group was markedly increased (Figure 6G). The above-

mentioned data suggest that miR-101a-3p can relieve 

MPP+-intoxicated Neuro-2a cell damage via inhibiting 

ROCK2 expression. 

 

DISCUSSION 
 

1–2‰ of the population is affected by PD; the morbidity 

of PD rises with age [31]. Based on aging alone, as many 

as 700,000 PD cases are predicted by 2040 [32]. 

Increasing studies suggest that dysregulation of certain 

specific miRNAs may be related to the pathogenesis of 

neurodegenerative diseases such as PD [33]. For 

instance, miR-155 acts as a treatment target to regulate  

α-synuclein-induced inflammatory reaction in the  

PD model [34]. MiR-7 modulates Nod-like receptor 

protein 3 (NLRP3)-mediated neuroinflammation in the 

development of PD [35]. MiR-22 plays a neuroprotective 

role in the 6-hydroxydopamine (6-OHDA)-induced  

PD cell model via targeting transient receptor potential 

melastatin 7 (TRPM7) [36]. Loss of miR-425 facilitates 

necroptosis and dopaminergic neurodegeneration in  

PD [30]. Bioinformatics analysis in the present  

work suggested that, besides miR-101a-3p, multiple

 

 
 

Figure 4. MPP+ suppresses miR-101a-3p expression and induces the apoptosis of Neuro-2a cells. (A) Western blotting was 

utilized to detect α-synuclein protein expression in control group and MPP+ group. (B) Detection of miR-101a-3p expression in Neuro-2a 
cells of the control group and MPP+ group by qRT-PCR. (C) Flow cytometry was utilized to detect the apoptosis level in control group and 
MPP+ group. (D) Detection of ROCK2 mRNA expression level in Neuro-2a cells in the control group and MPP+ group by qRT-PCR. (E) Western 
blot detection of ROCK2 protein expression level in Neuro-2a cells of control group and MPP+ group. ***P < 0.001. 
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Figure 5. miR-101a-3p mimic inhibits the apoptosis of Neuro-2a cells induced by MPP+. To confirm the role of miR-101a-3p in 

Neuro-2a cells treated with MPP+, miR-101a-3p was overexpressed in Neuro-2a cells by transfecting miR-101a-3p mimics before Neuro-2a 
cells were exposed to MPP+. There were 4 groups: control group, MPTP group, MPP++miR-control group, and MPP++miR-101a-3p mimic 
group. (A) Detection via qRT-PCR of miR-101a-3p expression in each group of cells. (B) Detection of ROCK2 mRNA expression in each group 
of cells via qRT-PCR. (C) Western blot detection of ROCK2 protein expression level in each group of cells. (D) Western blot was utilized to 
detect α-synuclein protein expression in each group of cells. (E) Flow cytometry was utilized to detect the apoptosis level of Neuro-2a cells 
in each group. **P < 0.01 and ***P < 0.001. 

8740



www.aging-us.com 10 AGING 

 
 

Figure 6. miR-101a-3p reduces the damage of Neuro-2a cells induced by MPP+ via inhibiting ROCK2. To confirm the 

mechanisms of miR-101a-3p and ROCK2 in MPP+-induced injury of Neuro-2a cells, miR-101a-3p mimics and ROCK2 overexpression plasmids 
were transfected into Neuro-2a cells before Neuro-2a cells were exposed to MPP+. There were 5 groups: control group, MPTP group, 
MPP++miR-control+vector group, MPP++miR-101a-3p mimic+vector group, and MPP++miR-101a-3p mimic+ROCK2 plasmid group. (A) qRT-
PCR was employed to verify the change in ROCK2 mRNA expression after Neuro-2a cells were transfected with ROCK2 overexpression 
plasmids. (B) Western blot was employed to examine the change in ROCK2 protein expression after Neuro-2a cells were transfected with 
ROCK2 overexpression plasmids. (C) Detection of miR-101a-3p expression in each group of cells through qRT-PCR. (D) ROCK2 mRNA 
expression in each group of cells was detected by qRT-PCR. (E) Western blot detection of ROCK2 protein expression level in each group of 
cells. (F) Western blotting was conducted to detect α-synuclein protein expression in each group of cells. (G) Flow cytometry was 
conducted to detect the apoptosis level in each group. **P < 0.01 and ***P < 0.001. 

8741



www.aging-us.com 11 AGING 

miRNAs were also dysregulated in peripheral blood 

mononuclear cells of PD patients, including but not 

limited to miR-126, miR-30e, miR-19a, miR-142-3p, 

miR-21, miR-301a, miR-19b, miR-29b, miR-105, let-7g 

and miR-140-5p, some of which have been reported to 

regulate PD pathogenesis and progression via different 

mechanisms [37–41]. Previous studies have reported 

that miR-101a-3p partakes in multiple neurological 

diseases [10, 11, 42, 43]. This study confirmed that 

miR-101a-3p is lowly expressed in the MPTP-induced 

mouse model of PD and Neuro-2a cells exposed to 

MPP+. We further confirmed that miR-101a-3p mimics 

can alleviate MPTP-induced damage to the neurological 

behaviors of the mice, and ameliorate MPP+ exposure-

induced neuronal apoptosis, indicating that it has a 

neuroprotective effect in PD. In the present work, miR-

101a/miR-101a-3p was found to be down-regulated in 

cell model of PD, animal model of PD and peripheral 

blood mononuclear cells of PD patients. However, 

whether miR-101a is dysregulated in the SNpc of PD 

patients, is not studied, due to the lack of clinical 

samples. Notably, a recent study reports that miR-101a-

3p overexpression impairs synaptic plasticity and 

contributes to synucleinopathy [44], suggesting miR-

101a-3p may exert different biological functions in 

different biological processes during PD pathogenesis. 

In the future, the expression pattern of miR-101a in  

the brain of the patients deserves investigation. 

Additionally, different gene-editing animal models may 

be helpful to further clarify the role of miR-101a-3p in 

PD progression. 

 

This study confirmed that ROCK2 was miR-101a-3p’s 

downstream target and its expression was up-regulated 

in PD models. ROCK1 and ROCK2 are isoforms as the 

downstream effectors of the small GTP-binding protein 

Rho; ROCK1 is mainly found in the lungs, liver, testis, 

blood and immune system, while ROCK2 is mainly 

expressed in brain and muscle [45]. ROCK2 is a crucial 

player in neuronal death and axon regeneration, and is 

believed to play a key part in PD development [46, 47]. 

Therefore, multiple ROCK2 inhibitors are considered 

promising targets for neuroprotective therapy against 

PD [48–50]. As non-coding RNA research evolves in 

recent years, miRNAs have been proved to induce 

mRNA degradation or repress translation by binding to 

the 3′UTR of the target mRNA, so as to modulate the 

expression of downstream target genes and participate 

in modulating PD development. For instance, miR-291 

plays a protective role in neuron degeneration through 

modulating ROCK2 expression [51]. MiR-135a-

5p/ROCK2 axis may play a role in the protective effect 

of hydrogen sulfide against PD [52]. The present study 

confirmed that miR-101a-3p reduces neuronal apoptosis 

and neurological deficits in PD mice by regulating 

ROCK2 expression. Of course, a single miRNA targets 

multiple downstream genes, and beside ROCK2, the 

other downstream targets of miR-101a-3p in PD 

pathogenesis awaits to be explored in the future. 

Additionally, the downstream mechanism of miR-101-

3p/ROCK2 in modulating PD pathogenesis is still 

obscure. Interestingly, some recent studies have found 

that there is a mutual regulatory relationship between 

ROCK2 and PINK1/Parkin axis. In a Drosophila  

PD model, ROCK2 inhibitor or ROCK2 knockout 

promotes Parkin recruitment from cytoplasm to 

mitochondria, enhances mitochondrial autophagy and 

reduces nerve damage, and finally enhances the 

climbing ability of drosophila and alleviates PD 

symptoms [53]. Another study reports that silencing 

PINK1 expression in hippocampal neurons induces 

increased ROCK2 expression, accompanied by 

abnormal morphology of dendritic spines [54]. These 

studies imply that miR-101a-3p/ROCK2 axis may 

interact with PINK1/Parkin axis to regulate PD 

pathogenesis, which deserves further investigation in 

the following work. 

 

CONCLUSION 
 

To sum up, miR-101a-3p suppresses neuronal apoptosis 

and reduces neurological dysfunction of PD via 

targeting ROCK2, by which it plays a neuroprotective 

role, implying that miR-101a-3p may act as a promising 

target for PD treatment. 
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